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Abstract: Association rule mining is one of the data mining techniques used to extract hidden knowledge from large

datasets. This hidden knowledge contains useful and confidential information that users want to keep private from

the public. Similarly, privacy preserving data mining techniques are used to preserve such confidential information or

restrictive patterns from unauthorized access. The pattern can be represented in the form of a frequent itemset or

association rule. Furthermore, a rule or pattern is marked as sensitive if its disclosure risk is above a given threshold.

Numerous techniques have been used to hide sensitive association rules by performing some modifications in the original

dataset. Due to these modifications, some nonrestrictive patterns may be lost, called lost rules, and new patterns are

also generated, known as ghost rules. In the current research work, a genetic algorithm is used to counter the side effects

of lost rules and ghost rules. Moreover, the technique can be applied for small as well as for large datasets in the domain

of medical, military, and business datasets.
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1. Introduction

Organizations such as customer relationship management, the telecommunication industry, financial sector in-

vestment trends, web technologies, demand and supply analysis, direct marketing, health industry, e-commerce,

stocks and real estate, understanding consumer research marketing, e-commerce, and product analysis generate

huge amounts of data that often contain useful information (i.e. name, address, age, salary, social security

number, type of disease, and the like). Through data mining, we are able to extract useful and previously

unknown information that organizations or individuals do not want to disclose to the public. Therefore, privacy

preserving data mining (PPDM) techniques are applied to preserve such confidential information from any type

of mining algorithm [1–6]. Hence, the basic objective of PPDM is to protect data against serious adverse effect.

In addition, the privacy regarding data mining is divided into 2 types. The first type of privacy, termed as

output privacy, is where the data are altered so that the mining result will conserve certain privacy. Many

modification techniques such as perturbation, blocking, aggregation, swapping, and sampling are used for this

type of privacy [7–15]. The second type of privacy, labeled as input privacy, is where the data are manipulated

so that the mining result is not affected or is less affected. Cryptography- and reconstruction-based techniques

are used for this type of privacy [16–20].

The mining association rule (AR) is a 2-step process. In step 1, the Apriori algorithm is used to mine

frequent k-itemsets [21] from huge amounts of data. In step 2, ARs are generated from frequent k-itemsets.
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Furthermore, a rule is called sensitive if its discloser risk is above a user-specified threshold. In addition, sensitive

rules contain confidential data that we do not want to disclose to the public. Example: consider 2 retailers, Bob

and Ali, in a supermarket. Bob is the experienced one and Ali has only recently joined the market. Now, Ali

wants to place those items or products that the customers purchase more or whose purchase ratio is high. For

this purpose, he wants to see Bob’s ARs, such as any customer of Bob’s who buys milk as well as tea. We call

this rule sensitive for Bob. Similarly, if Ali knows of any customer of Bob’s who buys milk as well as tea, he

runs a coupon scheme that offers some discounts on milk with the purchase of tea. Gradually, Bob’s sale of milk

with tea decreases and Ali’s sales increase. Consequently, Ali monopolizes the market, as shown in Figure 1.

TEA TEA

TEATEA

Figure 1. PPDM supermarket example.

ARs can be divided into 2 subcategories: weak ARs (WARs) and strong ARs (StARs). A rule is called

a WAR if its confidence is lower than the user-specified threshold. Similarly, a rule is marked as a StAR if its

confidence is greater than or equal to the user-specified threshold. Moreover, StARs are further divided into

sensitive ARs (SARs) and nonSARs. Furthermore, 2 strategies are used to hide SARs [22].

• Increase support of the antecedent.

• Decrease support of the consequent.

This work is based on support and confidence framework. The support is the measure of the occurrences of a

rule in a transactional database, while the confidence is a measure of the strength of the relation between sets

of items. An AR is an implication of the form X ⇒ Y where X ⊆ I , Y ⊆ I , and X∩Y = Ø, where I =

{i 1, i2, i3 . . . Im} is a set of literals, called items. X is called the body or antecedent (tail) of the rule and

Y is called the head or consequent of the rule. An example of such a rule is when 60% of the customers who

buy bread also buy butter. The confidence of the rule will be 100%, which means that 60% of the records that

contain bread also contain butter. The confidence of the rule is the number of records that contain both the
left-hand side (X) and right-hand side (Y ), divided by the number of records that contain the left-hand side

(X), which is calculated with the following formula:

Confidence (X ⇒ Y ) =
|X ∪ Y |
|X|

. (1)

The support of the rule is the percentage of transaction that contains both the left-hand side (X) and
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right-hand side (Y ), which is calculated with the following formula:

Support (X ⇒ Y ) =
|X ∪ Y |

|Y |
, where N is the number of transactions in D. (2)

A lot of research has been done in the domain of PPDM. Most of the existing techniques are based on

the support and confidence framework. In addition, we identify that these techniques are suffering from the

side effects of lost rules, some lost nonrestrictive patterns and ghost rules, and some new patterns are falsely

generated, which may not be supported by the original database. These side effects play an important role

in the motivation of the proposed architecture. In current research work, a genetic algorithm (GA) is used to

improve the existing PPDM in the domain of the lost rule and ghost rule side effects. Moreover, the GA is an

evolutionary and metaheuristic technique used to solve complex problems. Hence, preserving the privacy of ARs

is a complex problem and needs optimal sanitization. Therefore, the GA is used to provide the optimal solution

to such a hard problem. In the same direction, a new modification technique is introduced, called the privacy

preserving GA (PPGA). This technique modifies the database recursively until the support or confidence of

the restrictive patterns drop below the user-specified threshold. Furthermore, the technique is only applicable

on binary datasets. In addition, the technique introduced in this paper only modifies those transactions that

contain the maximum number of sensitive items and minimum number of availability of nonsensitive items. The

technique can be applicable for small datasets as well as for large datasets. In order to test and validate the

performance of the PPGA-based framework, experiments are conducted on the Zoo, Synthetic, and Extended

Bakery datasets. On the basis of the experimental results, the claim is validated that the proposed framework

gives better results than the existing state of the art techniques based on the rule hiding distance, not on lost

and ghost rules.

The work done in this paper can be divided into 3 phases. In phase 1, k-frequent itemsets are generated

and then ARs are generated from these itemsets. PPGA is applied to release a sanitized database in order to

hide SARs in the second phase. In phase 3, the original database is compared to the sanitized database, to find

the number of lost rules and ghost rules.

The format of this paper is as follows: Section 2 is a literature review, which describes the comprehensive

study on SARs hiding or PPDM in ARs. Section 3 presents the proposed model for PPDM, components of

PPGA, and its implementation. In Section 4 the experimental results of the proposed technique are compared

with other techniques existing in the literature. Section 5 describes the conclusions and future work.

2. Literature review

Sharing data is often beneficial but sometimes discloses confidential information. PPDM techniques are used to

preserve confidential information from unauthorized access. In this paper, we focus on issues regarding privacy

preserving in ARs (PPARs). In this context, we review the literature in order to analyze and find limitations in

the existing literature. Aggarwal and Yu [23] proposed that preserving the privacy of restrictive patterns refers

to the process of modifying the original database in such a way that some restrictive patterns hide without

seriously affecting the data and the nonrestrictive patterns. Generally, the process of modification can be

divided into data blocking and data distortion techniques. The major concept of data distortion techniques

is the replacement of selected values with ‘false’ values (i.e. replacing 1s with 0s and vice versa). Moreover,

this technique is applicable to reduce the support or confidence of the SARs from the user-specified threshold.

Analyses concerning the use of this technique can be found in Verykios et al. [24], Duraiswamy et al. [25],

and Dehkordi et al. [26]. All of these approaches add false values to the real transaction, which causes the
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problems of lost rule and ghost rule side effects. Similarly, the major concept of a blocking technique is the

replacement of an existing attribute value with ‘unknown’ or ‘?’. In a blocking technique, the algorithms do

not add a false value to the database. In addition, to restore a value by an unknown value instead of placing a

false value is slightly more advantageous for a specific application such as a medical application. Examinations

regarding the use of this technique can be found in Dasseni et al. [11], Weng et al. [27], and Saygin et al.

[15,28]. The solution presented in these approaches uses a blocking method to transform the original database

D into the release database D ,̀ by increasing the support of the rule antecedent by changing 0s to ? or by

decreasing the support of the rule consequent by changing 1s to ?. Hence, compared to other techniques in the

literature, blocking-based techniques do not distort the database, they only change some of the known values to

unknown. The main limitation of this technique is the privacy violation of the modified database. For example,

the opponent can easily leak the information by replacing the question mark by 1s or 0s.

In the same direction, Clifton et al. [29] discussed the security issues and implication of data mining. He

did not propose any specific algorithm. Moreover, he investigated the idea of limiting access to the database;

supplementing data, remove needless combinations, audit and fuzzy data. Later on, Atallah et al. [30] proved

that optimal sanitization is a nondeterministic polynomial time (NP)-hard problem and needs standardization.

In their research, they proposed a heuristic based on support reduction, to exclude sensitive frequent itemsets.

In a similar direction, Verykios et al. [24] introduced 5 algorithms. Generally, these algorithms run on the

strategy that is based on reducing the support and confidence of rules. Moreover, here, distortion is used as a

modification technique. More precisely, none of these techniques are the best to overcome all of the side effects

caused by preserving the privacy of ARs. Similarly, the time taken by each algorithm to hide a set of rules is

also high. Chih-Chia et al. [31] proposed a novel algorithm, the fast hiding SARs (FHSARs). Typically, the

technique hides SARs successfully by establishing a correlation between the transaction and SARs. Generally,

the proposed technique assigns a weight W to each transaction. The weight shows the dependency of the

transaction on restrictive patterns. Moreover, it generates fewer new rules than the previous work done. The

bottleneck of FHSARs is the number of lost rules and performance in terms of W , which is computed again after

each item is modified. In the same direction, Dehkordi et al. [26] used a GA in the domain of privacy preserving

in ARs. In addition, the technique divided the database into safe and critical transactions. Safe transactions

are those that do not contain sensitive items and there is no need to sanitize. While critical transactions are
those that contain sensitive items and need to be sanitized. The solution presented in this approach uses the

distortion (replacing 1s by 0s and vice versa) method to transform the original database D into the release

database D .̀ Dehkordi et al. did not define a dataset for experimentation. Moreover, the side effect in terms of

the lost and ghost rules were not clearly defined. Furthermore, the technique was not compared to the previous

techniques existing in the literature. Moreover, in the support and confidence of ARs more recently, Naeem et

al. [32] proposed a novel architecture in the domain of PPDM. In this approach, the authors used 5 measures,

namely confidence, all-confidence, conviction, leverage, and lift, in order to mine ARs from large databases. In

addition, the author used a weighting mechanism, which was used to assign a weight to each transaction. The

weighting mechanisms used in this approach are, sum, mean, median, and mode. Consequently, the technique

is only applicable on datasets whose attributes are not more than 26. The technique generates 0 ghost rule side

effects. Furthermore, the technique generates high lost rule side effects.

3. Proposed model for the PPDM

It is clear from the literature that most of the techniques suffer from the side effects of lost rules and ghost

rules. These limitations play an important role in the motivation of the proposed architecture. In the current
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research work, the GA is used to counter the side effects of lost rules and ghost rules. This work has a partial

resemblance to the work done by Dehkordi et al. [26]. However, the difference is that we define our own fitness

strategy. The question arises, “Why are we using a GA in PPDM?” The answer to such a question is that

PPDM is an extremely complex domain and needs to be standardized [29]. Such standardization in PPDM

refers to a NP-hard problem [30]. Therefore, a GA is used to provide the optimal solution to the hard problem.

Such optimality of the solution depends on the complexity of the fitness function. The possible strength of

the fitness function ensures a desirable level of the optimal solution. A GA was developed by Holland in [33].

Holland’s GA is a method for moving from one population of ‘chromosomes’ (e.g., strings of ‘bits’ representing

candidate solutions to a problem) to a new population. In terms of the GA, the dataset is called a population

and the transaction is called a chromosome. Moreover, a GA is an evolutionary and metaheuristic technique

used to solve complex problems. Therefore, a GA is used to hide restrictive patterns, X → Y , by decreasing the

support of Y or by increasing the support of X . Furthermore, it often requires a ‘fitness function’. Hence, the

fitness function assigns a value to each transaction (chromosome) in the database (population). Additionally,

the fitness of the transaction depends on how well that transaction solves the problem at hand. The fitness is

calculated with the help of Eqs. (5) and (8).

Let Dbe a set of transactions in a dataset, denoted as D = {T 1, T2 ,. . . . . . . . . .,T n } and let Rbe a set

of identifiers, defined as R = {1, 2,. . . . . . . . . .., n} . Each record Tr is defined as a set of data items, Tr =

{d 1, d2 ,. . . . . . . . . . . . .d k } , where I represents a set of identifiers, I = {1, 2,. . . . . . . . . . . . . . . , k} .

Let S be a set of sensitive items or a sensitive pattern, denoted as S = {s1, s2, . . . . . . ...., sm} and letP

be a set of identifiers for the elements of S , defined as P = {1, 2, . . . . . . . . . . . . , m} .

∀Sp ∈ Tr

∨
Sp /∈ Tr, 1/

∑k

i=1
Count (Sp) in Tr : Sp ≥ 1 (3)

e.g.: D = {T1 , T2 , T3}
T1 = {Bread, Butter}
T2 = {Bread, Egg}
T3 = {Bread, Butter}
Sp = {Bread, Butter}
Count (Sp) in T2 = (Bread)

Sp ∈ T2,
∑k

i=1 Count (Sp) in T2 = 1

1/
∑k

i=1 Count (Sp) in T2 = ( 11 )

∀di ∈ Tr,
∑k

i=1
di : di → [1] (4)

e.g.: d i ∈ T2 ,
∑k

i=1 di = (1 + 1) = 2

Let F be a set of fitness values, defined as F = {f 1, f2 ,.. . . . . . ..f h } , and let V be a set of identifiers

for the elements of F , denoted as V = {1, 2,. . . . . . .h} .

∀fv ∈ Tr, where fv = 1/
∑k

i=1
Count (Sp) in Tr +

∑n

i=1
di (5)

e.g.:
∑k

i=1 di= 2
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∑k
i=1 Count (Sp) in T2 = 1

fv = (1/1) + 2 = 3

Eq. (5) shows that the fitness value depends on the number of sensitive items in a transaction. This means

that the fitness function is rule-oriented. Moreover, transactions are sorted in descending order on the basis of

the fitness value. Furthermore, the transaction having a lower fitness value will be selected for modification.

Hence, the fitness function goes toward maximization.

Let C be a set of chromosomes, denoted as C = {O 1, O2 ,. . . . . . . . . .,O n } , and let Sbe a set of identifiers,

defined as S = {1, 2,. . . . . . . . . .., n} . Each record Os is defined as a set of items, Os = {o 1, o2 ,. . . . . . . . . . . . .o k },
where I represents a set of identifiers, I = {1, 2,. . . . . . . . . . . . . . . , k} .

|D| = |C| |∀|Os| = |Tr|
D: = C ∧ Tr : = Os

Sp ∈ Os∀Sp /∈ Os , 1/
∑k

i=1
Count (Sp) inOs : Sp ≥ 1 (6)

oi ∈ Os,
∑k

i=1
oi : oi → [0] (7)

The fitness for each offspring can be calculated by Eq. (8).

fv ∈ Os, where fv = 1/
∑k

i=1
Count (Sp) inOs +

∑n

i=1
oi (8)

The question arises, “How do we justify the fitness function?” The answer to such a question is that the

fitness function is divided into 2 parts. The first part is called transaction sensitivity; it increases the priority

by decreasing the value of those transactions that contain sensitive items, as shown in Eqs. (3) and (6). On

the basis of these equation transactions, those having the maximum number of sensitive items will be selected

for modification. The second part is called transaction priority; it increases the priority of selected transactions

containing the same number of sensitive items, as shown in Eqs. (4) and (7). In other words, we can say that

on the basis of Eq. (5), those transactions will be selected for modifications (to replace with offspring) that

contain the maximum number of sensitive items (availability of data items) and minimum number of data items.

In doing so, the lost rule side effect is minimized. Similarly, on the basis of Eq. (8), those offspring will be

selected to be replaced with transactions in the original database that contain the minimum number of sensitive

items and maximum number of nonavailability of the data items. By doing this, the ghost rule side effect is

minimized.

Definition 1 PPGA hides SARs successfully.

∃Sp ∈ T∆Tr|∃!Sp ∈ Tr (9)

Eq. (9) shows that the proposed technique hides SARs successfully, because the technique only modifies

those transactions in which sensitive items are present.

Definition 2 PPGA minimizes lost rule side effects.
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Sp ∈ Tr ∧ fv ∈ Tr|Tr∆Osfv ∈ Tr : fv≤fv+1 (10)

Eq. (10) shows that the lost rule is minimized because the technique selects those transactions to modify in

which fewer data items are available.

Definition 3 PPGA minimizes ghost rule side effects.

Sp ∈ Os ∧ fv ∈ Os |Tr = Os fv ∈ Os : fv≥ fv+1 (11)

Eq. (11) illustrates that the ghost rule is minimized because the selected transactions are replaced by those

offspring in which the maximum number of data items are unavailable.

The notation used in the proposed architecture is shown in Table 1. Figure 2 shows the element

organization of the PPGA for hiding restrictive patterns.

Table 1. Notation and definition.

Notation Details
D Original dataset
D` Sanitized dataset
Tr Transaction ID
ARs Association rules
SARs Sensitive ARs
MCT Minimum confidence threshold
MST Minimum support threshold
fv Fitness of each transaction (chromosome)
TMG Transaction modified in each generation
Os Offspring ID
LRs Lost rules
GRs Ghost rules

 

 

 

 

 

 

 

Comparison 

SARs SAR≠ { } 
Select  

Original 

Database

Genetic 

Algorithm 

Yes 

No Generate  

Update 

Initial population

Initial population D 

D  ̀

Output 

Output 

Injected  
ARs 

Calculate 

Fitness 

Tournament 

Selection  

Single Point 

Crossover 

Inversion 

Mutation  

Sanitize 

Database  

Exit 

Lost Rules Ghost Rules 

Figure 2. Framework of the PPGA for hiding SARs.
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3.1. Components of the PPGA

The components of the proposed model are divided into 3 phases, as shown in Figure 3.

1. Input: Original Database D, SARs, MCT, MST, N, Replace  
2. Output:         Transform D into D’ 

Phase -1 
3. FS  Frequent Itemset (D) 
4. AR  Generate Association Rules (FS)  
5. SAR  Select Sensitive Association Rules (AR)  

Phase -2 
6. WHILE SAR{} != Ø OR generation != N  

7.           Fitness: fv=1/ ∑ Count(Sp) in T + ∑ d : di → [1]  
8.           Selection:  Base on f v 
9.           Crossover: Tr * T r+1 
10.           Mutation: Select T r , Change 1 to 0 or 0 to 1 randomly 

11.          Fitness:         f v= 1/ ∑ Count(Sp) in O + ∑ o : o i → [0]  
12.          Replace:  Tr Δ Os 
13. Wend 

Phase -3 
14. D  D  ̀

Figure 3. PPGA.

In phase 1, the data are first converted into Boolean format, such as 1 and 0, where 1 represents the

availability of data items and 0 shows the nonavailability of data items. Next, the Apriori algorithm is applied

with some minimum support thresholds (MSTs) to mine k-frequent itemsets, and then ARs are generated from

these frequent itemsets. In addition, we select some of these ARs as SARs, whose confidences are greater than

or equal to the minimum confidence threshold (MCT).

In phase 2, the PPGA transforms the original database D into the sanitized database D ,̀ such that

none of the SARs are derived. At first, the confidence of the SAR is obtained from the original dataset (initial

population) and compared with the MCT. If the confidence of the SAR is greater than or equal to the MCT,

then the fitness of each transaction is calculated by Eq. (3). Next, different operators of the PPGA are applied.

This phase of the PPGA runs repeatedly until SAR{} ! = Ø.

In phase 3, the original database D is compared to the modified database D ,̀ to find the number of

ghost rule and lost rule side effects.

Tournament selection: In the tournament selection, 2 chromosomes are selected randomly from the

population and the most fit of these 2 is selected for the mating pool, as shown in Table 2.

Table 2. T-selection.

Population Fitness T-selection
11100 3.5

10010
10100 2.5 10010
10010 3.0 10100
01011 3.0

Single point crossover: In the single point crossover, the parent’s chromosome is split into 2 portions,

such as the head and tail. Similarly, the head of one chromosome combines with the tail of another chromosome

in the mating pool, as illustrated in Figure 4.
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0 0 0 0 0 0 0 0 0 0 

Parent  

1 1 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 

Children  

1 1 1 1 0 0 0 0 0 0 

Figure 4. One-point crossover.

Mutation operator: The mutation operator randomly changes the values (1 to 0 or 0 to 1) of some

locations in the chromosome, as depicted in Figure 5.

Parent

Child

1 1 1 0 1 0 1 1 0 1 

1 0 1 1 1 1 1 1 1 0 

Figure 5. Mutation.

Replacement or inversion operator: In this operator, some of the chromosomes of the initial

population will be replaced with some of the chromosomes of the offspring, as depicted in Table 3. The

fitness values are calculated by Eq. (8).

Table 3. Inversion operation.

Population Offspring Mutation Fitness Inversion
11100 10100 00100 5.0 11100
10100 11010 11110 1.5 11000
10010 11100 10100 3.5 10010
01011 11100 11000 4.0 01011

Example: Table 4 shows the example dataset in comma-separated values (CSV) file format. The example

dataset contains 4 transactions and 5 items in each transaction.

Table 4. Example dataset.

Transaction ID Items bought
1 Bread, Butter, Egg
2 Bread, Egg
3 Bread, Tea
4 Butter, Tea, Cake

If the MST is 50%, then {Bread, Egg} is the only 2-itemset that satisfies the minimum support, as shown

in Table 5. Thus, if the MST is increased from 50%, then the information of {Butter} and {Egg} is lost, which

affects the association of {Bread, Egg} . Hence, if the MST is decreased, then the ratio of unuseful information

is increased.

If the MCT is 50%, then only 2 rules are generated from this 2-itemset, which have confidences of greater

than 50%, as shown in Table 6. As we know, ARs are generated from the frequent itemset; therefore, the MCT

must be greater than or equal to the MST. In the current example, if the MCT is 66%, then the same result

will be shown. Similarly, if the MCT is 67%, then rule Bread→Egg is lost, which we want to hide.

442



SHAH and ASGHAR/Turk J Elec Eng & Comp Sci

Table 5. Frequent itemset.

Frequent itemset Support
{Bread} 75%
{Butter} 50%
{Egg} 50%
{Tea} 50%
{Bread, Egg} 50%

Table 6. ARs from the frequent itemset.

Antecedent → Consequent Support Confidence
Bread → Egg 50% 66%
Egg → Bread 50% 100%

Assume that rule Bread→Egg is sensitive or leaks confidential information and needs to be hidden. At

first, some input parameters, such as the initial population, MST, MCT, and SAR, are passed to the PPGA.

Later on, the PPGA calculates the fitness for each transaction. On the basis of fitness, transactions are selected

for the new generation. Hence, the fitness generated by one rule is deferred from another rule. However, the

fitness depends on the rule or is rule oriented. Table 7 describes the fitness of rule Bread→Egg generated from

example dataset.

Table 7. Fitness of the example dataset.

Population Fitness
11100 3.5
10100 2.5
10010 3.0
01011 3.0

Table 8 demonstrates the first iteration or generation of the PPGA. In the next generation, the sensitivity

of the rule is checked by comparing the confidence and support of the rule to the user-specified threshold. If

the sensitivity of the rule is below the specified threshold, it means that the rule is hidden. Subsequently, the

modified dataset is compared to the original dataset to achieve the lost rule and ghost rule side effects.

Table 8. First iteration of the PPGA.

T-selection X-over Offspring Mutation Fitness Inversion
10100

10010 10
∣∣∣010 10100 00100 5.0 11100

10010
11100

10010 11
∣∣∣100 11010 11110 1.5 00100

10010
11100

11100 11
∣∣∣100 11100 10100 3.5 10010

10100
11100

11100 11
∣∣∣100 11100 11000 4.0 01011

10100

Table 9 illustrates that after a single iteration of the PPGA, the support and confidence of rule

Bread→Egg drops below the user-specified threshold. Thus, the proposed technique hides SARs successfully.
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Due to this modification, rule Egg→Bread is falsely hidden, which is called a lost rule, and no new rule is

generated.

Table 9. Performance measure of the PPGA.

Performance measure AR Support Confidence
SAR Bread→Egg 25% 50%
Lost rule Egg→Bread 25% 50%

3.2. Implementation

In this section, the screen shot of the PPGA is given. The development of the PPGA is coded in Java, using

NetBeans IDE 6.9.1 as a development tool. Java is selected as a programming language because of its prominent

features. Moreover, it provides a high performance graphical user interface. In addition, we perform a series of

experiments on a PC with a Core i3 ∼2.1-GHz central processing unit (CPU) and 4-GB memory, under the

Windows 7 Professional 64-bit operating system. At first, the data that are in the CSV file format are imported

Figure 6. Mining frequent itemsets and ARs from the synthetic dataset.
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to the MySQL database. After this, the Apriori algorithm is used to mine the frequent k-itemset. Figure 6

describes the ARs generated from frequent k-itemsets before and after sanitization from the synthetic dataset,

which will be discussed later on. It indicates the SAR 4→7, with a support of 41% and confidence of 81%.

The rule is hidden by decreasing the confidence to 74%, as shown in the column of the ARs from the sanitized

dataset. Moreover, Figure 6 also represents the lost rule, which is 7→4. During this hiding process, no ghost

rules are generated and the number of transactions modified is 766.

Figure 7 represents the number of steps involved in the PPGA. It also depicts the number of repetitions

or iterations of the PPGA. In addition, Figure 7 also shows what the support and confidence values of the

SARs will be for the next generation. The process will stop when the support or confidence drops below the

user-specified threshold. It also indicates that each iteration of the PPGA decreases the confidence of the rule.

To test and validate the PPGA, experiments are conducted on the Zoo dataset [34], Synthetic dataset

[35], and Extended Bakery dataset [36]. Moreover, the experiments are performed on those data items that are

in Boolean format or are convertible to Boolean format. The data items that we cannot convert to Boolean
data will be removed, as shown in Table 10.

Figure 7. Hiding process of the PPGA.
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Table 10. Dataset.

Dataset Total records Total attributes Ordinal attributes
Zoo 101 17 15
Synthetic 10,000 8 8
Extended Bakery 20,000 50 50

4. Results and discussion

In this section, we perform some experiments on each dataset described in the previous section. Initially, the

MST is set for each experiment. In the first step, the frequent k-itemset is mined from each dataset. After

this, ARs are generated from the frequent k-itemset. Figure 8 depicts frequent k-itemsets (Fk-itemset) and

their corresponding ARs with some MSTs. The X-axis represents the sizes of the Zoo, Synthetic, and Extended

Bakery datasets, and the left-hand side of the Y-axis describes the MST for each dataset. The right-hand side of

the Y-axis indicates the number of frequent k-itemsets and their corresponding ARs generated for each dataset.

As the MST decreases the number of Fk-itemsets, the ARs will increase and vice versa, considering that some

of these ARs leak confidential information. We call this a SAR or sensitive pattern. The SARs are randomly

selected on the basis of their support and confidence.
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Figure 8. Frequent k-itemsets and their corresponding ARs.

Three parameters play an important role in the rule hiding process, such as the MST, MCT, and number

of transactions modified in each generation (TMG) of the PPGA. Therefore, if the values of these parameters

are changed, then the result will be changed. Moreover, we conduct several experiments on each dataset. The

parameters are set for each experiment. Additionally, the hiding process loses some nonsensitive patterns, called

lost rules, and new patterns are also generated, called ghost rules. Thus, the optimal sanitization is a NP-hard

problem. The PPGA preserves the privacy of the restrictive patterns by decreasing the ghost rules to 0 and the

lost rules to 1 in most of the cases.

Figure 9 illustrates the experimental results of the PPGA. The X-axis describes the sizes of the different

datasets and the left-hand side of the Y-axis indicates the different parameter settings and number of transactions

modified during the hiding process. Similarly, the right-hand side of the Y-axis represents the lost rule and ghost

rule side effects. In other words, the bar represents the deferent parameter settings and modified transactions,

while the line represents the number of rules lost and generated due to sanitization. This shows that the

proposed technique generates between 0 and 3 lost rules, and minimizes the ghost rule side effects to 0. It also

shows the number of transactions modified during the hiding process. The flow of the graph shows that as the
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size of the database is increased, the side effects of the lost rules, ghost rules, and transaction modifications are

decreased.
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Figure 9. Experimental results of the PPGA.

On the basis of the experimental results, we claim that the proposed architecture hides SARs successfully

with no hiding failure. Moreover, the approach used in this work minimizes the side effects of the lost rules

and ghost rules. Furthermore, minimizing the number of transaction modifications remains. Additionally, one

accidental measure that we find is the CPU time, which is the amount of time taken by the PPGA to preserve

the privacy of the confidential information. For small datasets, it is not a problem; however, for large datasets,

the PPGA requires a huge amount of CPU time to preserve the privacy of the ARs.

The idea of using a GA for preserving the privacy of SARs was first introduced by Dehkordi et al. [26].

They performed experiments on example datasets that contained 5 transactions and 6 items in each record.

They did not perform experiments on large databases. Therefore, we do not compare the proposed technique to

their work. The proposed technique is compared to the techniques presented by Verykios et al. [24], Chih-Chia

et al. [31], and Naeem et al. [32].
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Figure 10. Comparison of the PPGA with the existing techniques averaged over 3 datasets: Zoo, Synthetic, and

Extended Bakery.

Figure 10 represents the comparison of the PPGA to other techniques in the literature. It shows that these

techniques minimize the side effects in one direction, such as the minimized ghost rule side effects and remaining
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or ignored lost rule side effects. It also shows that the proposed technique hides SARs by decreasing the ghost

rule side effects to 0. Figure 10 also shows that the PPGA generates between 0 and 3 lost rules. Similarly,

the proposed technique hides SARs successfully with no hiding failure. On the basis of such a comparison, the

claim is validated that the PPGA outperforms the other techniques presented in the literature.

5. Conclusion

Organizations often share data in order to achieve mutual benefits. However, sharing data most often discloses

confidential data. Therefore, data modification or data sanitization techniques are applied to preserve the

confidentiality of their confidential data or restrictive patterns in the form of SARs. Moreover, it preserves the

privacy of restrictive patterns by concealing the frequent itemsets subsequent to those patterns. This process

overcomes the leak of confidential information while sharing data. By doing this, it has an impact on the

effectiveness of the data in the form of lost nonrestrictive patterns and new pattern generation. The problem

of optimal sanitization is very complex or NP-hard [6]. In the current research work, a GA is used to minimize

the impact of data hiding. In the same direction, a new fitness strategy is defined that calculates the fitness

of each transaction. Moreover, the proposed technique hides sensitive patterns or SARs successfully, as the

technique only modifies those transactions in which sensitive items are present. Furthermore, the technique

presented in this paper minimizes the lost rules, as the technique selects those transactions to modify that

contain the maximum number of sensitive items and minimum number of availability of nonsensitive items.

Similarly, the PPGA generates 0 ghost rules because the selected transactions are replaced by those offspring in

which the minimum number of sensitive items are available and the maximum number of nonsensitive items are
unavailable. Additionally, to test and validate the PPGA, experiments are performed on the Zoo, Synthetic,

and Extended Bakery datasets. Similarly, the experimental results of the PPGA are compared to the techniques

presented by Verykios et al. [24], Chih-Chia et al. [31], and Naeem et al. [32]. Thus, the claim is verified that

the PPGA outperforms the other techniques in the literature.

In the future, we will design a confidence base PPGA. It will improve the existing fitness function of the

PPGA. Moreover, it will modify those items in a sensitive transaction that will reduce the confidence of the

rule. Additionally, we shall apply other evolutionary approaches, to preserve the privacy of SARs.
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