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Abstract:We propose a new feature extraction algorithm that is robust against noise. Nonlinear filtering and temporal

masking are used for the proposed algorithm. Since the current automatic speech recognition systems use invariant-

integration and delta-delta techniques for speech feature extraction, the proposed algorithm improves speech recognition

accuracy appropriately using a delta-spectral feature instead of invariant integration. One of the nonenvironmental

factors that reduce recognition accuracy is the vocal tract length (VTL), leading to a mismatch between the training and

testing data. We can use the invariant-integration feature idea for decreasing the VTL effects. The aim of this paper is

to provide robust features that provide improvements in different noise conditions as well as being robust against VTL

effect changes. This results in more improvement of the recognition accuracy in comparison with mel-frequency cepstral

coefficients and perceptual linear prediction in the presence of different types of noises and scenarios.

Key words: Robust speech recognition, vocal tract length, temporal masking, invariant integration

1. Introduction

Although many speech recognition systems provide satisfactory results, one of the most important problems in

speech recognition is recognition accuracy. If the training environment differs from the test environment, the

recognition accuracy will be affected. These environmental differences are because of additive noise, diversion

channels, and sound differences among various speakers.

The state-of-the-art automatic speech recognition (ASR) systems show excellent performance in a con-

trolled environment. These are established for a certain noise, but, to date, there is no algorithm with acceptable

accuracy in different noise environments. Cepstral mean normalization (CMN) [1] and mean and variance nor-

malization [2] are the simplest forms of these techniques [3], in which it is assumed that the mean or the mean

and the variance of the cepstral vectors should be equal for all utterances. Histogram equalization [4] is another

strong method that assumes that all cepstral vectors have the same probability density function. The proposed

algorithms in [5–7] provide acceptable results in quasistatic noise and weak results in very unstable environ-

ments, such as background music [8]. Recent studies in nonstatic environments, such as background music and

background speaking, have come up with algorithms based on features missing [9] or feature extraction caused

by physiological knowledge [10,11].

The ASR, naturally, is a process of pattern matching based on features achieved from nonlinear processing
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in time domain signals. Nonlinearity indicates that time domain optimization cannot be accurate [12] in the

feature domain and, therefore, we use the feature domain for optimizing.

As mentioned, there are many different feature extractions for the robustness of ASR systems. In addition

to noise immunity methods, such as relative spectral transform-perceptual linear prediction (PLP) [13], there

are many algorithms for nonmatching audio between training and testing data. These methods are generally

used for speech enhancement techniques. The CMN, stereo piecewise linear compensation for environments

[14], and vector Taylor series [5] are some optimization methods to improve the extraction of speech features.

The aim of these techniques is universally to omit noise effects from feature vectors by reducing the mismatch

between the training and testing data, such as, for example, parallel model combination [15].

Improved methods for feature extraction in comparison with model adaption have less calculation, and

thus they are more useful. One recent feature extraction method based on maximizing the sharpness of the

power distribution and flooring power is called power-normalized cepstral coefficients (PNCC) [16].

Another effective factor is the number of speakers that leads to mismatch of the training and testing

data. In other words, the vocal tract length (VTL) parameter differs among speakers. To cope with this

problem, some approaches such as VTL normalization or maximum likelihood linear regression are used to

counteract the distorting effects due to VTL differences that are applied after the feature extraction process.

Since noise-robustness construction methods based on the features are required, there are some methods for

extracting the invariant features of the VTL, such as invariant-integration features (IIFs) [17]. The invariant-

integration method, in fact, was proposed to increase the ASR system’s robustness against the VTL effects

occurring between individual speakers. In this paper, we propose a new method, which uses asymmetric noise

removal. Since speech power changes more rapidly than background noise in each frequency channel, we can

expose this kind of noise compensation for discussion. On the other hand, it could be said that speech has a

higher modulation frequency spectrum than noise; therefore, many algorithms have been raised by band-pass

filtering or high-pass filtering in the modulation spectrum domain [18]. The easiest method is high-pass filtering

in each channel, which removes the components containing smooth changes [19,20].

A significant issue in the application of conventional linear high-pass filtering in the power domain is that

the output power can become negative, which is mathematically impossible. In addition, it also introduces some

problems into speech synthesis unless an appropriate floor value is used for power coefficients [20]. Thus, filtering

can be performed after applying log nonlinearity [such as the mel-frequency cepstral coefficient (MFCC) method],

but this is not applicable for additive noise as well. Spectral subtraction is another method for decreasing the

effects of noise, whose power changes slowly [21]. The noise level is estimated in spectral subtraction techniques

from the power speech parts [21] or through using a continuous-update approach [19]. We introduce a method

that results in the time-variant estimation of the noise floor using an asymmetric filter, and then it is subtracted

from the instantaneous power.

In this paper, we will discuss a method based on the delta-spectral. Although the characteristics of the

delta-cepstral increase the ASR accuracy, since dynamic data are discussed in it, they are not robust against

noise and reverberation.

Figure 1 shows the structure of the proposed system. As this figure suggests, a nonlinear filter, temporal

masking, and delta-spectral feature are used to lead to the improvement of speech recognition. The proposed

structure could be promising for option features that are not only robust against noise but also have robustness

to the effects of VTL changes.
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Figure 1. Block diagram of the proposed structure.

The overall structure of this paper is organized as follows: we explain an overall review of the proposed

structure in Section 2. In Section 3, we describe the general characteristics of the nonlinear filters used in the

proposed structure. Section 4 surveys temporal masking and sets its parameters. The delta-spectral feature

and the formulae are described in Section 5. The general characteristics of IIFs are detailed in Section 6. The

experimental results are presented in Section 7, and, finally, conclusions are drawn in Section 8.

2. Overall review of the proposed structure

The first stage is based on frequency analysis. A preemphasis filter H(z) = 1 – 0.97 z−1 is used and followed

by a Hamming window having a time duration of 26.5 ms, with 10 ms between frames. Short-time Fourier

transform is then performed and the squared spectrum is integrated using the squared gammatone frequency

response. Using this procedure, we can get channel-by-channel power P[m,l], where m and l are the frame and

channel indices, respectively. It is mathematically represented as follows:

P [m, l] =

Na−1∑
k=0

∣∣X(m, ejwk)Gl(e
jwk)

∣∣2 (1)

Here, Na indicates the size of the fast Fourier transform. We use a 16-KHz sampling rate and Na= 1024. After

weighting the frequency, the power is normalized to the peak power. Gl[k] is the gammatone filter bank for

the l th channel and X(m, ejwk) shows the short-time spectrum of the speech signal for the mth frame. The

center frequencies are linearly spaced at between 200 Hz and 8000 Hz in an equivalent rectangular bandwidth.

We then estimate a quantity described as the ‘medium-time power’, Q̂ [m, l] , which is calculated using

the running average of P[m,l], the power observed in a single analysis frame, according to the equation shown

below.

Q̂ [m, l] =
1

2M + 1

m+M∑
m′=m−M

P
[
m

′
, l
]

(2)

Selection of factor M has a significant effect on the performance (especially in the case of white noise). It is

empirically found that if we chose the value of 2 for M, then the recognition accuracy would be optimum. Next,

using both an asymmetric nonlinear filter and temporal masking for the compensation of environmental noise,

we can improve the features. The effect of smoothing in increasing the recognition accuracy is known.

Next, the delta-spectral feature is used. Since this method alone could not lead to improve recognition,

‘Gaussianization’ nonlinearity is used.

After Gaussianization nonlinearity, according to [17], the invariant-integration approach is performed. It

is a general approach for the construction of invariants for arbitrary transformation groups and its calculation
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includes the collection of r functions (probably nonlinear) for all possible converted observations. Finally, the

output feature vectors will be robust to both environmental conditions and VTL changes.

3. General characteristics of the asymmetric nonlinear filter

Figure 2 indicates the asymmetric noise suppression (ANS) process and temporal masking. First, we explain

the general characteristics of the asymmetric nonlinear filter.

Asymmetric Low-pass 

Filtering

-

+

Temporal Masking 

~
Q [m,l]

~
Q

o
 [m,l]

~
Q

le
 [m,l]

~
R

sp
 [m,l]

Figure 2. Block diagram to model ANS.

This filter is described for the arbitrary input, Q̂in [m, l] , and output, Q̂out [m, l] , as:

Q̂out [m, l] =



λaQ̂out [m− 1, l] + (1−λa) Q̂in [m, l] ,

if Q̂in [m, l]≥Q̂out [m− 1, l]

λbQ̂out [m− 1, l] + (1−λb) Q̂in [m, l] ,

if Q̂in [m, l]<Q̂out [m− 1, l]

, (3)

where m and l are the indices of the frame and channel, respectively, and λa and λb are constants with values

between 0 and 1. If λa=λb , reviewing Eq. (1) will be easy, and since λ is positive, it will become a low-pass IIR

filter, as observed in Figure 3a. If < λa<λb<1, then the nonlinear filter functions will become upper envelope

detectors (Figure 3b), and, finally, as shown in Figure 3c, if < λb<λa < 1, the filter output, Q̂out , will tend to

follow the lower envelope of the input, Q̂in [m, l] . For better estimation of modeling the medium-time noise, a

lower envelope with changes is applied. Therefore, as this envelope reduces in the main input, Q̂in [m, l] , slow

changes in the nonspeech components are deleted. We use Eq. (4) to represent the nonlinear filter described

by Eq. (1).

Q̂out [m, l] = AFλa , λb

[
Q̂in [m, l]

]
(4)

This equality will be established only for index m in each channel l.
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Figure 3. Sample input (solid curves) and output (dashed line curves) of the filter defined in Eq. (1) for different

conditions when: a) λa = λb , b) λa < λb , and c) λa > λb .

Regarding the asymmetric nonlinear filter features mentioned above, the lower envelope, Q̂le [m, l] ,

indicating the noise average power, is obtained by ANS processing related to the following equation, as observed

in Figure 3c.

Q̂le [m, l] = AF0.999 , 0.5

[
Q̂ [m, l]

]
(5)

Next, Q̂le [m, l] is subtracted from Q̂in [m, l] . We can observe the results of the speech recognition caused by

processing with the asymmetric nonlinear filter, after implementing this structure for different values of λa and

λb . We add 3 kinds of noise: white noise, background music, and reverberation (with a delay of about 0.3 s).

The experimental results are shown in Figures 4a–4d, where it is observed that the values of λb from 0.25 to

0.75 result in good recognition accuracy. According to these figures, the best value for λa is 0.9. Therefore, in

practice, we consider λa= 0.999 and λb= 0.5, because the recognition accuracy for speech is maximum in the

presence of noise.

4. Temporal masking

Many researchers have found that the human auditory system focuses more on the onset of an incoming

power envelope in comparison with the falling edge of the same power envelope [22,23]. In this regard, several

algorithms for improving the onset were proposed [20]. In this section, we display a simple method to incorporate

this effect in the processing feature vectors extracted. It can be applied using a moving peak for each frequency

channel l and omitting instantaneous power if it is under this envelope. This process is shown in a block diagram

in Figure 5.
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Figure 4. Relation between the forgetting factors (λa, λb ) and recognition accuracy for speech: a) clean, b) 5-dB

Gaussian white noise, c) 5-dB music noise, and d) reverberation with RT60 = 0.5.
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Figure 5. Block diagram of the model temporal masking.

In the first stage, the power of the online peak, Q̂p [m, l] , is calculated for each channel by:

Q̂p [m, l] = max
(
λt Q̂p [m− 1, l] , Q̂0 [m, l]

)
. (6)

Here, λt is a forgetting factor for the calculation of the online peak, and m and l are the frame index and

channel index, respectively.
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Temporal masking for different parts of speech is obtained through the following equation.

R̂sp [m, l] =



Q̂0 [m, l]

if Q̂0 [m, l]≥λt Q̂p [m− 1, l]

µt Q̂p [m− 1, l]

if Q̂0 [m, l]<λt Q̂p [m− 1, l]

(7)

Figures 6a–6d indicate the relationship between the recognition accuracy and the forgetting factor (λt), and

also the elimination coefficient (µt). We represent the results of the recognition system using the complete

structure in Figure 1 and just change the coefficients of the forgetting and elimination factors (λt , µt).
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Figure 6. Relation between the speech recognition accuracy and the forgetting factor (λt ) and elimination factor (µt ):

a) clean, b) 5-dB Gaussian white noise, c) 5-dB musical noise, and d) reverberation with RT60 = 0.5.

In a clean environment, as observed in Figure 6a, if λt≤ 0.85 and µt≤ 0.2, the recognition accuracy

will almost remain constant. However, if λt>0.85, the performance will be degraded. In an additive noise

environment such as weight or music noise, as shown in Figures 6b and 6c, the performance is the same.

However, for the reverberation, as shown in Figure 6d, the application of the temporal masking scheme provides

considerable improvement.
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5. Delta-cepstral features

In this section, we improve the speech recognition accuracy in practical environments by placing delta features in

the spectral domain instead of in the cepstral domain. Delta-cepstral features were suggested in a different way

in [24], in the dynamics information for collecting static features. They also improve recognition accuracy by

adding one characteristic of temporary attachment to hidden Markov model (HMM) frames that are supposed

to be statically independent from each other.

Delta-cepstral features are defined by the following equation for a short-time cepstral sequence, C[n].

D [m] = C [m+M ]−C [m−M ] (8)

Here, m is the index of the analysis frame and M is empirically gained at about 2 or 3. Similarly, delta-delta

features are defined in terms of a subsequent delta operation on the delta-cepstral features. From Eq. (8), it

can be easily proven that E{D[m].C[m]} = 0. Since E{.} is the expectation operator, the delta features are

uncorrelated with the static features and help the frame to be independent from the HMM assumption in ASR.

The total delta-cepstral coefficients improve the ASR accuracy and also provide good robustness against

noise [25].

The human ear can detect speech sounds in the presence of background noise. In other words, due to

differences in the stationary characteristics of speech and noisy signals, the human ear can largely ignore the

noise and concentrate on the speech signal. Since the noise spectral values are relatively flat, although the

speech spectral values change quickly, taking a different approach across frames strongly attenuates the noise

components.

5.1. Formal analysis of cepstral coefficients

In this subsection, formal analysis for improving the signal-to-noise ratio (SNR) is discussed using the spectral

features in white noise. Suppose that the noise is a white Gaussian sequence sample distribution w i of the

form N(0,σ2), that power P for an independent set of N samples is E [P ] = 1
NE

[
N∑
i=1

w2
i

]
, and that power P

indicates a chi-square distribution with N degrees of freedom that approximately has a Gaussian distribution

for large N.

Under the assumed Gaussian for P, E[P] is given by the following.

E [P ] =
1

N
E

[
N∑
i=1

w2
i

]
=σ2 (9)

var [P ] = E
[
P 2

]
−E [P ]

2
=

E

[∑
i,j

w2
iw

2
j

]
N2

−σ2 (10)

=
1

N2

∑
i

E
[
w4

i

]
+

∑
i,j, i ̸=j

E
[
w2

iw
2
j

]−σ4=
2σ4

N2
(11)

Therefore, assuming Gaussian power, we could say that P is approximately distributed as N(σ2 2σ4

N2 ). The total

P can be considered as the sum of the DC and AC powers. The DC power is the square of the mean, σ4 , while
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the AC power is the variance 2σ4

N2 . Processing in the spectral domain leads to removing DC power; therefore,

a higher improvement is obtained. As is known, the largest part of noise is its DC power. In other words, we

have the following.

Noise cancelling = −10 log10

(
PDC

PAC +PDC

)
= 10log10

(
1+

N

2

)
(12)

As previously mentioned, a window with a 25.6-ms length and sampling frequency of 16 KHz is used, so the

number of sample durations, N, is equal to 410. This means that for the cancellation of white noise with

delta-spectral alone, the maximum possible increase in accuracy is a 26.05-dB SNR.

5.2. Delta-spectral power coefficients

Now the delta-spectral power coefficients for the ASR are discussed. Since the short-time power of speech

changes is faster than the short-time power of noise, we consider delta-spectral power coefficients for the proposed

method. In fact, these large differences in speech power changes or noise make it possible to understand speech

distinctions for humans in the noise.

The target is to use delta features for increasing recognition accuracy. With the delta function given

by Eq. (8) in the spectral domain, rapid changes in the speech components are improved and slow changes in

the noise components are inactivated. Figures 7a–7f show the effect of using delta features for increasing the

recognition accuracy. Figure 7e indicates the result of a delta operation in the spectral domain in Figure 7b. It

is obvious that this kind of delta in Figure 7e (caused by applying a delta operation in the spectral domain) is

more useful than that in Figure 7c (caused by applying a delta operation in the cepstral domain).
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Figure 7. a) Short-time power for clean speech and a part of the white noise, 0 dB; b) short-time power for clean speech

and noisy speech with the noise of Figure 7a; c) logarithmic power using clean speech and noisy speech in Figure 7b; d)

temporal difference operation on the signals of Figure 7c; e) temporal difference operation on the signals of Figure 7b;

and f) Gaussianization operation on the signals of Figure 7e.
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Due to the compressive nature logarithmic of the nonlinearity, spectral peaks are almost identical for the

clean and noisy speech. However, for the rest of the frames, the amount of mismatch is high, as shown in Figure

7c.

Overall, therefore, a delta-spectral outcome equivalent to the MFCC features in the cepstral domain or

‘mel-filter spectrum’ is obtained by applying a temporal difference operation to the spectral values of mel, which

could be considered as a filtering operation with the mel-spectral feature sequences. This filter is shown as:

Hd (z)= zd−z−d. (13)

It is experimentally found that parameter d has the best performance between 2 and 4. Since the use of these

features alone would not be appropriate for speech recognition applications and as delta-spectral cepstral features

are non-Gaussian, histogram normalization for these features is used to match the delta-spectral features with

the speech recognition and then they are converted to Gaussianization nonlinearity. Hence, we apply it instead

of the logarithmic nonlinearity used in the MFCC.

Though logarithmic nonlinearity is closer to the human auditory model, it is more vulnerable to noise.

This Gaussianization nonlinearity is applied on an utterance-by-utterance basis. Figure 7f shows the Gaussian-

ized delta-spectral features.

6. Invariant integration

In practice, with a given time-frequency representation, yl(m), the monomials are defined as in [17], where m

and l are the frame and channel indices, respectively.

r̂
(
m;w,⃗l , h⃗ ,r⃗

)
=

[
M∏
i=1

yhi

li+w (m+ri)

]1/
∑M

i=1 hi

(14)

It is shown that vectors l⃗∈NM , h⃗∈NM
0 , and r⃗∈NM describe the used subbands, integer components, and

temporal offsets, respectively, and w introduces the subband-index offset. In addition, a monomial is evaluated

on the several converted versions of each frame and then on a window with a size of 2w + 1, and the results are

averaged:

Ar̂ (n)=
1

2w + 1

w∑
w=−w

r̂
(
m;w,⃗l , h⃗ ,r⃗

)
(15)

The final feature vector A⃗∈RM is a combination of these averages.

⇀

A(n) = (Ar̂1 (n) , Ar̂2 (n) , . . . ,Ar̂N (n)) (16)

The last stage of the calculations of invariant integration is a component-wise mean subtraction. The IIF

parameters are computed by the iterative method of the feature selection based on the linear classifier in [26].

In [17], it was shown that an IIF set results in a significant rise in the accuracy of the MFCC, whether the

training and testing data are not matching in the VTL or are a matching average. In the analysis of the IIF, the

discrete cosine transform is replaced with an invariant integration to make a shift in the time-frequency display

resulting from the VTL differences. For quantitative measurements, experiments of recognition are performed

under different noise conditions and training-testing scenarios toward the average VTL.
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In order to select the monomial parameters properly, they are calculated under clean speech conditions

with no matching between the training and testing data. Less improvement is obtained in the noise (especially

with less SNR); however, the result is better than with the PNCC and MFCC.

7. Experimental results

In this section, the simulation results are compared with the common feature extraction methods, MFCC, and

PLP, and the new PNCC method suggested recently provides good improvements. To allow for an assessment

of the performance of the feature types under mismatching training-test conditions with respect to the average

VTL, 2 different scenarios are defined: the first is the VTL match between the training and testing data and the

second is the VTL mismatch between those data. The mismatching VTL scenario uses only the male utterances

from the training set for training and only the female utterances from the test set for testing. In the training,

a clean database with matching is applied.

For the experiments, the Persian Large Vocabulary Speech Recognition System is used. The modeling of

the phonetic units is performed by the HMM. HMM models using a continuous density are combined with the

Gaussian. The mentioned phonetic unit is a word and 1 HMM is trained for each word.

We choose clean environment training and a test database from FarsDat [27] that includes 140 h of speech

uttered by 300 speakers with 10 different dialects. Each person expresses 4000 words. All of the existent signals

of this database are labeled in the word.
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Figure 8. Speech recognition accuracy obtained from speaking under noise with different kinds of noises and the VTL

matching scenarios between the training and test data: a) white noise, b) street noise, c) background music, and d)

reverberation.
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The recognition accuracy is compared between the proposed method and different kinds of feature

extraction methods including MFCC, PLP, and PNCC under noise condition, match, and mismatch scenarios.

Figures 8a–8d show the recognition results of the VTL matching scenarios between the training and

testing in the presence of white noise, street noise, background music, and reverberation. As observed, the

proposed structure has the best performance in the presence of noise. These improvements are more than those

of the PNCCs. More specifically, it provides more improvement under white noise, and compared to the MFCC,

the recognition accuracy is increased by a value of about 16 dB. For the street noise and background music, it

has also improved the accuracy by about 10 and 5 dB, respectively. Under noise of reverberation, there is no

difference when compared with the PNCC; however, it provides more improvement than the MFCC.

Figures 9a–9d show the recognition results for the VTL mismatch scenarios between the training and

test data in the presence of white noise, street noise, background music, and reverberation. The obtained

results show that the proposed structure provides more improvements in recognition accuracy under mismatch

conditions.
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Figure 9. Speech recognition accuracy obtained from speaking under noise with different kinds of noises and the VTL

mismatching scenarios between the training and test data: a) white noise, b) street noise, c) background music, and d)

reverberation.

8. Conclusions

In this paper, we proposed a new structure for the extraction of speech features using spectral-delta character-

istics and the invariant-integration method. This structure makes speech robust against a noise environment by
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integrating the delta-spectral method and normalized distribution of the power function. Therefore, we were

able to increase the robustness of speech to changes over the VTL that depend on speakers using IIFs. In

other words, this structure can not only cause the speech feature to be more robust against noise, but can also

provide more robustness under VTL mismatch conditions. The experimental results showed that the proposed

structure provides better performance under different noise conditions and in both match and mismatch VTL

scenarios between the training and test data.
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