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Abstract: The dominant poles (eigenvalues) of system matrices are used extensively in determining the power system

stability analysis. The challenge is to find an accurate and efficient way of computing these dominant poles, especially for

large power systems. Here we present a novel way for finding the system stability based on inverse covariance principal

component analysis (ICPCA) to compute the eigenvalues of large system matrices. The efficacy of the proposed method

is shown by numerical calculations over realistic power system data and we also prove the possibility of using ICPCA

to determine the eigenvalues closest to any damping ratio and repeated eigenvalues. Our proposed method can also be

applied for stability analysis of other engineering applications.
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1. Introduction

The eigenvalues of system matrices are used extensively in the analysis of power system stability to preserve

the stable operation of the system disturbance [1,2]. It is also considered a very important problem for system

planning and steady-state operation [3–6].

The application of the transfer function approach is a fundamental tool for system control and stability

analysis [7,8]. Power system oscillations occur in frequency ranges from 0 up to less than 3 Hz [1]. The

eigenvalues computed in this frequency band are of practical concern. The development of partial eigensolution

methods on a transfer function basis is highly appreciated [9–11]. However, eigensolution problems involve

high-dimensional state matrices [7,12] in the order of 20,000 or more state variables.

Model reduction is an important issue in power system dynamics. Reduced transfer function models of

the power system are very effective for the design of power system stabilizers [13]. The reduced model can be

built based on the calculation of the residues after finding the dominant poles [14,15].

In the case of eigenvalues that are not well separated, it is common in the literature to implement the

shift-and-invert transformation combined with one of the eigenvalue solvers to enhance the convergence. The

application of this kind of transformation requires solving a linear system at each iterative step. In this paper,

a new methodology for determining the eigenvalues and the associated eigenvectors is proposed using an inverse

covariance decomposition of the data matrix. The proposed algorithm is compared with the standard eigenvalue

decomposition (EVD) based on a matrix decomposition strategy [13]. It outperforms the EVD methodology,
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not only in the central processing unit (CPU) time, but also in the identification of the real part of complex

eigenvalues (unstable poles) necessary in obtaining full system transient stability.

This paper is organized as follows. In Section 2, we present the dynamical systems and eigenvalue

problems, where the statement of the problem is included. In Section 3, the proposed algorithm is presented for

computing dominant eigenvalues, computing dominant poles through inverse covariance principal component

analysis (ICPCA) expansion, and computing ICPCA expansion. In Section 4, we present numerical examples

and simulation results that prove the effectiveness of the proposed method, and, finally, the conclusions of the

work are presented in Section 5.

2. Mathematical model and related eigenvalue problem

A linear dynamic system can be modeled in state-space form [4] with the variables L, N, H, and D, as follows:

x (k + 1) = Lx (k) +Nu (k) , (1)

y (k) = HTx (x) +Du (k) .

Here, {L} ∈ Rn×n N ∈ Rn×m , and HT ∈ Rn×p . Moreover, x (k) is the state vector having Rn , L is the state

transition matrix, N is the control matrix, and u(k) is the control input vector of dimensions Rm . y (k) is the

output observation matrix of dimensions Rp and D has Rn×m dimensions. Eq. (1) can be reduced in the form

of a transformation function, T : H , with dimensions Rp×m :

T (s) = HT (sI − L)
−1

N +D. (2)

The roots of Eq. (2) are called the poles of the system and the number of poles is equal to the number of

the states. Moreover, the values of s satisfying Eq. (2) are called the eigenvalues of the state matrix L . If

L ∈ Rn×n is a square matrix, it will have neigenvalues.

Numerical methods for determining the eigenvalues of the square matrix have been developed to a high

degree of accuracy. Eigenvalues of L are distinct when there are no 2 equal eigenvalues. Moreover, the location

of the system poles in the complex plane determines the stability of the system matrix [15,16]. For a stable

system, all of the poles have negative real parts, i.e. all of the eigenvalues lie in the left-hand half of the complex

s-plane. For an unstable system, at least 1 pole has a positive real part. If the system has an eigenvalue with 0

real parts, the system response will be oscillatory and the system is called critically stable.

The transfer function T(s) can be stated as follows:

T (s) =
R1

s− λ1
+

R2

s− λ2
+ . . .+

Rn

s− λn
, (3)

where Rn are the residues and λn are the poles of the transfer function T (s). The dominant pole is the one

associated with a residue with a large Rn

Reλn
. The magnitude plot of T (s) shows that peaks occur at frequencies

close to the imaginary part of the dominant poles. Letting k < n, the following approximation is obtained:

T (s) =
R1

s− λ1
+

R2

s− λ2
+ . . .+

Rk

s− λk
. (4)

Hence, the problem can be formulated in a linear single-input single-output, time-invariant, and dynamical

system in order to find k << n dominant poles.
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In small-signal stability analysis, one is interested in assessing whether the system, linearized around an

operating point, is dynamically stable or unstable under small disturbances [17,18]. The states of the system in

the time domain can be formulated as a linear combination of the terms xie
λi(k) . The presence of eigenvalues

with the real part, i.e. λi ∈ Re > 0, will result in states that grow exponentially with time [19]. In this case,

the operating point, or more generally the system, is called unstable. This paper mainly presents a robust

algorithm for the small-signal stability problem.

Given the system matrix L , the nontrivial problem is to compute the finite eigenvalues λi (and corre-

sponding eigenvectors), and solving for λi gives:

det (L− λI) = 0, (5)

where the n solutions of Eq. (5) are the eigenvalues λ1λ2 , . . . , λn of the n× n matrix L and λi ̸= λj , i ̸= j ;

they may be real or complex in the form of σ ± jω. The complex eigenvalues are always in conjugate pairs if

L is real. In a power system, the stability of the operating points (δo , ωo) may be analyzed by studying the

eigenvalues, where δo is the normal rotor angle in electrical radians and ωo is the synchronous angular velocity

in electrical rad/s [1,17].

Usually, one is not only interested in the eigenvalues with positive real parts, but also in the eigenvalues

closest to the imaginary axis. In small-signal stability analysis, these eigenvalues are characterized as having a

small damping ratio [20].

Let λi = σi ± jωi be the ith eigenvalue of the state matrix L . The real parts σi of the eigenvalues

give the damping, and the imaginary part ωi gives the frequency of oscillation. The relative damping ratio ζ

is expressed as follows [21]:

ζ = − σ√
(σ2 + ω2)

. (6)

This ratio (ζ) determines the decaying property of the oscillation; it also gives an indication for the amount of

overshoot and oscillation that the response undergoes. In power systems, the oscillatory modes of a damping

ratio of less than 3% are considered to be critical [1,12]. The problem can be reformulated as given in the system

matrix L, to compute the finite eigenvalues (and corresponding eigenvectors) with the smallest damping ratio.

Moreover, the eigenvalues and their corresponding eigenvectors are usually calculated via standard EVD-based

dimensionality reduction methods, which are not sufficiently suitable for the small stability analysis [14].

3. Algorithm

In this algorithm, we introduce a method to find the dominant poles, through finding the eigenvalues of the

system. A scalar transfer function T (s) could be made equal to its transpose as follows:

T (s) = HT (skI − L)
−1

N = NT (skI − L)
−T

H. (7)

In matrix form, we have:[
skI − L −N
HT 0

] [
X (s)
U (s)

]
=

[
(skI − L)

−T
c

−NT o

] [
V (s)
U (s)

]
, (8)

where the vectors X(s) and V (s) represent the Laplace transformations for the vectors L and LT , and X(s)

and V (s) tend to converge to the right and left eigenvectors of L.
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Algorithm 1. Algorithm for the calculation of dominant eigenvalues or poles.

Input: System matrices L ,N ,H , and an initial estimate of pole s1 .

Output: Right and left eigenvectors x and vof dominant pole λ

1: Put k = 1

2: While no convergence do

3: Solve for x and u,

[
skI − L −N
HT 0

] [
x
u

]
=

[
0
1

]
4: Solve for v and u,

[
skI − L H

−NT 0

] [
v
u

]
=

[
0
1

]
5: The new pole estimate is sk+1 = sk + u

vT x

6: The convergence of the pole estimate is |Lx− sk+1x| < ϵ

7: end while

We use multiple moving shifts for sk to find more than 1 dominant pole. By proposing different initial

shifts, the computation of repeated poles can be avoided. In step 8 of Algorithm 2, the generalized eigenvalues

λi of (Z,G), i.e. Zx = λGx , can be computed while using the MATLAB command ‘Eig’. Practically, moving

shifts will be decreased in number as soon as the convergence of the pole is achieved, keeping the left and right

eigenvectors in the matrices V and X .

Algorithm 2. Algorithm for computing dominant poles through ICPCA expansion.

Input: Matrices L , N , H , and an initial estimate of pole s1 , and the required poles r .

Output: Right and left eigenvectors x and v , dominant pole λirtilti , where i= 1. . . poles r.

1: Put poles = 0, Rt = Lt =

[
...

]
, k = 1

2: while not converged, i.e. poles < polesr do

3: Solve for x and, i.e. x = X (sk),

[
skI − L −N
HT 0

] [
x
u

]
=

[
0
1

]
4: Solve for v and, i.e. v = V (sk)

[
skI − L H

−NT 0

] [
v
u

]
=

[
0
1

]
5: X = ICPCA expansion (X, Rt, Lt,x)

6: V= ICPCA expansion (V , Rt, Lt,v)

7: Compute G = V TX and Z = V T LX

8: Compute eigentriplets of (Z,G) =
(
λ̃i, x̃i, ṽi

)
9: Compute eigentriplets of L as: λ̂i = λ̃ix̂i = Xx̃iv̂i = V ṽii = 1, . . . k
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10: Collect X̂ = [x̂1 . . . x̂k], V̂ = [v̂1 . . . v̂k], and Λ̂ =
[
λ̂1 . . . λ̂k

]
.

11: if
∣∣∣Ax̂1 − λ̂1x̂1

∣∣∣ < ϵ, then

12: Function
(
Rt, Lt, X̆, V̆ ,Λ

)
= squeeze

(
x̂1, v̂1.Rt, Lt, X̂2..., V̂2..., λ̂1

)
13: Rt = [Rt, ā]Lt = [Lt, v̄] Λ =

[
Λ, λ̄

]
14: if imag λ ̸= 0, then

15: Rt = [Rt, x̄]Lt = [Lt, v] Λ =
[
Λ, λ̄

]
16: end if

17: X̆ = V̆ =

[
...

]
18: for e = 1, . . . , k − 1 do

19: X̆ =ICPCA expansion
(
X̆, Rt, Lt,Xe

)
20: V̆ =ICPCA expansion

(
X̆, Rt, Lt, Ve

)
21: end for

22: poles = poles + 1

23: λ̂1 = λ̂2

24: end if

25: k = k + 1

26: New pole estimate sk+1 = λ̂1

27: end while

A drawback of Algorithm 2 is that the data determined in the current iteration will be discarded at the

end of the iteration. However, the preserved data are included in the new pole estimates sk+1 . Subspaces V

and X include the information about the other dominant eigentriplets [14]. Hence, dominant pole algorithms

can be generalized into Algorithm 2. Now, for the shift s1, the approximated right and left eigenvector x1

and v1 will be included in X and V . Next, X and V are expanded orthogonally for the next iteration using

Cholesky ICPCA.

Algorithm 3. Algorithm for computing ICPCA expansion.

Input: X , Rt, Lt,x

Output: X and xk+1 =
∏poles

e=1

(
I −RteLt

T
e

)
/
(
LtTe Rte

)
· x

1: Function x = ICPCA(X,x)

2: [L.D] = ldl (X, lower)

3:
∑−1

= LTD−1L

4:
(
X−1, D

)
= eig

(∑−1
)

5: X =
∣∣∣X,x
|x|

∣∣∣
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Table. The 10 most dominant eigenvalues with corresponding damping and frequency for the New England 39-bus

system.

No. Eigenvalue Magnitude Equiv. amping Equiv. freq. (rad/s)
1. –4.67e-001 ± 8.96e+000i 8.98e+000 –8.04e-001 5.46e+002
2. –2.97e-001 ± 6.96e+000i 6.96e+000 –7.69e-001 5.05e+002
3. –2.49e-001 ± 3.69e+000i 3.69e+000 –6.24e-001 4.19e+002
4. –9.79e-001 ± 1.14e+000i 1.50e+000 –1.76e-001 4.63e+002
5. –1.12e-001 ± 7.10e+000i 7.10e+000 –7.77e-001 5.04e+002
6. –3.70e-001 ± 8.61e+000i 8.62e+000 –8.00e-001 5.38e+002
7. –2.83e-001 ± 6.28e+000i 6.29e+000 –7.51e-001 4.90e+002
8. –3.01e-001 ± 5.79e+000i 5.80e+000 –7.35e-001 4.78e+002
9. –2.82e-001 ± 7.54e+000i 7.54e+000 –7.82e-001 5.16e+002
10 –4.12e-001 ± 8.78e+000i 8.79e+000 –8.02e-001 5.42e+002
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Figure 1. a), b), and c): CPU time for the PCA using the EVD and ICPCA methods as a function of different data

dimensions.
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4. Numerical examples

We propose using Cholesky inverse covariance
∑−1

= LTD−1L to have an estimate of the action-dependent in-

verse covariance matrix. We apply the Cholesky decomposition only to the inverse covariance matrix sequences.

The most dominating eigenvector will be measured first. In a similar way, all of the h− 1 basis vectors will be

measured in descending order with respect to their dominance.

In this paper, the performance of the ICPCA in terms of the processing time is compared with EVD-

based PCA. The results for the CPU time are obtained versus the increase of the data dimensionality. Here,

we present the performance measure of a 3000-dimensional matrix generated using a Gaussian random number

generator (using MATLAB’s function ‘randn’). The CPU time required in computing the h leading eigenvectors

is a function of the data dimensionality.

The data from 1 to 3000 are given in Figures 1a, 1b, and 1c. It is clear that the CPU time for ICPCA
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Figure 2. a) Magnitude plot of the proposed model, b) eigenvalue plot showing left and right eigenvalues, and c) pole

spectrum of the New England data.
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follows a linear behavior compared to that of EVD/PCA. This confirms the effectiveness of the proposed

method for high-dimensional applications. The New England 39-bus system with 10 generators is used to

test the continuation of invariant subspaces, where 9 state variables are considered for each generator with 2

algebraic equations for each bus. In the experiments, a convergence tolerance of ϵ = 10−10 is used. The tests

are carried out in MATLAB 7.0 on an AMD Turion-X2 dual core 64-bit 2.10-GHz PC with a 4.0-GB RAM.

The proposed method is applied to the transfer functions of the New England data to find the number

of dominant poles. Starting with one shift, after having the first pole converged, the next most dominant

approximate pole is the new shift afterwards. Results are given in the Table for the 10 most dominant eigenvalues

with corresponding damping and frequency for the New England 39-bus system. The system Bode plot is

depicted on Figure 2a, where it is observed that the proposed algorithm successfully computes the complex

eigenvalues of the system under study. Figure 2c shows the pole spectrum of the New England data. The

ICPCA method enables the computational cost to come down to an optimal level, where the growth of the

dominant poles does not affect the system’s dimensionality reduction, without any human interaction during

the process.

5. Conclusions

The proposed algorithm presented in this paper is relatively fast in computing the eigenvalues and corresponding

eigenvectors. When compared to existing methods, it has several advantages. First, it is more robust as it uses

the inverse covariance factorization. Second, it converges at a lower number of iterations. Third, the possibility

of missing a dominant pole is lower. Moreover, it is unsupervised, i.e. many dominant poles can be computed

with one shift, without human intervention. The proposed ICPCA method could be applied to any other related

engineering problems.
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