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Abstract: In this paper, an auto-tuned fuzzy load frequency controller (FLFC)-based artificial bee colony (ABC)

algorithm is developed to quench the deviations in the frequency and tie-line power due to load disturbances in an

interconnected power system. Optimal tuning of membership functions (MFs) and fuzzy control rules is very important

to improve the design performance and achieve a satisfactory level of robustness for a particular operation. In this

work, to reduce the fuzzy system design effort and take large parametric uncertainties into account, a new systematic

and simultaneous tuning method is developed for designing MFs and fuzzy rules. For this, the designing problem is

restructured as an optimization problem and the ABC algorithm is employed to solve it. This newly developed method

provides some advantages such as a flexible controller with a simple structure and easy algorithm. For the purpose of the

proposed method’s evaluation, the designed controller is applied to a 2-area power system with considerations regarding

governor saturation and the results are compared to the one obtained by a classic proportional-integral controller.

Simulation results show better operation and improved system parameters, such as the settling time and step response

rise time, using the proposed approach, in the presence of system parameter variations.
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1. Introduction

With the development of extensive power systems, especially with increasing size, the changing structure and

complexity of these interconnected systems, load frequency control (LFC) has become an important criterion

in electric power system design and operation and has received a great deal of attention [1]. An interconnected

modern power system with commercial and industrial loads requires operation at a constant frequency with

stable and reliable power. The fundamental goals of LFC in an interconnected power system are to hold a

reasonably uniform frequency at each area and to maintain the tie-line power interchanges in a predefined

tolerance in the presence of modeling uncertainties, system nonlinearities, area load disturbances, and sudden

changes in load demands [2].

In the modern power system, as the power load demand changes randomly, the tie-line power interchange

and area frequency also change. Therefore, a load frequency controller design is necessary to maintain the

reliability of the electric power system and to provide better conditions for electricity trading and the power

system’s safe operation.

During the past decades, several control approaches have been proposed and applied to the LFC design
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problem, including optimal control, adaptive control, model predictive control, sliding mode control, and robust

control, which can be found in [2–6], respectively. Each of these techniques has its own advantages and

disadvantages.

More recently, there has been growing interest in artificial intelligence techniques, such as fuzzy logic

control (FLC) [7–13], artificial neural network (ANN) [14,15], and biologically inspired algorithms [16–18], to

design a load frequency controller in a power system by research around the world. Among these techniques,

since fuzzy logic controllers provide an effective means to model and control a complex and ill-defined plant, many

control strategies based on the FLC approach have been suggested and applied successfully regarding the load-

frequency control of power systems. These intelligent control methods are independent of the power system’s

mathematical model parameters. For instance, a fuzzy logic-based tie-line bias control scheme was introduced

in [7]. The authors proposed a fuzzy gain-scheduled proportional-integral controller and its implementation

on an Iraqi national super grid power system in [8]. A new optimal fuzzy logic-based proportional-integral-

derivative controller is presented in [9] to deal with the LFC problem. Moreover, some authors used fuzzy

proportional-integral-derivative methods to solve the LFC problem [10,11].

In designing a fuzzy load frequency controller (FLFC), one will need to determine components such as

membership functions (MFs) and fuzzy control rules. In order to improve the performance of the FLFC and to

reduce fuzzy system effort cost and time consumption, fuzzy logic controllers combined with a genetic algorithm

(GA) based on the hill climbing method and partial swarm optimization (PSO) algorithm were proposed in

[12] and [13], respectively. In these strategies, the authors used a GA and PSO for the tuning of fuzzy MFs

through multistage procedures. Although these algorithms may be good approaches to solve some optimization

problems, the existence of a greater number of local optimum in some problems causes premature convergence

and leads these algorithms to be trapped in local optimum easily. Another important factor in such methods

is the coding method and optimization problem formulation. This issue may take a long simulation time to

obtain the solution.

In this paper, to overcome these drawbacks and improve the performance of the FLC, an efficient artificial

bee colony (ABC)-based approach is suggested for the simultaneous auto-tuning of MFs and fuzzy control rules of

a FLFC by considering a new optimization formulation. The ABC algorithm is a robust search and optimization

technique that has been applied in many practical researches and has proven its superior capabilities, such as

faster convergence and better global minimum achievement.

In the proposed method, during the evolutionary process, the parameters to be optimized by the ABC

algorithm are the centers and widths of the triangular MFs, and the fuzzy rules corresponding to every

combination of the input linguistic variables. This is implemented by a new type of coding and a new way

of formulating the optimization problem.

To show the efficiency of the proposed approach, it is used as an alternative approach in solving the LFC

problem on a 2-area interconnected power system with considerations regarding the governor saturation and

a wide range of parametric uncertainties. The system parametric uncertainties are obtained by changing the

parameters by 25% simultaneously from their nominal values. Moreover, to make a comparison, the proposed

controller is compared with 2 different controllers: a conventional proportional-integral (PI) controller and a

FLFC based on the PSO algorithm. The simulation results show the superiority and capability of the proposed

method in improving system parameters, such as the settling time and step response rise time, in the presence

of system parameter variations.

The paper is organized as follows: to establish a proper background, the basic concepts of the ABC
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algorithm are briefly described in Section 2. The study system used in the simulations studies is given in

Section 3. In Section 4, the ABC-based FLFC scheme is presented. Simulation results in the study system are

provided in Section 5 and some conclusions are drawn in Section 6.

2. Overview of the ABC algorithm

Over the last decades, there has been growing interest in algorithms inspired by the observation of natural

phenomena. It has been shown by many researches that these algorithms are good alternative tools to solve

complex computational problems.

The ABC algorithm is a population-based stochastic optimization algorithm inspired from the particular

intelligent behavior of honeybee swarms when searching for a food source and it has proven its superior

capabilities, such as faster convergence and better global minimum achievement [19].

The ABC algorithm, originally developed by Karaboga in 2005 [20], simulates the foraging behavior of a

bee colony. Due to the advantages of the ABC algorithm, such as its simple concept, easy implementation, and

fewer control parameters, it has been researched and utilized to solve different kinds of optimization problems by

researchers around the world since 2005, such as data clustering [21,22], training ANNs [23], the leaf-constrained

minimum spanning tree problem [24], designing infinite impulse response filters [25], and designing the optimal

parameters of a power system stabilizer [26].

In the ABC algorithm, the colony of artificial honey bees consists of 3 types of bees: employed bees,

onlookers, and scouts; half of the colony are employed bees and the remaining are onlooker bees [20]. Each

solution of the optimization problem is called a food source in the search space. In other words, the searching

process of bees for the food source stands for the finding process for the optimum solution of the problem to

be optimized. The fitness of solution corresponds to the profitability of the food source. Moreover, the related

profitability (fitness) of a food source (solution) is calculated by the evaluation of the fitness function of the

corresponding variables considering the related objective function. The number of solutions is known as SN and

is considered to be equal to the number of employed bees or onlookers. The employed bee whose food source is

abandoned by the bees becomes a scout [19,20].

The main procedures of the ABC algorithm can be written as follows:

Step 1: Initialize the population.

Step 2: Send the employed bees onto their food sources and evaluate their nectar amounts (fitness).

Step3: Place each onlooker bee on a food source according to its nectar amounts (quality of her solution),

based on the information provided by the employed bees

Step4: Determine the source to be abandoned and assign its employed bee as a scout for searching the

area to discover new food sources.

Step5: Memorize the best food source (solution) found so far.

Step6: Until the termination criterion is satisfied, repeat steps 2–5.

Similar to other evolutionary algorithms, this algorithm begins with an initial population of SN food

source positions created randomly within the feasible space. Each food source corresponds to a solution in the

search space. For D -dimensional problems (D variables), the position of the ith food source is represented as

Xi = [xi1, xi2, ..., xiD ]T . The initial population of artificial bees is generated randomly within the range of the

boundaries of the parameters, as follows:

Xij = Xmin
j + rand(0, 1)(Xmax

j −Xmin
j ), (1)
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where i ∈ {1, 2, ..., SN} and j ∈ {1, 2, ..., D} , in which D is the number of optimization parameters, and Xmin
j

and Xmax
j are the lower bound and upper bound of parameter j , respectively. Thus, rand () is a random

number in the range of [0, 1].

After initialization, all of the food sources (solutions) are subjected to repeat cycles of the search processes

of the honeybees. The search process is continued until the termination criterion is met. The termination

criterion could be the maximum cycle number (MCN) or when an error tolerance (ε) is met [21].

In step 2, the employed bees produce a modification on the position of the food sources (solutions) in their

memories, depending on the local information (visual information), and produce new food source positions (new

solutions), Vij , in the neighborhood of the old food source positions (old solutions), xij , using the following

equation:

Vij = Xij + rij(Xij −Xkj), (2)

where j ∈ {1, 2, ..., D} is a random integer in the interval [1, D] and k ∈ {1, 2, ..., SN} is a randomly chosen

index, where k ̸= i . Moreover, rij is a uniformly distributed real random number in the range of [–1, 1]. It is an

adaptively control parameter that controls the production of neighbor food sources around Xij and determines

the comparison of 2 food positions visually by a bee. As can be seen from Eq. (2), as the difference between

Xij and Xkj is reduced, the perturbation on the position Xij is decreased as well. Thus, as the search finds a

better solution, the step length is steadily decreased.

If this repositioning process produces sources (solutions) with higher nectar amounts (better fitness) than

those of the previous ones, the bees replace the position of the new sources with the previous ones. Otherwise,

they keep the position of the previous food sources in their memories.

In step 3, after all of the employed bees complete their search process, they communicate their information

related to the nectar amounts (fitness’) and the positions of their food sources (solutions) to the onlooker bees.

Next, the onlooker bees calculate the nectar information taken from all of the employed bees and select food

sources using a selection probability that depends on the fitness values of the solutions in the population. As

the fitness of the solution increases, the probability of that solution being chosen also increases [27].

This probabilistic selection scheme might be a roulette wheel, stochastic universal, rank selection, disrup-

tive selection, tournament selection, or another selection method. The basic ABC algorithm uses the roulette

wheel selection mechanism, in which the probability value associated with a food source, Pi , can be expressed

by the following expression:

Pi =
fitnessi

SN∑
i=1

fitnessi

, (3)

where fitness i is the fitness value of the ith food source (solution) and is proportional to the nectar amount of

the food source in the ith position. Moreover, SN denotes the number of food sources, which is equal to the

number of employed or onlooker bees.

After selecting the food source, as in the case of the employed bee, onlookers start to carry out the

exploitation process and produce some modifications on the positions in their memories using Eq. (2). Here,

new positions Vij are produced for the onlookers from the solutions Xij , selected depending on Pi . Once again,

if this repositioning process produces food sources (solutions) with higher nectar amounts (better fitness) than

those of the previous ones, the bees replace the position of the new sources with the previous ones. Otherwise

they keep the position of the previous food sources in their memories [20,28].
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In the ABC algorithm, there is a control parameter called the ‘limit ’ for abandonment. The limit is a

predetermined number of cycles that controls the update times of a certain solution and is used to determine if

there is any exhausted source to be abandoned. For this, after all of the employed and onlooker bees complete

their searches, the algorithm checks the counter value, which has been updated during search. If the value of

the counter is greater than the limit value and no improvement is possible in the food source position, then the

source associated with this counter is assumed to be abandoned and the employed bee becomes a scout. The

scout then starts to search for a new food source to be replaced with the abandoned one.

This is simulated by generating a site position randomly and replacing it with the abandoned one. If the

abandoned source is Zi , then the scout randomly discovers a new food source to be replaced with Zi . This

operation can be expressed as in Eq. (4). In the basic ABC, it is assumed that only 1 source can be exhausted

in each cycle, and only 1 employed bee can be a scout [23].

These steps are repeated through the MCN or until a termination criterion is satisfied.

Zj
i = Zj

min + rand(0, 1)(Zj
max − Zj

min) (4)

Figure 1 shows the detailed pseudocode for the ABC algorithm.

 

1) Initialize the population of solutions ijX  by using (1) 

2) Evaluate the fitness of population 

3) Set cycle to 1 

4) Repeat

5) FOR each employed bee {

     Produce new solutions ijV  in the neighbourhood of ijX , using (2) 

     Evaluate the fitness’s value

     Apply the selection process between ijX  and ijV

     Calculate the possibility value, iP , using (3)}

6) FOR each onlooker bee {

     Select a solution ijX depending on iP

    Produce new solutions ijV  from the solutions ijX

    Evaluate the fitness’s value}

7) Determine the abandoned solution ijX , if exists, replace it with a 

new randomly produced solution ijX  for the scout bee, using (4) 

8) Memorize the best solution achieved so far 

9) Cycle=cycle + 1 

10) Until cycle=MCN 

Figure 1. Pseudocode of the ABC algorithm.

3. Power system model

A typical power system naturally composed of complex and multivariable structures with different intercon-

nected control areas, where, in each area, generators are assumed to constitute a coherent group. All of the

control areas are generally nonlinear, time-variant, and/or nonminimum phase systems with complicated char-

acteristics that connect to each other using tie lines. These tie lines are employed to exchange the power between

areas and enhance the fault tolerance of the entire power system in the case of abnormal conditions.

In actual power system operations, the load varies randomly and continuously throughout the day. As a

result, both the frequencies in all of the areas and the tie-line power flow between the areas are affected by these

load changes at the operating point. These changes create a mismatch between the generations and the demand,
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where a result in exact forecast of the real power demand cannot be assured. Therefore, for good and stable

power system operation, both the frequency and tie-line power flow should be kept constant against the sudden

area load perturbations, system parameter uncertainties, and unknown external disturbances. Therefore, to

ensure the quality of the power supply, a load frequency controller is needed to restore the system frequency

and the net interchanges to their desired values for each control area.

The area frequency deviation (∆f) and tie-line power deviation(∆Ptie) are 2 important parameters of

interest. Their linear combination is known as the area control error (ACE). The measurements of the entire

generation and load in the system, for the computation of the mismatch between the generation and obligation,

in one area are very difficult. The mismatch is measured at the area control center using the ACE. The ACE

for the ith area is defined as:

ACEi = P act
tiei

− P s
tiei

− 10Bi(f
act
i

− fs
i )

= ∆Ptiei − 10Bi∆fi
, (5)

where P act
tiei

and P s
tiei

are the actual and scheduled (manually set) interchanges of the ith area with neighboring

areas, respectively. Moreover, fact
i

and fs
i are the area’s actual and scheduled frequencies in the ith area, and

B is the frequency bias coefficient of the ith area, which is a negative number measured in MW per 0.1 Hz.

However, the ACE signal is often calculated using the area frequency response characteristic β instead

of B , as follows:

ACEi = ∆Ptiei + βi∆fi (6)

with

βi =
1

Ri
+Di. (7)

In which Di is the damping ratio or the frequency sensitivity of the ith area’s load and Ri is the regulation

due to the governor action in the ith area, or droop characteristic. Moreover, βi is a frequency bias constant

and should be high enough such that each area adequately contributes to the frequency control [10].

The frequency and interchanged power are kept at their desired values by means of the feedback of the

ACE, containing the deviation in the frequency and error in the tie-line power, and controlling the prime movers

of generators. The main objective of the control system is to damp these variations to 0 as fast and as smoothly

as possible following a change in the load demand values.

A 2-area interconnected power system, while considering governor limiters, is investigated in this study.

Each area consists of 3 major components, which are the turbine, governor, and generator. The detailed transfer

function block diagram of the uncontrolled 2-area system is shown in Figure 2, where ∆f1 and ∆f2 are the

frequency deviations in area 1 and area 2, respectively, in hertz; and ∆PL1 and ∆PL2 are the load demand

changes in areas 1 and 2, respectively, in per unit (p.u.). Moreover, Tgi , Tti , and Mi are the speed governor

time constant(s), turbine time constant(s), and power system time constant(s) of the ith area, respectively.

The detailed transfer function models of the speed governors and turbines were discussed in [1]. Typical data

for the system parameters and governor limiters, for nominal operation conditions, are adopted from [10] and

presented in Table 1.

The state-space model of a foregoing power system can be modeled as a multivariable system, as the

following equation:

ẋ = Ax(t) +Bu(t) + Γd, (8)
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Figure 2. Two-area interconnected power system.

where x(t), u(t), and d are the state, control, and load change disturbance vectors, respectively, and are

represented as following form:

u = [∆Pref1∆Pref2]

d = [∆PL1∆PL2]

x = [∆Pv1∆Pm1∆ω1∆PTie∆Pv2∆Pm2∆ω2∆E1∆E2]

(9)

Moreover, A , B , and Γare given in Eq. (10) and are, respectively, the system state, control input, and distur-

bance constant matrices of the appropriate dimensions associated with the above vectors. The corresponding

coefficient matrices are given in Table 1.

A =



−1
τg1

0 −1
R1τg1

0 0 0 0 0 0
1

τT1

−1
τT1

0 0 0 0 0 0 0

0 1
M1

−D1

M1

−1
M1

0 0 0 0 0

0 0 T12 0 0 0 −T12 0 0

0 0 0 0 −1
τg2

0 −1
R2τg2

0 0

0 0 0 0 1
τT2

−1
τT2

0 0 0

0 0 0 1
M2

0 −1
M2

−D2

M2
0 0

0 0 B1 1 0 0 0 0 0

0 0 0 1 0 0 B2 0 0



B =

[ 1
τg1

0 0 0 0 0 0 0 0

0 0 0 0 1
τg2

0 0 0 0

]T

C =

[
0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

]

Γ =
[
0 0 −1 0 0 0 0 0 0

]T
(10)

To provide a reasonable dynamic performance for the system, 2 load frequency controllers are designed using

the proposed fuzzy-based ABC algorithm approach. The implementation of the proposed method to design the

load frequency controllers is given below.
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Table 1. The 2-area interconnected power system parameters.

Area Parameters 

Area 1 
M = 10, D1 = 0.8, Tg = 0.2, Tt = 0.5, R1 = 0.05, 4.0=

open
GVX , 

5.1=
close
GVX , 2.1=

open

GVX , 4.0=
close
GVX , T12 = 2 

Area 2 
M = 8, D2 = 0.9, Tg = 0.3, Tt = 0.6, R2 = 0.0625, 4.0=open

GVX , 

5.1=
close
GVX , 2.1=

open

GVX , 4.0=
close
GVX , T12 = 2 

4. FLFC based on the ABC algorithm

Because of the nonlinear and complex characteristic and multivariable conditions of modern power systems,

classical control approaches may not give satisfactory solutions. Their robustness and reliability make fuzzy-

based controllers useful for solving a wide range of control problems in power systems. In this paper, a new auto-

tuned fuzzy controller-based ABC optimization algorithm is suggested for the solution of the LFC problem. In

the following, the architecture of the proposed FLFC and its optimization method based on the ABC algorithm

are described.

4.1. FLFC structure

The basic structure of the fuzzy logic controller includes 4 principal components: a fuzzifier, inference system,

knowledge base, and defuzzifier. First, the fuzzifier translates its input signals (real values) to fuzzy numbers

(fuzzy values). These numbers are the input of the inference system, which applies a fuzzy reasoning mechanism

to calculate the fuzzy number of the controlled output signal by taking the appropriate decisions. The knowledge

base comprises the fuzzy rule and MF sets known as the rule table. Finally, the defuzzifier converts a set of

modified control outputs into a nonfuzzy control action. The basic structure of the FLFC is shown in Figure 3.

 

Rule Base Defuzzifier Fuzzifier 

Fuzzy Inference 

Figure 3. Basic structure of the fuzzy controller.

As stated before, the extraction of an appropriate set of MFs and proper fuzzy rules from a human

expert is computationally expensive and time-consuming. Moreover, a proper fuzzy rule base design and a good

tuning of FLFC’s parameters (the centers and the widths of the triangular MFs in the inputs and output) is an

important and key factor to achieve a satisfactory level of control performance for a particular operation.

In most of the previous works, the interdependence between MFs and fuzzy control rule sets is not

considered. In these methods, the fuzzy control rules are designed for specific MFs only. However, it is possible

that other fuzzy control rules and different MFs will be more appropriate for the specific process. Hence, it is

required that the MFs and fuzzy rules must be tuned simultaneously. Recently, the application of metaheuristic

algorithms to fuzzy logic controllers has held a great deal of attention in overcoming 2 of the major problems

in fuzzy controller design, the design time and design optimality.

In this paper, an auto-tuned method-based ABC algorithm is developed for the optimal tuning of MFs

and fuzzy control rules, simultaneously. For this, the designing problem is restructured as an optimization

problem and the ABC algorithm is employed to solve it.
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To incorporate the ABC algorithm into the problem of designing a FLFC, the MFs’ parameters and fuzzy

rule sets must be coded to form the solution array and a cost function must be defined in such a manner that the

design criteria are satisfied through minimizing it. Here we developed a new encoding and decoding scheme for

rule extraction, MF adjustment, and training the fuzzy rule base. This coding approach significantly minimizes

the length of the solution array and makes possible simultaneous tuning parameters.

4.2. The encoding and decoding procedures

In the proposed encoding approach, only the rules that participate in the fuzzy model are encoded. This method

has 2 significant advantages; first, to decrease the size of the solution to be found by the ABC, and, second, to

increase the interpretability due to the reduction in the number of rules.

In the proposed coding method, an index (a positive integer number) is allocated to every possible rule.

In the first step, each linguistic term is converted into a T -based number, where T is defined as the following

form:

T = max(mi)|n+1
i=1 , (11)

where T andmi are the maximum number of linguistic terms and the number of linguistic terms of the ith

linguistic variable, respectively. In this translation, 0 is assigned to the lower linguistic term, 1 is assigned to

the next one, and so on. The second step transforms the T -based numbers (which represent the linguistic

term’s codes) to positively signed decimal integers representing the index of the fuzzy rule as follows:

I =

n+1∑
i=1

LiT
(n+1−i), (12)

where I is the index of the respective fuzzy rule (in base 10) and the fuzzy linguistic term index is given by

Li ∈ {0, 1, ...,mi − 1} .
Decoding the rule is the reverse of this process, in which I is converted back into (n + 1) and the T -based

numbers are calculated from Eq. (13):

L(n+2−i) = [I.T−(i−1)]− T [
[I.T−(i−1)]

T
]|n+1
i=1 , (13)

where [.] denotes that only the integer part of the operation result is taken. To have better clarity of the

presented coding and decoding procedures, a numerical example is presented by considering a simple fuzzy rule.

Consider a system with 3 inputs (linguistic variable, n= 3), X1 , X2 , X3 and 1 output U , where X1

consists of 3 linguistic terms (i.e. m1 = 3): {N, ZE, P} , which are described by the indices {0, 1, 2} ,

respectively. Moreover, X2 and X3 are composed of 5 linguistic terms (m2 = m3 = 5): {NM, NS, ZE, PS,

PM} that are represented by the indices {0, 1, 2, 3, 4} , respectively, and finally, U has 7 linguistic terms {NB,

NM, NS, ZE, PS, PM, PB} that are described by the indices {0, 1, 2, 3, 4, 5, 6} , respectively. Now, consider

the following simple fuzzy rule:

IFX1isNandX2isNSandX3isPMTHENUisPM.

First, the codes of the employed linguistic terms are calculated, describing a specific rule. For the above

considered example, the rule is described by the following indices: L = {0, 1, 4, 5} . Note that the ‘0’ describing
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the fuzzy linguistic term associated with the 1st linguistic variable refers to ‘N ’, and the ‘1’ associated with

the 2nd linguistic variable refers to ‘NS ’, and so on.

After selecting the base for the coding procedure, employing Eq. (11) yields: T = max {3, 5, 5, 7} = 7.

Using Eq. (12), we generate the decimal integer associated with the considered fuzzy rule, I = [(0 × 73) + (1

× 72) + (4 × 71) + (5 × 70)] = 82.

Now we want to change the obtained integer, 82, to the corresponding rule. By applying Eq. (13), the

decoding procedure can be shown to create the following outputs, which gives L= {0 , 1 , 4 , 5} :

i = 1 : L4 = [82 ∗ 70]− 7 ∗ [ [82 ∗ 7
0]

7
] = 5,

i = 2 : L3 = [82 ∗ 7−1]− 7 ∗ [ [82 ∗ 7
−1]

7
] = 4,

i = 3 : L2 = [82 ∗ 7−2]− 7 ∗ [ [82 ∗ 7
−2]

7
] = 1,

i = 4 : L1 = [82 ∗ 7−3]− 7 ∗ [ [82 ∗ 7
−3]

7
] = 0.

Now we use the suggested coding and decoding methods to find the optimal parameters of the FLFC for a

2-area power system, which is shown in Figure 2.

There are various MFs used in FLC, such as Gaussian, trapezoidal, or triangular functions, which are

defined by 2, 4 and 3 parameters, respectively. However, piecewise linear MFs are preferred because of their

simplicity and efficiency with respect to computability.

In this paper, for having variations in the centers and widths of the MF while keeping the dimension of

the problem low, 2 trapezoidal memberships and 3 triangular memberships with 5 variables of X1 ,X2 , X3 , X4 ,

and X5 are considered as the MFs, as depicted in Figure 4, where Xi , I= 1, . . . , 5 are the MFs’ parameters

that must be tuned. On the other hand, the MFs of the inputs and outputs of the proposed fuzzy controller are

tuned by 5 parameters (X1 ,X2 , X3 , X4 , and X5). These parameters are obtained using the ABC optimization

method.

UBLB
1

X 2
X

3
X 4

X
5

X

1

Figure 4. Considered MF for the coding process.

Now, for us to be able to use the ABC algorithm to optimize the MF, both the boundaries and limitations

of each parameter should be defined. According to the considered variables in Figure 4, the limitations of the
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parameters can be expressed as the following equations:

X2 −X1 ≥ 0

X3 −X2 ≥ 0

X4 −X3 ≥ 0

X5 −X4 ≥ 0

LB < X1, X2, X3, X4, X5 < UB

. (14)

In Eq. (14), UB and LB are the upper and lower boundaries of each variable and are set as 1 and –1, respectively.

In the case of the equations not being in a true condition (e.g., Xk+1 −Xk < 0), then Xk+1 is obtained using

the following equation:

Xk+1 = rand(Xk, UB). (15)

Each FLFC designed here has 2 inputs, the ACE and ACE deviation(d/dt(ACE)). The output of the fuzzy

controller (U) is the control input to each area. In this study, each of the inputs and the output of fuzzy

controller consist of 2 trapezoidal memberships and 3 triangular memberships, as illustrated in Figure 4. The

FLC inputs are composed of 5 linguistic terms: negative big (NB), negative small (NS ), zero (ZE ), positive big

(PB), and positive small (PS ). Furthermore, the FLC output is partitioned into the same 5 fuzzy sets. The

fuzzy inference is carried out using Mamdani’s method and the defuzzification employs the center of gravity to

calculate the output of this FLFC.

The parameters to be optimized by the ABC algorithm are the centers and widths of the triangular MFs,

and the fuzzy rules corresponding to every combination of the input linguistic variables. For the simultaneous

adjustments to the MFs and rules table in each fuzzy controller design, each of the solutions in each area should

contain the rules and the MFs of the 2 fuzzy controllers.

A basic code structure for the ABC is shown in Figure 5. Since we have 1 FLFC for each of the 2 areas

and each FLFC has 15 MFs (each of the FLFC’s inputs and output have 5 triangular MFs, as shown in Figure

4) and 25 rules, there are a total of 80 parameters to be optimized in this study. In Figure 5, Iiz(i= 1,..., 25)

and Xj
kz(j= 1, 2, 3 and k= 1,.., 5) are the fuzzy rule and MF parameters, respectively. Moreover, z= {a , b} ,

in which indices a and b stand for the fuzzy controller parameters for areas 1 and 2, respectively. For example,

X1
1a means the 1st parameters of the MF of the 1st FLFC’s input (i.e. the ACE) in area 1 and X2

3b means the

3rd parameter of the MF of the 2nd FLFC’s input (i.e. d/dt(ACE)) in area 2.

3

b5
X  

....  
1

b2
X  

1

b1
X  

I25b ....  I2b I1b 
3

a5
X  

....  
1

a2
X  

1

a1
X  

I25a .... I2a I1a 

  

 

 

Parameters of 

rules table for 
area 1 

Parameters of 

MFs for area 1 

Parameters of 

MFs for area 2 

Parameters of 

rules table for 

area 2

Figure 5. A basic code structure for the ABC.

The ABC searches all of the antecedent and consequent parameters in 80 dimensional spaces using a cost
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function, as stated in Eq. (16):

Jc =

t=tf∫
t=0

t(C1 |∆Ptie|+ C2 |∆F1|+ C3 |∆F2|)dt, (16)

where C1 = C2 = C3 = 10.

5. Simulation results and time domain analysis

In this study, a 2-area interconnected power system, as shown in Figure 2, is adopted for simulation studies. The

simulation studies are implemented in the MATLAB/Simulink 7 software and executed on an Intel Core2Duo

2.32-GHz personal computer with 4-GB RAM. The structure of the control system is given in Figure 6. As can

be seen, the FLFC is optimized and tuned using an ABC block optimizer.
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Figure 6. FLFC scheme.

The nonoptimal parameters of the fuzzy variables (initial values before the optimization process) are

presented in Table 2. Moreover, the nonoptimal fuzzy rules for areas 1 and 2 are given in Tables 3 and 4,

respectively. Next, we use the proposed coding and decoding methods and the ABC algorithm to find the

optimal parameters of the FLFCs simultaneously (i.e. MFs’ parameters and fuzzy rules).

The first step in applying the ABC algorithm, for the optimal tuning of the MFs and fuzzy rules, is

producing the initial population, which shows the food source positions randomly. The population size (SN )

is set at 50, i.e. the colony size is equal to 50. The number of employed bees is the same as the number of

unemployed bees and is chosen as 25. Since the limit parameter has a significant effect on the quality of the

solutions, it must be tuned first.
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Table 2. The nonoptimal parameters of the fuzzy variables.

3
5aX3

4aX3
3aX3

2aX3
1aX2

5aX2
4aX2

3aX2
2aX2

1aX1
5aX1

4aX1
3aX1

2aX1
1aXMFs’ 

parameters 

for area 1 0.5980.2330.104–0.380–0.7660.4560.245–0.106–0.453–0.6870.4090.1380.022–0.376–0.566

3
5bX3

4bX3
3bX3

2bX3
1bX2

5bX2
4bX2

3bX2
2bX2

1bX1
5bX1

4bX1
3bX1

2bX1
1bXMFs’ 

parameters 
 for area 2 0.6870.4040.105–0.203–0.7090.7140.410–0.036–0.238–0.5660.7850.2980.023–0.346–0.675

Table 3. The nonoptimal rule base of the fuzzy controller for area 1.

PMPSZNSNM
dt

dACE
1

ACE
1

Z PS NS PM PM NM  

PS NM PS NS PM NS 

Z PM PS PS Z Z 

PS NM PS NM NS PS 

PM Z PM Z NS PM  

Table 4. The nonoptimal rule base of the fuzzy controller for area 2.

PMPSZNSNM
dt

dACE
2  

ACE

NM PM PM PS PS NM 

PS NS Z PM PM NS 

PM PM NM PS NS Z 

PS Z NS Z Z PS 

NM NS PS Z PS PM 

Based on the authors’ previous works and empirical studies on a number of simulation studies, the best

range of variation for the limit is 2–10. In this work, a large number of experiments are performed by changing

the range of variation for this coefficient and it is found that a value of about 5 for the limit results in good

a convergence of solutions to the global optimum. The number of iterations, which is called the MCN in the

ABC algorithm, is considered to be 50, which is the stopping criterion.

Using Eq. (11), the T -base is calculated as T = max {5, 5, 5} = 5. Next, using Eq. (12) gives the

decimal integer associated with the considered fuzzy rule, I = [(4 × 52) + (4 × 51) + (4 × 50)] = 124; thus,

the lower and upper real values of the parameters in the vector solution (Figure 5) (i.e. the MFs’ parameters

and fuzzy rules) are considered as:

0 < Iiz ≤ 124, i = 1, ..., 25

−1 < Xj
kz < 1, j = 1, 2, 3k = 1, ..., 5

. (17)

Table 5 shows the obtained optimal parameters of the MFs using the ABC algorithm. Moreover, Figures 7–12

show the obtained fuzzy MFs for each fuzzy controller in the 2 areas, using the ABC algorithm.
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Table 5. The optimal parameters of the fuzzy variables obtained by the ABC algorithm.

3
5aX3

4aX3
3aX3

2aX3
1aX2

5aX2
4aX2

3aX2
2aX2

1aX1
5aX1

4aX1
3aX1

2aX1
1aXMFs’ 

parameters 

for area 1 0.9000.485–0.053–0.359–0.5210.7610.439–0.051–0.287–0.8260.7240.3830.099–0.201–0.695

3
5bX3

4bX3
3bX3

2bX3
1bX2

5bX2
4bX2

3bX2
2bX2

1bX1
5bX1

4bX1
3bX1

2bX1
1bXMFs’ 

parameters 

for area 2  0.698 0.302 0.095 –0.446 –0.637 0.905 0.283 0.022 –0.215 –0.54 0.710 0.289 –0.08 –0.284 –0.654
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Figure 7. MFs of the ACE in area 1. Figure 8. MFs of d/dt (ACE) in area 1.
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Figure 9. MFs of the output variable in area 1. Figure 10. MFs of the ACE in area 2.

The optimal fuzzy rules obtained for areas 1 and 2 are given in Tables 6 and 7, respectively. The fuzzy

rules are built from the statement: if input 1 and input 2, then output 1. For instance, consider the 2nd row

and 3rd column in Table 6, which means that: if ACE 1 is SN and d
dtACE1 is Z , then U (the output of the

fuzzy controller) is Z .
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Figure 11. MFs of d/dt (ACE) in area 2. Figure 12. MFs of the output variable in area 2.

Table 6. The optimal rule base of the fuzzy controller obtained by the ABC algorithm for area 1.

 

PM 

 

PS 

 

Z 

 

NS 

 

NM 
dt

dACE
1

 

1
ACE  

Z Z PS Z Z NM  

Z NS Z NS NS NS 

PS NS Z Z Z Z 

PS Z NS NS Z PS 

PM PS NS PM Z PM  

Table 7. The optimal rule base of the fuzzy controller obtained by the ABC algorithm for area 2.

 

PM 

 

PS 

 

Z 

 

NS 

 

NM 
dt

dACE
2

 

2
ACE  

PS PM PS Z PS NM  

Z PM Z Z NM NS  

Z NS Z NS PS Z 

Z NS Z PS PS PS  

NS PS NS PM PS PM  

In order to show the ability and effectiveness of the proposed method, a conventional PI controller, using

the approach adopted from [1], is applied for comparison. It is found that KI1 = KI2 = 0.3 are the best

selections for having the best performance.

In order to evaluate the performance of the ABC algorithm, a PSO algorithm is applied through the

proposed approach. For the PSO algorithm, the population size and number of iterations are considered to

be the same as those for the ABC algorithm. The control parameters of the PSO algorithm are chosen as the

inertia weight (W ), in the considered range of 0 and 1, and the acceleration constants are set as C1 = C2= 2.

The designed controllers, as 2 load frequency controllers for 2 areas, and those obtained by the PI

controllers and PSO-based method are placed in the case study (Figure 6). To show the effectiveness of the

designed controllers, a time domain analysis is performed for the case study. To test the proposed method,

a sudden small load perturbation, which continuously disturbs the normal operation of the power system, is
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applied to the system. Here, we use a step load change of 0.01 p.u. (i.e. ∆PL1 = ∆PL2 = 0.01). The frequency

deviation of both areas and the tie-line power variation under the nominal conditions of the closed loop system

are obtained and shown in Figures 13, 14, and 15, respectively.
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Figure 13. Frequency deviation of area 1. Figure 14. Frequency deviation of area 2.
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Figure 15. Tie-line power deviation.

From the comparing curves, it can be seen, using the proposed method, that the frequency deviation and

tie-line power variation of the 2 areas following the load change and are quickly driven back to 0. It should be

mentioned that although the overshoot of the frequency response of the classical PI controller shown in Figure

13 is better than that of the proposed approach, the settling time of the latter is better than that of the former.

To have better clarity, the performance of each controller is investigated by considering the settling time

for a 5% band of the step load change, maximum oscillation (peak-to-peak), and the integral square error (ISE)

performance index as defined in Eq. (18).

ISE = 104
30∫
0

(ACE1(t)
2+ACE2(t)

2)dt (18)

Table 8 shows the obtained considered indices for each controller, where it can be concluded that the proposed

FLC-based ABC method gives a better dynamic performance than the classical LFC- and FLC-based PSO
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algorithms in terms of a fast response, lower settling time and maximum oscillation, and a better ISE index

(minimum ISE).

Table 8. Comparison of the performance indices’ values for the 3 applied controllers under normal conditions.

ISE  Settling time  Max oscillation (p-p) Curve Controller 

3.7506  

10.403  5.1031e –004 F1 

FLFC -ABC 14.415  5.2459e –005 F2 
17.043  4.1381e –004 Ptie 

4.2560  

12.654  5.3818e –004 F1 

FLFC -PSO 15.113 5.2591e –005 F2 
18.242  4.3263e –004 Ptie 

30.1388

19.934  7.8369e –004F1 

PI 28.132  1.6272e –004F2 
28.284  0.0018Ptie 

To investigate the robustness of the proposed approach and the effect of changing the system parameters

on the system performance, 2 perturbations in the system parameters are considered. The 1st is a 25% increase

for all of the system parameters (upper bound) and the 2nd is a 25% decrease for all of the system parameters

(lower bound). The dynamic behavior of the system is evaluated for 30 s and illustrated in Figures 16–21. Again,

these responses are similar to the responses in Figures 13–15 for nominal conditions, showing the robustness of

the designed controller.
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Figure 16. Frequency deviation of area 1 for the upper

bound of the parameters.

Figure 17. Frequency deviation of area 2 for the upper

bound of the parameters.

Once again, the settling time, maximum oscillation, and ISE indices are used to investigate the robustness

of the applied controllers against 2 perturbations in the system parameters. Tables 9 and 10 show the obtained

indices for each controller under the 25% increase and 25% decrease for all of the system parameters, respectively.

A comparison the obtained results reveals that the setting time and maximum oscillation of the optimal FLFC

designed using the ABC algorithm are smaller than the obtained results of the other controllers. Moreover, the

performance index ISE for the proposed approach based on the ABC and PSO algorithms rarely varies in the

presence of system parameter changes. On the other hand, the ISE of the PI controller is larger and changes

significantly. These results confirm the robustness of the proposed load frequency controller.
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Figure 18. Tie-line power deviation for the upper bound

of the parameters.

Figure 19. Frequency deviation of area 1 for the lower

bound of the parameters.
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Figure 20. Frequency deviation of area 2 for the lower

bound of the parameters.

Figure 21. Tie-line power deviation for the lower bound

of the parameters.

Table 9. Comparison of the performance indices’ values for the 3 applied controllers for the upper bound of the

parameters.

ISESettling time  Max oscillation (p-p)  Curve  Controller  

3.8429

10.7055.6721e –004F1 

FLFC -ABC  13.8245.6453  –005F2 
9.8424.1393e –004Ptie 

4.6536

14.8285.7919e –004F1 

FLFC -PSO  15.1875.6442e –005F2 
17.8444.2474e –004Ptie 

39.7199

24.1757.9646e –004F1 

PI  >302.0808e –004F2 
28.5430.0019Ptie 
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Table 10. Comparison of the performance indices’ values for the 3 applied controllers for the lower bound of the

parameters.

ISE Settling time  Max oscillation (p-p)  Curve Controller 

3.8294 

8.292 5.8741e –004 F1 

FLFC -ABC 15.426  5.2959e –005 F2 
17.613  4.2284e –004 Ptie 

4.6891 

8.627 6.0112e –004 F1 

FLFC -PSO 15.432  5.2838e –005 F2 
17.625  4.2163e –004 Ptie 

24.7704  

16.113  8.0711e –004F1 

PI 28.243  1.6599e –004F2 
28.633  0.0016Ptie 

The computation time of each optimization algorithm is an important criterion to evaluate the efficiency

of the algorithm. To demonstrate the computational effectiveness of the ABC algorithm, the central processing

unit (CPU) time and the value of the cost function (given in Eq. (14)) for before and after the optimization

of the results obtained by the ABC and PSO methods are presented in Table 11, where it is seen that the

ABC algorithm is computationally efficient as a time requirement and shows better results when compared to

the PSO algorithm. Moreover, the convergence characteristics of the ABC and PSO methods in finding the

minimum cost are illustrated in Figure 22, which shows the quickness of the ABC algorithm compared to the

PSO approach.

Table 11. The CPU time and cost function’s values for before and after optimization of the results obtained by the

ABC and PSO methods.

CPU 
time (s) 

Cost function value 
before optimization 

Cost function value a"er 
optimization 

Controller 

4.2 4.8853 0.019FLFC -ABC 

8.9 4.8853  0.035FLFC -PSO 
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Figure 22. Convergence characteristics of the ABC and PSO methods in finding the minimum cost.
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6. Conclusions

In this paper, a new control system incorporating the fuzzy logic controller and ABC algorithm is presented

for the control of frequency and damping interarea tie-line power variation in a 2-area interconnected power

system. To improve the performance of the FLFC, the MFs and fuzzy control rules of the FLFC are tuned

simultaneously using an efficient ABC algorithm. The performance of the designed controller is tested on a 2-

area power system while considering governor limiters, and the results obtained are compared with the classical

PI controller and PSO-based fuzzy logic controller. The robustness of the proposed method is tested against

changes in the parameters. The simulation studies show that the designed controllers by the FLFC-based ABC

algorithm have a very desirable dynamic performance, even when the system parameters change. Compared to

the conventional PI controller, the fuzzy load frequency-based ABC controller shows much better performances

and robustness. It improves both the response time in the transitional-state and reduces considerably the

fluctuations in the steady-state. Moreover, the obtained results reveal that the ABC algorithm improves the

optimization synthesis and shows better performance than the PSO algorithm in the success rate and solution

quality.
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