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Abstract: The purpose of this paper is to explore the performances of prominent and popular heteroscedasticity-

consistent covariance matrix estimators (HCCMEs) in small samples. The HCCMEs are selected from the literature and

their ability to estimate the true covariance matrix of the coefficient’s vector is evaluated through simulation runs. We

calculate the percentage difference between the expected value of the HCCME and the true covariance matrix to set a

convenient stage to make the comparisons under several different regression settings. The main contribution of the paper

is the inclusion of the HCCMEs that have been introduced into the literature recently. We report the performances of

the HCCMEs under different settings of the covariates and error term variances. We let the covariates follow uniform,

normal, Student’s t, and Cauchy distributions and tailor the error term variances to increase gradually.

Key words: Heteroscedasticity-consistent covariance matrix estimator, minimum covariance determinant, Monte Carlo

simulation

1. Introduction

Regression analyses are very extensively used in disciplines ranging from chemistry to biology and electronics

to computer engineering, including applications of multilayer perceptrons and wavelet networks [1]. The use of

regression in such disciplines is growing rapidly due to the main functionality of regression analysis in working

out the nature of the relation between dependent and independent variables, especially when the data available

are insufficient and the relation among the variables is ambiguous. To cite a few, Jeng et al. [1], Moghram

and Rahman [2], Cordón et al. [3], Kerr et al. [4], Maffeis et al. [5], Peeters et al. [6], Faraway [7], Breese

and Hill [8], and Heinemann et al. [9] have made use of regression analyses to work out the unknown relation

between variables. One of the most widely used estimation methods in regression analysis is ordinary least

squares (OLS). Following the introduction of [2], in a stylized regression setting, we present the control variable

as a function of the exogenous variables as:

y (t) = a0 + a1x1 (t) + . . .+ anxn (t) + a(t),

where y(t) is a dependent variable, such as the electrical load; x1 (t) , . . . , xn (t) are the explanatory variables

correlated with y(t); a(t) is a random variable with zero mean and constant variance; and a0, a1, . . . , an are

the regression coefficients.

One standard assumption of the OLS, as stated in the Gauss–Markov theorem, is the equality of the

error term variances known as homoscedasticity. However, many data sets in real life prove to have different
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variances defined as heteroscedasticity. The covariance matrix estimators of the OLS coefficient estimates under

heteroscedasticity are biased in small samples, and therefore inference based on heteroscedastic error terms is

of limited use [10]. The bias indicates the difference between the expected value of the estimator and the true

value of the parameter. There are several attempts to find estimators of this covariance matrix with lower biases

in small samples. These are called the heteroscedasticity-consistent covariance matrix estimators (HCCMEs).

The most prominent and widely used HCCME is that of White [11]. In that study, White used the earlier work

of Eicker [12,13] and introduced the consistent estimator of this covariance matrix, where he had promoted the

test for heteroscedasticity, as well. This was a cornerstone in the study of heteroscedastic regression and has

since been cited many times.

There were several attempts to alleviate the bias, which is a function of the leverage. An observation

(xi, yi) is said to be a leverage point when it lies outside of the majority of the regressors. The term ‘leverage’

comes from the mechanics, because such a point pulls the regression line towards itself. Horn et al. [14],

Hinkley [15], and Efron [16] weighted the OLS squared residuals by different factors. One competitive estimator

came from Efron’s jackknifing [16]. Indeed, the anonymous referee to MacKinnon and White [17] made the

formula of the so-called one-delete-jackknife estimator available, which enabled later studies to make use of this

formula. There were many other efforts to find better HCCMEs based on different criteria. Orhan and Zaman

[18] included more than 10 such HCCMEs, including the bootstrap estimator and minimum norm quadratic

unbiased estimator (MINQUE), in a comparison study based on Monte Carlo simulation. More recent work on

this issue resulted in the estimators of Cribari-Neto [19] and Cribari-Neto et al. [20]. The problem with the

bias and variance calculation for the HCCMEs is that it is very sophisticated and comparison studies so far

rely on computer simulations. However, the Monte Carlo simulation assumes some certain setups of the design

matrix and the variance pattern of the error terms and can thus be questioned since other setting designs may

lead to divergent conclusions. In similar studies, Andrews [21] used the heteroscedasticity and autocorrelation

consistent estimation of covariance matrices, Mackinnon [22] compared bootstrap methods, Bera et al. [23]

reconsidered the MINQUE, and Hayes and Cai [24] reported Type I error rate simulation results.

This paper has the main contribution of comparing the HCCMEs, including the most recent ones, under

different settings. This is a very critical and important contribution, since many econometric applications make

use of the entries belonging to HCCMEs. Moreover, many statistical analyses make use of the variances and

standard errors of the coefficient estimates. Our conclusions will hopefully have vast and wide applications

ranging from significance tests of partial regression coefficients to their confidence intervals.

Section 1 of this article is a brief introduction. Section 2 explains the model and HCCMEs. Section 3

explains the settings used for comparisons and the performances of the HCCMEs. Finally, Section 4 concludes.

2. Heteroscedasticity consistent covariance matrix estimators

We assume y = Xβ + ε of a simple regression, where y is the T×1 vector of the response variable, X is

the matrix of the regressors with the first column allocated to the intercept, and ε is the T×1 vector of the

disturbance terms. Here, T is the number of observations. The disturbance terms are assumed to have flexible

variances to allow heteroscedasticity, i.e. ε∼N(0,Σ) where Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
T ). Note that the disturbance

terms are pair-wise uncorrelated.

The OLS estimator of the coefficients’ vector is β̂ = (X ′X)−1X ′y . The main point of interest is the

covariance matrix of β̂ , Ω = Cov(β̂) = Cov[(X ′X)−1X ′y] = (X ′X)−1X ′ΣX(X ′X)−1 . The most critical term

in Cov(β̂) is Σ, sinceX and all of its products are known.
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Indeed, there were several attempts to estimate this term and these attempts led to HCCMEs named

HC0, HC1, etc., as we define the most prominent and popular ones below with their references. Indeed, there

were some other HCCMEs suggested in the literature, just like the MINQUE of Bera et al. [23] and the

bootstrap estimator explained by Wu [25], but they are not adopted here due their failure and low estimation

performance. Earlier studies in the literature help us choose the 6 estimators as follows:

HC0 = diag
(
e21, e

2
2, . . . , e

2
T

)
, White [11]

HC1 = T
T−kdiag(e

2,
1 , e

3
2, . . . , e

2
t ), Hinkley [15]

HC2 = diag
(

e21
1−H11

,
e22

1−H22
, . . . ,

e2T
1−HTT

)
, Horn et al. [14]

HC3 = diag

((
e1

1−H11

)2

,
(

e2
1−H22

)2

, . . . ,
(

eT
1−HTT

)2
)
, Efron [16]

HC4 = diag
(

e21
(1−H11)δ1

,
e22

(1−H22)δ2
, . . . ,

e2T
(1−HTT )δT

)
, Cribari-Neto [19]

HC5 = diag
(

e21
(1−H11)α1

,
e22

(1−H22)α2
, . . . ,

e2T
(1−HTT )αT

)
, Cribari-Neto et al. [20]

In these formulations, e2i are the squared OLS residuals; T is the number of observations; k is the

number of independent variables, including the intercept term; and H is the hat matrix, H = X(X ′X)−1X ,

δi = min(4, Hii

H̄
), where H̄ = 1

T

∑
i Hii in HC4 and αi = min

(
Hii

H̄
,max(4, kHmax

H̄
)
)

in HC5. HC3 is an

approximation to the jackknife estimator. The original estimator by MacKinnon and White [17] is slightly

changed to get HC3.

3. Simulation runs

We run simulations under different settings of regressors and the variances of disturbance terms to work out

the performances of the HCCMEs. We reuse the settings inspired by earlier studies in the literature that scan

over different levels of error term variances and leverages of covariates. Namely, the covariates follow uniform

(Case 1), normal (Case 2), Student t with 3 degrees of freedom (Case 3), and Cauchy (Case 4) distributions.

See the works of Cragg [26], Flachaire [27], and Lima et al. [28] for such designs. The Monte Carlo simulation

is based on a simple regression model of:

yi = β0 + β1xxi + σiei, ei ∼ N(0, 1).

The regression parameters are set at β0 = β1 = 1 and we make use of the degree of heteroscedasticity defined as

λ = max(σ2
i )/min(σ2

i ), which returns 1 under homoscedasticity; λ becomes larger when heteroscedasticity is

more intensive. The simulation program is coded in GAUSS 7 and we set the Monte Carlo sample size to 10,000

replications. Regarding the error term variances, we use the same formulation and play with the parameters to

adjust the level of heteroscedasticity. More specifically, we set σ2
i = c0 + c1xi + c2x

2
i to manage the variance of

the ith observation’s error term. In Case A ‘c0 = 1, c1 = 0, c2 = 0’ and in Case B ‘c0 = 1, c1 = 0.5, c2 = 0.5’,

whereas in Case C ‘c0 = 1, c1 = 2, c2 = 2’ and in Case D ‘c0 = 1, c1 = 4, c2 = 4’. Needless to say, Case A

formulates homoscedasticity, where the variances of the error terms are all the same and equal to 1. To the

contrary, Case D is the setup that allows higher degrees of heteroscedasticity, especially when the covariates

have higher leverage observations. The degree of heteroscedasticity increases from Case B to Case D since the

coefficients multiplying the covariates are getting larger.
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The program we coded in GAUSS first generates the covariates and then starts fixing the error terms

from predetermined distributions in each iteration. The dependent variable values are returned accordingly.

We estimate the population regression function with the OLS and use the residuals as well as the covariates

to compute the HCCMEs. Next, we calculate the percentage difference with the true values of the variance-

covariance matrix entries, Ωii , i = 0 for the intercept and 1 for the slope parameter. Namely, the percentage

difference (PD) for the intercept and slope parameter variances are: PDβi = 100 × Ω̂
HCj
ii −Ωii

Ωii
, i = 0, 1 and

j = 0, 1, ..., 5. Note that j is running over the 6 HCCMEs. We included the related part of the GAUSS code

algorithm in the Appendix of the paper.

Articles written on such comparisons use the quasi-t statistic as a benchmark, which makes sense since

this is the test statistic corresponding to the significances of partial regression coefficients and the intercept

parameter. Indeed, the percentage differences we report make similar sense and, at the same time, are very

closely related to the quasi-t statistic. Because the t-statistic is nothing other than the unbiased coefficient

estimate divided by the standard errors, we use this same number in the numerator of the percentage difference.

This means that the statistics we are reporting and the quasi-t figures return parallel figures. We prefer to

report the percentage differences because these differences make more sense of the HCCME achievements. We

also compute the symmetric, entropy, and quadratic losses but prefer not to report them since these losses are

in line with the percentage differences that we table and do not provide any new and further information about

the comparisons. Still, we are ready to provide these losses to interested readers.

In Table 1, we present the percentage differences belonging to the covariates generated from the uniform

distribution in order to curb the covariates with high leverages. For β0 , when T = 30, HC2 is the top performer,

followed by HC1, whereas HC0 and HC3 are the worst HCCMEs for Case A, homoscedasticity. HC4 and HC5

return the same percentage loss, which is better than that of HC0 and HC3. The same is true for Case B. Cases

C and D are nearly the same, with the ordering of HC1 and HC2 different. For β1 , the order is exactly the

same for Cases A and B. Indeed, the HC2 estimates are very successful, in that the percentage difference is less

than 1. For this parameter, the HC3 percentage differences are around 10. When the sample size is increased

to 50, all of the HCCMEs, except for HC2, decrease their percentage differences to more than half, and the

ordering does not change; still, HC2 is the best performer for Cases A and B and the ordering alters between

HC2 and HC1 for Cases C and D. Coming to the variance estimation of β1 , HC2 is always the best performer,

followed by HC1, HC4-HC5, HC0, and HC3. The same comments are true when the sample size is 100, 200,

300, and 500.

Note that the HCCMEs perform commendably better when the sample size is as high as 200. At this

sample size, the percentage differences are around 1% or 2%, and when the number of observations is 300 or

more, no estimator yields more than a 1% difference. However, one has to keep in mind that the covariates are

generated from the uniform distribution, which makes the task of the HCCMEs very easy since there are no

high leverage observations.

In Table 2 (Case 2), the covariates are generated from the standard normal distribution to have moderate

level of leverages. For the intercept term’s variance, HC2 is the best performer, followed by HC1, HC0, and

HC3 in Case A. The worst performers are HC4 and HC5. The same ordering is valid for Case B, as well. For

Case C, HC4 and HC5 rank third after HC1, but for Case D, they are the worst performers with almost a 16%

difference from the true values. Regarding the slope parameter, β1 , HC2 performs far better than all of the

rest, and HC1 follows with almost a 6% difference. The worst performers are HC4 and HC5. For Case B, the 2
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best performers are the same, but the last performer is now White’s estimator. For Case D, the best performing

HC2 is this time followed by HC3, and then come HC1 and HC0.

Table 1. HCCME performances in percentage differences, Case 1, covariates generated from uniform distribution.

T
β0 β1

A B C D A B C D

30

HC0 –9.06 –9.42 –6.66 –7.38 –9.56 –10.53 –8.47 –8.79
HC1 –2.57 –2.95 0.01 –0.76 –3.10 –4.14 –1.93 –2.27
HC2 –0.03 0.56 1.32 1.51 –0.05 –0.24 –0.01 –0.10
HC3 10.04 11.83 10.07 11.35 10.57 11.39 9.29 9.48
HC4 5.44 8.78 4.02 5.81 5.99 8.09 3.19 3.70
HC5 5.44 8.78 4.02 5.81 5.99 8.09 3.19 3.70

50

HC0 –5.25 –4.74 –4.90 –3.91 –5.62 –5.14 –5.05 –5.35
HC1 –1.30 –0.77 –0.94 0.09 –1.69 –1.18 –1.09 –1.41
HC2 –0.02 0.36 1.41 1.34 0.05 0.06 0.47 0.06
HC3 5.55 5.75 8.24 6.92 6.10 5.56 6.38 5.79
HC4 2.82 2.28 7.62 3.92 3.39 2.09 4.41 2.59
HC5 2.82 2.28 7.62 3.92 3.39 2.09 4.41 2.59

100

HC0 –2.34 –2.16 –2.22 –1.95 –2.85 –2.75 –3.01 –2.86
HC1 –0.34 –0.17 –0.22 0.05 –0.87 –0.76 –1.03 –0.87
HC2 –0.03 0.11 0.23 0.62 0.03 –0.06 –0.21 –0.06
HC3 2.35 2.45 2.75 3.25 3.00 2.71 2.67 2.81
HC4 0.68 0.72 1.14 1.76 1.76 1.18 1.22 1.34
HC5 0.68 0.72 1.14 1.76 1.76 1.18 1.22 1.34

200

HC0 –1.27 –1.36 –1.09 –0.93 –1.38 –1.56 –1.35 –1.42
HC1 –0.28 –0.37 –0.09 0.07 –0.38 –0.57 –0.35 –0.43
HC2 0.01 –0.03 0.19 0.29 0.01 –0.12 0.06 0.00
HC3 1.30 1.32 1.50 1.52 1.41 1.34 1.48 1.45
HC4 0.53 0.65 0.77 0.77 0.68 0.70 0.78 0.76
HC5 0.53 0.65 0.77 0.77 0.68 0.70 0.78 0.76

300

HC0 –0.88 –0.81 –0.76 –0.73 –0.94 –0.93 –1.06 –1.03
HC1 –0.22 –0.14 –0.09 –0.06 –0.27 –0.27 –0.39 –0.36
HC2 –0.04 0.05 0.10 0.14 –0.03 0.00 –0.02 –0.05
HC3 0.81 0.92 0.97 1.01 0.89 0.95 1.02 0.94
HC4 0.32 0.43 0.52 0.56 0.42 0.47 0.69 0.54
HC5 0.32 0.43 0.52 0.56 0.42 0.47 0.69 0.54

500

HC0 –0.55 –0.51 –0.48 –0.38 –0.56 –0.62 –0.60 –0.53
HC1 –0.15 –0.11 –0.08 0.02 –0.16 –0.23 –0.20 –0.13
HC2 –0.04 0.00 0.04 0.13 –0.02 –0.06 –0.03 0.02
HC3 0.47 0.51 0.56 0.64 0.53 0.51 0.54 0.56
HC4 0.17 0.22 0.29 0.35 0.24 0.25 0.28 0.26
HC5 0.17 0.22 0.29 0.35 0.24 0.25 0.28 0.26

Again, the lowest performers are HC4 and HC5. The other point that deserves attention is the equal

difference reported for both HC4 and HC5, which is definitely the consequence of the same estimates by Cribari-

Neto [19] and Cribari-Neto et al. [20]. There is a significant improvement in the performances of all HCCMEs

but HC4 and HC5 when the sample size increases to 50. HC2 almost hits the target with percentage differences

of less than 1% for Cases A, B, C, and D, followed by HC1, which is doing quite well. HC4 and HC5 are

sometimes sharing the 3rd and 4th rankings and are sometimes the worst performers. Similar comments are
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true for the slope parameter variances, as well. The ordering is almost the same when the sample size increases

to 100, 200, 300, and 500, but this time, the performances of the HCCMEs progress significantly.

Table 2. HCCME performances in percentage differences, Case 2, covariates generated from standard normal distribu-

tion.

T
β0 β1

A B C D A B C D

30

HC0 –8.15 –10.69 –7.93 –12.08 –12.21 –14.44 –15.78 –19.64
HC1 –1.59 –4.32 –1.36 –5.80 –5.94 –8.32 –9.77 –13.90
HC2 0.21 –1.20 0.45 –0.52 0.10 –2.76 –3.90 –5.40
HC3 9.88 9.68 9.89 12.97 14.63 10.78 9.90 11.60
HC4 11.75 9.31 7.01 15.95 21.77 12.51 11.73 20.72
HC5 11.75 9.31 7.01 15.95 21.77 12.51 11.73 20.72

50

HC0 –4.01 –5.00 –5.12 –6.06 –6.49 –11.35 –9.86 –15.69
HC1 –0.01 –1.04 –1.16 –2.15 –2.59 –7.66 –6.10 –12.18
HC2 0.00 –0.07 0.27 0.84 0.02 –2.45 –2.34 –4.80
HC3 4.23 5.27 6.07 8.51 7.06 7.65 5.86 7.76
HC4 1.45 5.40 4.74 13.55 6.12 18.82 6.54 28.18
HC5 1.45 5.40 4.74 13.55 6.12 18.82 6.54 28.18

100

HC0 –1.97 –2.55 –3.05 –3.33 –3.99 –5.33 –5.94 –6.94
HC1 0.03 –0.56 –1.07 –1.36 –2.03 –3.40 –4.02 –5.04
HC2 0.02 –0.08 0.00 –0.09 0.04 –1.05 –1.44 –2.03
HC3 2.07 2.48 3.17 3.29 4.32 3.45 3.31 3.19
HC4 1.13 1.86 3.35 3.54 7.73 6.20 6.59 8.22
HC5 1.13 1.86 3.35 3.54 7.73 6.20 6.59 8.22

200

HC0 –0.95 –1.39 –1.20 –1.84 –1.82 –3.15 –3.65 –4.41
HC1 0.05 –0.39 –0.20 –0.84 –0.83 –2.17 –2.68 –3.45
HC2 0.05 –0.07 0.21 –0.01 0.06 –0.72 –1.11 –1.33
HC3 1.07 1.27 1.64 1.87 1.98 1.78 1.52 1.87
HC4 0.51 1.24 1.69 2.84 2.64 4.07 4.49 6.28
HC5 0.51 1.24 1.69 2.85 2.64 4.07 4.49 6.33

300

HC0 –0.66 –0.88 –1.17 –1.14 –1.31 –2.00 –2.48 –2.30
HC1 0.01 –0.21 –0.50 –0.48 –0.65 –1.34 –1.82 –1.64
HC2 0.00 0.00 –0.07 –0.04 0.06 –0.43 –0.74 –0.65
HC3 0.67 0.89 1.04 1.08 1.44 1.16 1.03 1.03
HC4 0.35 0.84 1.35 1.27 2.29 2.53 2.85 2.57
HC5 0.35 0.84 1.35 1.27 2.29 2.53 2.85 2.57

500

HC0 –0.41 –0.53 –0.68 –0.72 –0.81 –1.23 –1.55 –1.60
HC1 –0.01 –0.13 –0.29 –0.32 –0.41 –0.84 –1.16 –1.20
HC2 –0.01 0.00 –0.01 –0.02 –0.01 –0.21 –0.42 –0.47
HC3 0.39 0.54 0.66 0.69 0.80 0.82 0.73 0.67
HC4 0.18 0.52 0.82 0.94 1.25 1.85 2.00 1.95
HC5 0.18 0.52 0.86 0.94 1.25 1.85 2.23 1.96

For the third case (Table 3), the covariates are generated from the Student t distribution, which is known

to have thick tails to allow for a greater possibility of high leverage observations. When the sample size is

30, HC2 is the best performer, followed by HC1 and HC4-HC5, and then the worst performers are HC0 and

HC3. This same ordering is true for the remaining cases. Regarding the slope parameter variances, HC4-HC5

steps into the second ranking for Cases A, B, and C, and for Case D, the HC4-HC5 pair is the best performer,

followed by HC2. The same ordering prevails when T is incremented to 50 for the intercept parameter in Cases
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A, B, and C. However, for Case D, the best performer is HC1, followed by HC2, with the percentage differences

very close at 0.02% versus 0.14%.

Table 3. HCCME performances in percentage differences, Case 3, covariates generated from Student t distribution with

3 degrees of freedom.

T
β0 β1

A B C D A B C D

30

HC0 –7.06 –7.43 –7.34 –7.41 –8.59 –10.12 –8.69 –9.80
HC1 –0.43 –0.82 –0.72 –0.80 –2.06 –3.70 –2.17 –3.36
HC2 –0.05 –0.18 0.18 0.13 0.02 –0.93 –1.02 –1.59
HC3 7.60 7.75 8.42 8.35 9.51 9.24 7.37 7.42
HC4 1.74 1.85 2.79 2.03 3.69 3.54 1.41 1.20
HC5 1.74 1.85 2.79 2.03 3.69 3.54 1.41 1.20

50

HC0 –4.10 –4.14 –4.74 –4.02 –4.77 –5.34 –6.96 –5.52
HC1 –0.10 –0.14 –0.77 –0.02 –0.80 –1.39 –3.08 –1.58
HC2 –0.06 0.00 0.07 0.14 –0.06 –0.24 –1.27 –0.77
HC3 4.16 4.34 5.17 4.49 4.89 5.14 4.78 4.23
HC4 0.38 0.72 1.98 0.67 1.07 1.51 1.88 0.35
HC5 0.38 0.72 1.98 0.67 1.07 1.51 1.88 0.35

100

HC0 –2.01 –2.24 –2.43 –2.36 –2.39 –2.78 –2.88 –2.94
HC1 –0.01 –0.25 –0.43 –0.37 –0.40 –0.80 –0.89 –0.96
HC2 0.00 –0.07 0.07 –0.07 0.01 –0.19 –0.33 –0.47
HC3 2.05 2.16 2.63 2.27 2.48 2.48 2.29 2.06
HC4 0.21 0.42 0.96 0.39 0.61 0.74 0.60 0.19
HC5 0.21 0.42 0.96 0.39 0.61 0.74 0.60 0.19

200

HC0 –1.05 –1.12 –1.30 –1.04 –1.22 –1.52 –1.66 –1.38
HC1 –0.05 –0.12 –0.30 –0.04 –0.22 –0.52 –0.66 –0.39
HC2 –0.03 –0.02 –0.10 0.09 0.01 –0.17 –0.27 –0.14
HC3 1.01 1.10 1.12 1.23 1.24 1.19 1.14 1.12
HC4 0.12 0.25 0.30 0.33 0.35 0.38 0.36 0.22
HC5 0.12 0.25 0.30 0.33 0.35 0.38 0.36 0.22

300

HC0 –0.64 –0.82 –0.78 –0.78 –0.83 –1.06 –0.98 –0.99
HC1 0.02 –0.15 –0.12 –0.11 –0.17 –0.39 –0.31 –0.33
HC2 0.02 –0.01 –0.01 0.02 0.01 –0.17 –0.10 –0.13
HC3 0.70 0.80 0.76 0.84 0.87 0.72 0.79 0.74
HC4 0.12 0.21 0.18 0.24 0.29 0.15 0.21 0.16
HC5 0.12 0.21 0.18 0.24 0.29 0.15 0.21 0.16

500

HC0 –0.43 –0.43 –0.46 –0.45 –0.52 –0.55 –0.58 –0.58
HC1 –0.03 –0.03 –0.06 –0.05 –0.12 –0.15 –0.18 –0.18
HC2 –0.03 0.02 0.00 0.01 –0.01 –0.02 –0.04 –0.07
HC3 0.38 0.48 0.46 0.48 0.50 0.51 0.49 0.45
HC4 0.03 0.13 0.12 0.12 0.15 0.17 0.16 0.09
HC5 0.03 0.13 0.12 0.12 0.15 0.17 0.16 0.09

The ordering for Cases A and B in β1 are the same: HC2 followed by HC1 and HC4-HC5. Coming to

Case C, the HC5-HC5 pair becomes the second-best performer after HC2. Finally, in Case D, the HC4-HC5

pair outperforms all of the rest, surprisingly. When the sample size increases to 100, HC2 is the best performer,

followed by HC1 and the HC4-HC5 pair, and then come HC0 and HC3 as the worst performers. For the slope

parameter of β1 , HC2 is followed by HC1 and then by the HC4-HC5 pair as the best performers, and then

come HC3 and HC0 for Case A. The ordering changes by the replacement of HC4-HC5, stepping in as the
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second-best performer in Cases B and C, and then again, surprisingly, the HC4-HC5 pair is the best performer

in Case D, followed by HC2 and HC1. Similar rankings are valid for T = 200, 300, and 500, and when the

sample size increases beyond 300, all of the HCCMEs perform very well with percentage differences of less than

1%. Indeed, the rankings do not matter much since all of the HCCMEs do perform very well when there are at

least 300 observations.

The last case that we include in this simulation study is that of the covariates following the ratio of

2 standard normally distributed random variables; that is, the covariates follow the Cauchy distribution. We

intentionally selected this distribution to make the regression have observations with very high leverages. Indeed,

it is interesting to see how the HCCMEs perform in such a difficult situation, and maybe this will be the case

to sort the HCCMEs in such a difficult setting. We tabled the percentage differences of the HCCMEs in Table

4. A first superficial look at the table gives the first impression of relatively poor performance for all of the

HCCMEs. We note percentage differences as high as 10,000%. Indeed, there are much higher figures, but we

prefer to report them as ‘>1000%’ or ‘>100,000%’. These are the cases where one has to seriously question

using the HCCMEs with these dramatically poor performances or discarding them.

For Case A of the intercept parameter, HC2 is the best performer, followed by HC1 and HC0, whereas

the worst performers are HC4 and HC5. One other point that deserves attention is the poorer performance

of HC5 as compared to HC4, even though HC5 is the more recent HCCME introduced in the literature. The

ordering of the HCCMEs does not change for Case B, but the performances are much worse in Cases C and D.

The picture is similar for the slope parameter. The performances are relatively good when T is increased to

50, where the ordering of the HCCMEs is still the same. The other surprising outcome is the best performance

of HC1 in Case C and of HC0 in Case D. However, for β1 , HC2 is always the best performer (except for in

Case C), followed by HC3 and HC1 in different situations. The other point to pay attention is the extremely

high percentage differences. All of the HCCMEs, except for HC4 and HC5, increase their performances as the

sample size increases to more than 100. At this level, the best performer alternates among HC2, HC1, and HC3

for Cases B, C, and D. For β0 , all of the HCCMEs, except for HC5, perform very well when the sample size is

increased to 500, and for Case A, the percentage differences are less than 1%. However, for HC5, the percentage

difference is greater than 100,000%.

For Case B, HC2 has a percentage difference of –0.92%, but HC0 and HC1 have percentage differences

of around 48%. HC4 has a percentage difference of 723% and HC5 is even worse. For Case C, HC0, HC1,

and HC2 have about 80% differences, whereas HC3 has about 90% difference, and again, HC4 and HC5 are far

worse. For Case D, HC0, HC1, and HC2 have about 16% differences and both HC4 and HC5 have differences

of more than 100,000%.

The situation is similar for the slope parameter variances. HC2 is the best performer, followed by HC1,

HC0, and HC3. HC4 is much worse and HC5 is tremendously bad. Surprisingly, HC3 performs the best for

Case C, followed by HC2, HC1, and HC0. The percentage differences are close to 100%, and there is a similar

situation for Case D.

The worst performers are HC4 and HC5, with percentage differences of more than 100,000%. We care

about the sample size of 500 since, if the HCCME cannot perform reasonably well even when there are 500

observations, one has to question using it or not. Another point to pay attention is the definition of the error

term variances. Note that these variances are defined as functions of the covariates, and when the covariates

have higher leverages, the error term variances will have more variation; this makes the estimation more difficult,

which is why the HCCMEs are poor in Case D.
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Table 4. HCCME performances in percentage differences, Case 4, covariates generated from Cauchy distribution.

T
β0 β1

A B C D A B C D

30

HC0 –8.56 –26.69 –61.15 –38.12 –30.87 –62.83 –72.85 –78.94
HC1 –2.02 –21.46 –58.37 –33.70 –25.93 –60.17 –70.91 –77.44
HC2 –0.10 –7.82 –35.39 –3.53 0.01 –35.14 –44.35 –45.11
HC3 13.08 25.72 26.69 82.78 59.20 21.66 24.30 72.54
HC4 63.08 198.66 557.67 > 103 398.75 385.67 611.53 > 103

HC5 200.28 735.46 > 103 > 105 > 103 > 103 > 103 > 105

50

HC0 –4.14 –9.32 –5.67 6.38 –24.65 –24.38 –29.33 –54.42
HC1 –0.15 –5.54 –1.74 10.81 –21.51 –21.23 –26.38 –52.53
HC2 0.04 –0.17 3.14 22.04 0.18 –8.02 –11.96 –14.23
HC3 5.29 10.72 13.08 47.77 39.10 12.60 11.04 65.65
HC4 13.19 30.28 20.95 163.42 196.13 66.91 75.63 559.98
HC5 83.65 34.39 22.66 > 103 > 103 78.49 120.00 > 105

100

HC0 –2.23 –0.60 –35.45 –37.58 –28.17 –51.15 –50.23 –68.61
HC1 –0.24 1.43 –34.14 –36.31 –26.71 –50.16 –49.22 –67.97
HC2 –0.01 7.62 –13.55 –19.02 0.20 –25.17 –23.23 –42.80
HC3 2.98 20.08 23.05 17.55 50.81 18.97 22.11 10.71
HC4 10.86 67.11 190.71 242.14 317.42 226.36 232.08 355.38
HC5 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

200

HC0 –0.94 –14.75 –34.74 –36.43 –34.13 –27.11 –100.00 –99.92
HC1 0.06 –13.89 –34.08 –35.79 –33.47 –26.37 –100.00 –99.92
HC2 –0.04 –0.85 –33.93 –33.93 –0.34 –8.22 –99.40 –97.31
HC3 1.05 16.64 59.06 51.08 69.90 16.23 38.56 28.89
HC4 3.04 66.22 > 105 > 105 545.68 89.21 > 105 > 105

HC5 > 105 > 103 > 105 > 105 > 105 > 103 > 105 > 105

300

HC0 –0.53 22.72 –9.80 –16.95 –20.36 –56.80 –22.01 –20.19
HC1 0.14 23.54 –9.20 –16.40 –19.82 –56.51 –21.49 –19.65
HC2 –0.01 31.58 0.98 –6.08 –0.39 –19.53 –6.31 –8.00
HC3 0.54 44.60 13.72 7.07 30.26 55.71 13.02 6.59
HC4 0.44 95.97 46.56 41.87 154.56 538.82 66.39 45.14
HC5 > 105 > 105 > 103 > 103 > 105 > 105 > 103 > 103

500

HC0 –0.39 –47.75 79.60 –17.08 –20.34 –54.02 –99.66 –99.93
HC1 0.01 –47.54 80.32 –16.74 –20.02 –53.84 –99.66 –99.93
HC2 0.01 –0.92 81.45 –14.95 –0.12 –6.53 –94.37 –97.47
HC3 0.46 94.68 88.88 65.41 28.56 94.85 14.18 41.05
HC4 0.92 723.35 > 103 > 105 129.74 805.72 > 105 > 105

HC5 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

4. Concluding remarks

The winner of the game is HC2, by Horn et al. [14]; although it is occasionally beaten by other HCCMEs, its

percentage difference is always at tolerable levels. The maximum percentage difference is less than 100%. One

may think that this is a high difference, but it is reasonably preferable, especially when compared to the others.

One main shortcoming of comparing the HCCMEs with the help of the simulation is that the covariates

and error term variances generated do not give full insight for a complete analysis. That is why we have selected

several different patterns to produce covariates and error term variances, to have a more detailed understanding

of the comparisons. However, although we shed some light on the settings where some HCCMEs outperform

others, there may be other settings with different conclusions.
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Needless to say, OLS is the best performer under homoscedasticity. There is no need to make use of

the HCCMEs under homoscedasticity and there is no significant improvement in using the so-called HCCMEs.

For the remaining cases, we scanned over the salient patterns of the covariates and error term variances in the

literature and came up with 4 cases of covariates and error term variances.

The purpose of this paper is the comparison of the prominent HCCMEs of the related literature. As such,

we included the 2 HCCMEs introduced recently. This is the only study with these HCCMEs, by Cribari-Neto

[19] and Cribari-Neto et al. [20], to the best of our knowledge. Unfortunately, these estimators performed

worse than others, especially when the high leverage observations were not removed. Moreover, the percentage

differences of these observations were dramatically high, where HC4 was slightly better than HC5. Surprisingly,

these HCCMEs sometimes performed second-best, but usually they were extremely bad.

According to our comparisons, the HCCME by Horn et al. [14] is the best performer under almost all

of the settings, with and without the high leverage points. This estimator is followed by Hinkley’s estimator

[15]. Efron’s jackknife estimator [16] appears as sometimes the 2nd and sometimes the 3rd best performer,

depending on the setting. Regarding the underestimation and overestimation of the HCCMEs, the percentage

differences that we report for White’s HCCME are always negative, which suggests that HC0 underestimates

the true covariance matrix. The same is true for HC1, in spite of a few exceptional cases, whereas HC2 is

negative for the majority of the cases. To the contrary, HC3, HC4, and HC5 are almost always positive; they

overestimate the true covariance. These comments may help hypotheses testers have a better idea about the

true test statistic and evaluate the bias being upward or downward. Today, many packages make use of White’s

estimator to alleviate the bias of the test statistic. Knowing that this bias is almost always positive provides a

basis to better assess the test statistics. The other point to pay attention is the close link between the HCCME

performances and the settings used. Going through Tables 1–4 reveals that the HCCME performances get worse

as the standard deviation of the covariates and the error terms get larger and larger.

Our findings are in line with the findings of MacKinnon and White [17], as well as the other few existing

papers in the literature, but are in contradiction to those of Cribari-Neto [19] and Cribari-Neto et al. [20]. A very

surprising outcome of our study is the extremely poor performances of HC4 and HC5. Indeed, these estimators

are claimed to be superior to the existing ones in favorable journal articles. Most probably, the initiators of

HC4 and HC5 used settings in which they managed to outperform others, but one has to be tolerable enough to

use vast assumptions to arrange the settings. Similar findings could be reported, had the authors used settings

like ours.

In order to let any interested reader repeat our results, we intended to provide the covariates and the

error term variances in the Appendix; however, these vectors are so lengthy that we cannot present them in this

paper. Instead, we can send them to any interested reader, should they be requested. Furthermore, we tried

to run the GAUSS code with 1000 observations, i.e. T = 1000, and returned the outcomes with this very high

sample size of the regression. We think that we could have increased T more, but the results that we got were

similar and we decided to stop and report results for the maximum T value of 500.

Indeed, one can easily note that the HCCME performances are closely related to the setting used. The

interested reader can look over Tables 1–4 with increasing numbers of high leverage observations. It is well

known that the HCCMEs perform better in cases of no or limited high leverage observations. This directly

leads us to the idea of removing the outliers to improve the HCCME performances. Indeed, there are convenient

methods to work out the observations with high leverages that somehow prevent the masking effect. One can

employ the minimum covariance determinant distances by Rousseeuw and Van Driessen [29] to safely figure

out the observations with high leverages and these observations can be eliminated to improve the HCCME
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ORHAN and ŞİMŞEK/Turk J Elec Eng & Comp Sci

performances. This idea may lead to a new study, and possibly a new paper, which leaves the door open for

further research. Indeed, Orhan and Şimşek [30] demonstrated that this idea is viable to some extent.

A very crucial point is the reason behind the good or bad performances of the estimators. Indeed, all

that matters is the alleviation of the leverage. That is why massive effort is concentrated on the diminishing

of the leverage. The HCCME treatments to the leverage represented by the hat matrix entries, i.e. H ii terms,

are indicative in the performances of the estimators. Indeed, there are some ideas to decrease the bias by

simply estimating the bias terms with OLS and subtracting them from the original HCCMEs. This idea was

implemented by Cribari-Neto et al. [31]. The idea worked well, as illustrated by the application in the paper,

but the computation is really very difficult, which makes the use of the technique overwhelmingly difficult.

Finally, as mentioned, one has to keep in mind that simulation studies rely on some certain types of X s

and Σs, and are therefore of limited use in generalizations. One can change X s and Σs completely and get

much better or worse performances of the HCCMEs. The better way to make an analysis is with proof-type

studies, where there is more insight into the subject matter. However, this area of study does not yet include

such proof types and simulations can be used to have comparisons. This is the second research proposal that

we suggest as the extension of our study.
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Appendix

GAUSS program algorithm

Input the parameters of the setting

Generate the covariates according to cases

Generate the error term variances

Compute all terms outside the while loop

Do while Monte Carlo sample is not attained

Generate the error terms and dependent variable values

Estimate the residuals

Compute the HCCMEs

Save the HCCMEs in a separate matrix

Compare the HCCMEs’ biases

Compute the HCCMEs’ loss functions
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