
Turk J Elec Eng & Comp Sci

(2014) 22: 479 – 498

c⃝ TÜBİTAK

doi:10.3906/elk-1207-100

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

BtSQL: nested bitemporal relational database query language

Canan Eren ATAY1,∗, Abdullah Uz TANSEL2

1Department of Computer Engineering, Dokuz Eylül University, İzmir, Turkey
2Department of Computer Information Systems, Baruch College, City University of New York,

New York City, New York, USA

Received: 25.07.2012 • Accepted: 23.11.2012 • Published Online: 17.01.2014 • Printed: 14.02.2014

Abstract: A nested bitemporal relational data model and its query language are implemented. The bitemporal atom

(BTA) is the fundamental construct to represent temporal data and it contains 5 components: a value, the lower and

upper bounds of valid time, and the lower and upper bounds of the recoding time. We consider 2 types of data structures

for storing BTAs: 1) string representation and 2) abstract data-type representation. We also develop a preprocessor

for translating a bitemporal structured query language (BtSQL) statement into standard SQL statements. The BtSQL

includes the select, insert, delete, and update statements of the SQL, extended for bitemporal relational databases. It

supports bitemporal, historical, and current context. Bitemporal context is for auditing purposes, historical context is

for querying past states of a bitemporal database, and current context is for querying the snapshot state of a bitemporal

database. We also evaluate the performance of the 2 alternative implementation methods by considering retrieval,

insertion, and update queries.

Key words: Bitemporal database, nested bitemporal relational model, bitemporal atom type, bitemporal query, BtSQL

1. Introduction

It is difficult, if not impossible, to identify a substantial computer application that does not change as time

progresses. Consider student data, which may include past, present, and future data on enrollments, grades,

degree programs, and degrees awarded. As another example, employee histories typically include past, present,

and future data on salary, department, and title; all of these attributes change over time. In the financial markets,

businesses must track the cash flow or account balances over time for each customer. Other examples of ever-

changing time-related data include patient medical records, with diagnoses, X-rays, and lab tests; stock market

data; reservation systems for airlines, car rentals, and hotels; spatial databases; and data warehousing records.

Databases, in general, maintain the recent state of the domain modeled, whereas built-in time-management

support can greatly increase the functionality of a database application. A temporal database maintains an

object’s past, present, and (if available) future values of data.

A temporal database stores the history of the objects (valid time) or the history of the database activity

(transaction time). Valid time captures the history of an object but does not preserve the history of retroactive

and postactive changes. Transaction time records the changes in the database; nevertheless, it does not carry

historical or future data. Bitemporal database systems maintain both transaction and valid time.

The tuple time-stamping approach splits the object’s history into several tuples that create redundancy.

∗Correspondence: canan@cs.deu.edu.tr

479



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

In case there is more than one temporal attribute, new values on each attribute significantly increase the

redundancy. Time-stamped attributes, on the other hand, store the attribute value together with its timestamp

in an attribute time-stamping approach. Each attribute stores the history of the values and each tuple has the

object’s whole history. Only values in a tuple that are updated have to be changed; the others remain the same.

In this paper, we intend to discuss our previously proposed Nested Bitemporal Relational Model (NBRM)

[1], in which the valid and transaction timestamps are attached to attributes and more than one level of nesting

is allowed to represent the histories of the entities and their relationships. The NBRM is built on top of an

object-relational database management system (RDBMS) that supports abstract data types and nested relations

[2,3]. Using nested relations overcomes the problems discussed above in tuple time-stamping. Naturally nested

relations are more complex; however, we believe that is worthwhile in managing temporal data.

We implement an attribute time-stamping approach on a conventionally available database and show

that the proposed model is utilized successfully with bitemporal, current, and historical contexts. We consider

alternative implementation approaches, a bitemporal atom (BTA) represented as a string (BTA String) or as an

abstract data type (BTA ADT) stored in a collection type, and use this prototype for the performance evaluation

of these approaches. The bitemporal relational algebraic operators slice and rollback are implemented, which

are peculiar for the temporal data. The slice operator is implemented for the first time for nested bitemporal

relational databases using the attribute time-stamping approach. The tests show that both new operators

functionally perform well. We also develop a preprocessor for the bitemporal structured query language

(BtSQL), designed for translating BtSQL statements into standard SQL statements. We successfully manage to

hide tedious bitemporal query specifications from the user. For portability issues, the prototype is implemented

in the Java programming language.

Section 2 discusses some related work. In Section 3, a NBRM is described. Section 4 discusses the

implementation of different BTA types and describes how these types are stored in nested tables, how the

nested bitemporal relational algebra is implemented, and how the preprocessor works. Section 5 provides the

evaluation of each implementation method, with a set of updates and queries. Section 6 gives the performance

evaluation and Section 7 has the conclusions and future work plans.

2. Related work

Information systems have been researched in many aspects for decades and the time-related area is not an

exception [4]. Tuple time-stamping and attribute time-stamping are 2 common approaches widely followed by

temporal database researchers. The tuple time-stamping approach adds 2 special time attributes (i.e. BEGIN

and END) to first normal form (1NF) relations [5,6]. This approach has all of the advantages of traditional

relational databases. However, there is undue data redundancy [7]. The attribute time-stamping approach with

N1NF [8] relations prevents data redundancy and is more expressive. Thus, it avoids the horizontal and vertical

data redundancy that occurs in tuple time-stamping [7].

Ben-Zvi proposed the first data model for bitemporal databases, indexing, storage architecture, concur-

rency, recovery, and a temporal query language and its implementation in [5]. Snodgrass proposed a temporal

model that supports valid and transaction times, where tuples are time-stamped with either time instants or

time intervals [6]. Bhargava and Gadia attached transaction and valid timestamps to attribute values [9]. They

gave a relational algebra for their model and defined new operators to capture and update the data. Their

model allows the environment of updates and queries to be restructured, and it can be used as an auditing

database system. The bitemporal conceptual data model forms the basis for the temporal SQL (TSQL), pro-

480



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

posed by Jensen et al. [10]. TSQL2 is based on a tuple time-stamping data model [11] and 3 time dimensions

are supported: user-defined time, valid time, and transaction time; valid time and transaction time are recorded

in implicit attributes. The semantics of arithmetic operations that involve time spans and time instants are not

explicitly supported in TSQL2. They are left to the calendar as calendar-specific operations. Because TSQL2

treats all instants as indeterminate at finer granularities, time durations that have mixed granularities cannot

be represented. SpyTime is another bitemporal database based on tuple time-stamping that reports the move-

ment of spies in cities, and it also has a set of benchmark temporal queries on this database [12]. The T4SQL

was proposed, based on the tuple time-stamping approach, as a new query language in [13], which operates

on multidimensional temporal relations. It allows one to query temporal relations provided with (a subset of)

the temporal dimensions of valid, transaction, availability, and event time, according to di?erent semantics.

Although any T4SQL query can be translated into an equivalent SQL query, the corresponding SQL queries

are more complex, their size is bigger, and their execution is often quite ine?cient.

There are other implementations of temporal databases on top of relational or object relational databases,

some of which can be found in [14]. Most of these implementations use tuple time-stamping, but that in [15] is a

model that builds valid time support directly into an extensible commercial object-relational database system.

There is another model that uses attribute time-stamping and temporal elements and supports 4 different types

of users, which is similar to our concept of a context, except that it only supports valid time [16].

XML is also a new database model serving as a powerful tool for approaching semistructured data. The

hierarchical structure of XML provides a natural environment for the use of temporally grouped [17] or attribute

time-stamping approaches. The authors in [18] showed that transaction-time, valid-time, and bitemporal

database histories can be represented in XML and queried using XQuery without requiring any extensions

of the current standards. The study in [19] presented the ArchIS system, which uses XML to support the

attribute time-stamping approach, XQuery to express powerful temporal queries, temporal clustering, indexing

techniques for managing the actual historical data in a RDBMS, and SQL/XML for executing the queries on

the XML views as equivalent queries on the relational database. The study in [20] has a comparison of various

temporal XML data models that occur in the literature.

3. The Nested Bitemporal Relational Model

3.1. Preliminaries

Atom is the basic undefined term that takes its values from the universe U . Let T be a subset of U and
represent the set of time points 0, 1, ..., now, where 0 is the relative origin of time. The now denotes the present

time instant, and its value increases as time advances. A time unit is user-defined and can be any combination

of seconds, minutes, hours, days, etc. A time interval is a set of consecutive time points. The closed interval

[ l , u ] represents all of the values between l and u , inclusively, whereas the half-open interval [ l , u) does not

include u . A temporal set is a set of time points that can be grouped into disjoint time intervals. Although set

operations such as intersection, union, and difference can be defined on intervals, intervals are not closed under

set operations. A temporal set that is represented by the maximal intervals having consecutive time points is

defined as a temporal element [7]. Examples of a time point, time interval, and temporal element are shown in

Figure 1.

A BTA is defined as a triplet, <transaction time, valid time, value> , where the transaction and valid

time components can be applied as a time point, a time interval, or a temporal element. A BTA in the form of

< [TT l , TTu), [VT l , VTu), V> represents:

481



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

 instant t 

interval 

[a,b] 

temporal element ([c,d], e, 

[f,g]) 

a        

 t 

c        d         e                f               

Figure 1. Time point, time interval, and temporal element on the time axis.

TT l : Transaction time lower bound,

TTu : Transaction time upper bound,

VT l : Valid time lower bound,

VTu : Valid time upper bound,

V : Data value.

Because the value of now changes as time progresses, the [TT l , now ] or [VT l , now ] interval is closed

and expanding.

Example 1. The BTA {< [28, 39), [31, 42), 24K>} states that value 24K is written to the database at

transaction time 28, effective starting from valid time 31. At 11 time points later, when the transaction time is

39, the database updates that at valid time 42, value 24K is no longer valid.

3.2. Nested bitemporal relation schemes

A tuple scheme and a nested bitemporal relation scheme are defined inductively. While a tuple scheme is a

finite sequence of schemes, a nested bitemporal relation scheme is a tuple scheme with previously delineated

components. The nesting depth of a scheme is called its order. An atom’s and a BTA’s order are equal to zero.

The order of a nested bitemporal relation scheme is one more than the order of its tuple scheme. The inductive

definition of bitemporal tuple and nested bitemporal relation schemes are given in [1].

The defined NBRM is based on attribute time-stamped (temporally grouped) [17] nested bitemporal

relations. The EMPLOYEE table in Table 1 is an example of a nested table, where time intervals are attached

to attributes. The nesting level, the order of a bitemporal relation, of relation EMPLOYEE is 3. The atomic

attributes EMP# and BIRTH-DATE are at nesting level 1; the bitemporal attributes NAME, ADDRESS,

DEPARTMENT, and SALARY are at nesting level 2; and the bitemporal attributes DNAME and MANAGER

are at nesting level 3 of relation EMPLOYEE. For most applications, a few levels of nesting would be sufficient

to model temporal data.

Example 2. The definition of the nested bitemporal relation scheme EMPLOYEE depicted in Table 1 is shown

below.

EMPLOYEE: = relation <e>

e: = tuple: <EMP#, ENAME-B, ADDRESS-B, BIRTH-DATE, DEPARTMENT, SALARY-B>

ENAME-B: = relation: <NAME>

ADDRESS-B: = relation: <ADDRESS>

DEPARTMENT: = relation: <DNAME-B, MANAGER-B>

482



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

E
M

P
#

 
E

N
A

M
E

-B
 

A
D

D
R

E
S

S
-B

 

B
IR

T
H

 

D
A

T
E

 
N

A
M

E
 

A
D

D
R

E
S

S
 

E
1
 

<
[1

, 
n

o
w

],
 [

1
, 

n
o

w
],

 B
o

b
 B

ro
w

n
>

 
<

[1
, 

n
o

w
],

 [
1

, 
n

o
w

],
 a

1
>

 
1

9
7

5
 

E
2
 

{<
[1

2
, 2

7
),

 [
1

5
, 2

7
),

 C
a

ro
l K

e
n

 >
,

{<
[1

2
, 2

7
),

 [
1

5
, 2

7
),

 a
2
>

, 

1
9

9
0

 

<
[2

8
, 4

0
),

 [
2

8
, 4

0
),

 C
a

ro
l B

ro
w

n
 >

,
 

<
[2

8
, 4

0
),

 [
2

8
, 4

0
),

 a
1
>

, 

<
[4

1
, 4

5
),

 [
4

1
, 4

5
),

 C
a

ro
l K

e
n

 >
,

 
<

[4
1

, 4
5

),
 [

4
1

, 4
5

),
 a

2
>

, 

<
[5

3
, 

n
o

w
],

 [
5

5
, 

n
o

w
],

 C
a

ro
l K

e
n

 >
}  

<
[5

3
,n

o
w

],
 [

5
5

, 
n

o
w

],
 a

2
>

}

E
3
 

<
[1

5
, 

n
o

w
],

 [
1

5
, 

n
o

w
],

 L
iz

 W
h

it
e

 >
 

{<
[1

5
, 5

6
),

 [
1

8
, 5

6
),

 a
3
>

, 
1

9
8

2
 

<
[5

7
, 

n
o

w
],

 [
5

7
, 

n
o

w
],

 a
5
>

} 

E
4
 

<
[1

0
, 

n
o

w
],

 [
1

0
, 

n
o

w
],

 A
m

y
 A

n
g

e
l>

 
<

[1
0

, 
n

o
w

],
 [

1
0

, 
n

o
w

],
 a

4
>

 
1

9
8

5
 

 

D
N

A
M

E
-B

 
M

A
N

A
G

E
R

-B
 

S
A

L
A

R
Y

 
D

N
A

M
E

 
M

A
N

A
G

E
R

 

{<
[1

, 8
),

 [
1

, 1
0

),
 S

a
le

s>
,

 
<

[1
, 

n
o

w
],

 [
1

, 
n

o
w

],
 B

o
b

 
B

ro
w

n
 >

 

{<
[1

, 1
3

),
 [

1
, 1

5
),

 2
5

K
>

,
 

<
[9

, 
n

o
w

],
 [

1
1

, 
n

o
w

],
 P

la
n

n
in

g
>

}
<

[1
4

, 3
2

),
 [

1
6

, 3
4

),
 3

2
K

>
 

<
[3

3
, 

n
o

w
],

 [
3

5
, 

n
o

w
),

 4
0

K
>

}
 

{<
[1

4
, 4

5
),

 [
1

5
, 4

5
),

 T
e

ch
S

u
p

>
,

 
{<

[1
4

, 4
5

),
 [

1
5

, 4
5

),
 B

o
b

 
B

ro
w

n
>

, 

{<
[1

4
, 2

1
),

 [
1

5
, 2

5
),

 2
0

K
>

,
 

<
[5

3
, 

n
o

w
],

 [
5

5
, 

n
o

w
],

 T
e

ch
S

u
p

 >
}

 
<

[5
3

, 
n

o
w

],
 [

5
5

, 
n

o
w

],
 A

m
y

 
A

n
g

e
l >

}
 

<
[2

2
, 4

5
),

 [
2

6
, 4

5
),

 2
2

K
>

,
 

<
[5

3
, 

n
o

w
],

 [
5

5
, 

n
o

w
],

 2
5

K
>

}
 

<
[1

5
, 

n
o

w
],

 [
1

8
, 

n
o

w
],

 S
a

le
s>

 
{<

[1
5

, 2
5

),
 [

1
5

, 
n

o
w

],
 B

o
b

 
B

ro
w

n
 >

,

{<
[1

5
, 2

7
),

 [
1

8
, 3

0
),

 2
2

K
>

,
 

<
[2

6
, 

n
o

w
],

 [
1

5
, 

n
o

w
],

 A
m

y
 A

n
g

e
l>

} 
<

[2
8

, 3
9

),
 [

3
1

, 4
2

),
 2

4
K

>
,

 

<
[4

0
, 

n
o

w
],

 [
4

3
, 

n
o

w
],

 2
6

K
>

}
 

<
[1

0
, 

n
o

w
],

 [
1

0
, 

n
o

w
],

 S
a

le
s>

 
<

[1
0

, n
o

w
],

 [
1

0
, n

o
w

],
 B

o
b

 B
ro

w
n

>

{<
[1

0
, 3

0
),

 [
1

0
, 3

4
),

 2
5

K
>

,
 

<
[3

1
, 4

4
),

 [
3

5
, 4

8
),

 2
8

K
>

,
 

<
[4

5
, 

n
o

w
],

 [
4

9
, 

n
o

w
],

 3
0

K
>

}
 

T
a
b
le

1
.

A
n
es

te
d

b
it
em

p
o
ra

l
re

la
ti
o
n
,
E

M
P

L
O

Y
E

E
(n

o
te

th
a
t

D
E

P
A

R
T

M
E

N
T

a
n
d

S
A

L
A

R
Y

-B
a
re

a
tt

ri
b
u
te

s 
o
f
E

M
P

L
O

Y
E

E
a
n
d

a
re

d
is

p
la

ce
d

o
n

th
e

n
ex

t
li
n
e

to
sa

v
e

sp
a
ce

).

483



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

DNAME-B: = relation: <DNAME>

MANAGER-B: = relation: <MANAGER>

SALARY-B: = relation: <SALARY>

EMP#, BIRTH-DATE: = tuple <atom>

NAME, ADDRESS, DNAME, MANAGER, SALARY: = tuple <BTA>

Notice that E2 has nonoverlapping time intervals from valid time 45 to 55 and transaction time 45 to

53, when she left the company and rejoined. E2 ’s coming back to the company is recorded at transaction time

53 and joined at valid time 55.

3.3. Nested bitemporal relation algebra and calculus

There are 3 commonly used contexts to query bitemporal databases: bitemporal context, current context, and

historical context. Bitemporal context refers to the entire bitemporal history, which is useful for auditing queries.

In the current context, we refer to only currently valid tuples of a bitemporal relation. While bitemporal context

is to investigate the history of corrected errors, current context is for querying the snapshot state of a bitemporal

database. A bitemporal relation is restricted to its state at a given time point or time interval in the rollback

context. The nested bitemporal relational algebra operations for the bitemporal, historical, and current context

are defined in [1]. The nested bitemporal relational calculus (well-formed formulas for bitemporal, historical,

and current context) for the NBRM is given in [21].

4. Implementation of the NBRM

This section outlines how the NBRM presented in the previous section can be implemented. The architecture of

the NBRM is shown in Figure 2. This model provides database users with different types of support related to

context requirements. One of the advantages of the attribute time-stamping approach is that all of the temporal

attributes can be included in one relation [22]. This relation may have nontemporal attributes along with the

temporal attributes. Any unique nontemporal attribute is chosen as a primary key for this relation. For the

experiments, we use a hypothetical company database with over 10 years of past and possible future data.

4.1. BTA type

We defined a BTA in Section 3 in the form of < [TT l , TTu), [VT l , VTu), V> . The BTA contains the

built-in data type DATE for the lower and upper bounds of the transaction and valid times. Time intervals

might be in any granularity, i.e. DATE and TIME-STAMP, depending on the application. The value part

may be CHARACTER, CHARACTER VARYING, CHARACTER LARGE OBJECT, NUMERIC, DECIMAL,

INTEGER, SMALLINT, BIGINT, or BOOLEAN.

There are 2 possibilities to represent BTA types: the first approach implements it as a string and the

second defines it as an abstract data type. By representing a BTA as a string, a logically coherent unit is

not decomposed over several attributes. These representations hide the complexity of the abstract structures

from end users and application programmers. Figure 3 shows the 5 components stored as a string, BTA String.

Figure 4 depicts the BTA as an abstract data type, BTA ADT.

The type system facilities of object-relational databases allow us to define a BTA as a string (BTA String)

and as a structured abstract data type (BTA ADT). Removing or retrieving a component, such as the transaction

time lower and/or upper bound as a substring, is allowed and used in the query expressions. Once the BTA is

defined, it can be used in SQL statements where other built-in types are used.

484



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

Object-Relational Database  Management Systems  

Temporal Types  Bitemporal Types  Time Related Classes  

Bitemporal SQL Prototype  

Bitemporal 
Context 

Data 

Current Context  
Data 

Current Context 
End-User 

Rollback Context 
Data 

Rollback Context 
End-User 

Bitemporal Context  
End-User 

Figure 2. Architecture diagram of the proposed bitemporal object relational database system.

INTEGER 

CHARACTER 

DECIMAL 

BOOLEAN 

NUMERIC 

DATE DATE DATE DATE 

TTl TTu VT
l

VTu
VALUE  

INTEGER  

CHAR. 

DECIMAL 

BOOLEAN

NUMERIC  

DATE

DATE

DATE 

 

DATE

 

TTu 

VTl 

VTu 

VALUE 

TTl 

 

Figure 3. Representation of the BTA as a string,

BTA String.

Figure 4. Representation of the BTA as an abstract data

type, BTA ADT.

Abstract data types can be declared to be the ‘data type’ of an entire table so that the table’s attributes

are defined by the abstract data type. By in-lining the repeated objects in the table, the reliance on creating

another table with its own structure and indices is removed in collection type tables. Data manipulation

operations such as select, insert, and delete can be applied similarly to ordinary tables.

485



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

4.2. Nested bitemporal relation

A tuple in a nested bitemporal relation is an instance of the structured type on which the table is defined. It gives

the instance a unique identity. Having a set of identical abstract data types in a single tuple actually simulates

the attribute time-stamping approach with a single-attribute table for each object’s time related attributes.

These are temporally grouped relations. Figure 5 gives the definition of the Employee table introduced in

Section 3 (in Table 1) with a NESTED TABLE collection type. Note that the DEPARTMENT attribute

(named as DEPT MNG) consists of 2 bitemporal tables: MNG HISTORY and DEPT HISTORY.

CREATE TABLE EMPLOYEE ( 

  EMP#     NUMBER Primary Key, 

  NAME     BTA_NAME, 

  ADDRESS  BTA_ADDRESS, 

  BIRTH_DATE DATE, 

  DEPT_MNG BTA_DEPT_MNG, 

  SALARY   BTA_SALARY 

) 

NESTED TABLE NAME STORE AS NAME_TABLE, 

NESTED TABLE ADDRESS STORE AS ADDRESS_TABLE, 

NESTED TABLE DEPT_MNG STORE AS DEPT_MNG_TABLE 

     (NESTED TABLE MANAGER_HISTORY STORE AS MNG_TABLE, 

      NESTED TABLE DEPARTMENT_HISTORY STORE AS DEPT_TABLE), 

NESTED TABLE SALARY STORE AS SALARY_TABLE; 

Figure 5. Definition of a nested bitemporal relational table, EMPLOYEE.

4.3. Implementation of the nested bitemporal relational algebraic operations

Select, project, Cartesian product, and set theoretic operations are handled by the query processor of the object

relational database system. The bitemporal atom decomposition and bitemporal atom formation operations

are also managed by the query processor. We briefly comment on the implementation methodology explained

by Atay and Tansel in [21] for the slice and AS OF (rollback) operation that are included in BtSQL.

4.3.1. Slice operation

The slice operation works on the 2 bitemporal attributes, and it returns the first attributes’ value part, along

with the common time intervals that they have, followed by the second attributes’ value part. The first finds

if the given 2 intervals intersect or not, by comparing the lower and upper bounds. If that is the case, then

it finds the starting and ending points of their common interval. Finally, it returns the corresponding value

part of the 2 bitemporal attributes’ value parts, along with the common new intervals. We implement the slice

operation as a function and embed it in the database system. It handles both string and ADT representations

of BTAs. Table 2 depicts the result of the (E2 , SLICE (∩, SALARY,MANAGER)) operation on the EMPLOYEE

table given in Table 1.

Table 2. Result of (E2 , SLICE (∩, SALARY,DEPARTMENT )) .

EMP# MANAGER VTlb VTub SALARY
E2 Bob Brown 15 25 20K
E2 Bob Brown 26 45 22K
E2 Amy Angel 55 now 25K

486



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

4.3.2. AS OF operation

NBRM answers queries about past states by rolling the database back to a state sometime in the past, through

the AS OF clause that is added to the SQL syntax, which rolls back a relation to some earlier time. We

implement the ‘AS OF’ clause as a function that is embedded in the database system. It receives an attribute

name along with the transaction time interval (or point).

Table 3. Result of (EMP#, AS OF (30, SALARY )) of the EMPLOYEE table.

EMP# SALARY(TTlb, TTub) SALARY(VTlb, VTub) SALARY
E1 [1, 13) [1, 15) 25K
E1 [14, 30) [16, 30) 32K
E2 [14, 21) [15, 25) 20K
E2 [22, 30) [26, 30) 22K
E3 [15, 27) [18, 30) 22K
E3 [28, 30) [30, 30) 24K
E4 [10, 30) [10, 30) 25K

It first finds, for every tuple k, the set of BTAs in that attribute. If the given interval (or point) intersects

the transaction time of the BTA, that BTA and the BTAs with earlier transaction times are returned. Table 3

displays the result of (EMP#, AS OF (30, SALARY )) operation on the EMPLOYEE tables’ SALARY attribute,

which is rolled back to a state where the transaction time is equal to 30.

5. BtSQL

In order to demonstrate the feasibility of the NBRM proposed in [1], we design a graphical user interface for

the application programmers and end-users. The preprocessor converts bitemporal queries into statements in

standard SQL and passes them to the DBMS. BtSQL supports the SELECT, INSERT, DELETE, and UPDATE

statements of SQL, extended for bitemporal relational databases. We provide an example where the bitemporal

join is restricted by the time slice operation in Section 5.4. The NBRM allows the formulation of useful queries

by joining 2 bitemporal nested tables. More example queries on bitemporal joins can be found in [21].

end value and sysdate: end value is a special constant for representing the infinite upper limit and/or

‘now’ (we use ‘09.09.9999’). This is common practice in other implementations, as well. sysdate is a SQL

function that returns the current time (now). In BtSQL specifications, both the valid time and transaction time

upper bounds default to ‘now’ if a specific time is not specified.

5.1. Insert in BtSQL

The insert specification in BtSQL has the following semantics in the SQL:

Insert BtSQL(Relation Name, Values, VT ) → Insert SQL(Bt Values)

where Insert BtSQL is the insert specification in BtSQL and Insert SQL is the insert statement in SQL.

Values are pairs <att name, value> and VT is the valid time lower bound. For each <att name, value>

pair, the corresponding Bt Values is in the form of a BTA along with the attribute name: <att name, [sysdate,

end value], [valid time, end value], att value> .

Figure 6 illustrates the process of inserting ‘MIKE BROWN’ with EMP# 20001, birth date ‘10/3/1980’,

address ‘West 34th Street NY NY 10292’, into the DEP ID23 department into the EMPLOYEE table. ‘TOM

WHITE’ is assigned as his manager, and his salary is 25,000 starting on 1 January 2007.

487



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

Figure 7 is the actual SQL code that inserts the tuple for BTA ADT. Note that this is an example of

inserting a new employee in a hypothetical company. Since the user provides the valid time, the truth of values

starts from 1/1/07 for the system.

Figure 6. Inserting a tuple with BtSQL.

Figure 7. Inserting a tuple with BTA ADT type in SQL.

5.2. Update in BtSQL

An update operation ‘inserts’ a new BTA while preserving the old version. The update specification in BtSQL

has the following semantics in SQL:

Update BtSQL(Relation Name, condition, att value, VT ) →
Update SQL(SQL closeBTA, SQL insertBTA)

where Update BtSQL is the update specification in BtSQL and Update SQL has 2 SQL statements.

SQL closeBTA is an update statement that sets the transaction time upper bound to sysdate and the valid

488



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

time upper bound to valid time to VT for the tuple identified by the condition in att value. SQL insertBTA is

an insert statement that inserts a new BTA < [sysdate, end value], [valid time, end value], att value> into the

attributes specified in the condition statement.

BtSQL asks for table name(s) to be updated, a condition, and the new values, as well as the valid time.

The system finds the last bitemporal variable where the valid time upper bound is ‘end value’ and replaces the

valid time upper bound with the user-provided new VT valid time for tuples, which satisfies the condition. The

valid time upper bound of the existing tuple cannot be greater than the ‘end value’ (‘09.09.9999’) since it is

user-provided. It next inserts the new BTA type into the database for satisfying the tuple(s). Its valid time

lower bound gets the valid time when the change was/is/will be effective. Its transaction time lower bound gets

the sysdate, and both intervals’ upper bounds get the end value. The BTA’s value part gets the user-provided

new value. Since the transaction and valid time upper bounds are set to end value, this last inserted BTA is

valid until a new update or delete query is performed.

For example, Figure 8 shows how the employee’s salary data is updated with EMP#=12345 to 50,000,

effective 1 February 2007. Figure 9 shows the actual SQL code needed to make this update possible for

BTA ADT. If a data error is discovered, a compensating update operation has to be performed to correct the

error. The erroneous data are kept; the correct value part and valid time are updated using the correct date.

Figure 8. Update for the salary attribute with the preprocessor.

Figure 9. SQL update code with the BTA ADT type for the salary attribute.

489



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

5.3. Delete in BtSQL

The delete specification in BtSQL has the following semantics:

Delete BtSQL (Relation Name, condition, VT ) →
Delete SQL(SQL closeBTA)

where Delete BtSQL is the specification in BtSQL and Delete SQL is the corresponding update statement

in SQL, which includes a sequence of update statements that sets the transaction time upper bound to sysdate

and valid time upper bound to VT for each time-dependent attribute. Condition is a simple SQL condition

that appears in the WHERE clause.

Tuples are never physically deleted from temporal/bitemporal databases for several reasons. Since an

implementation example is on company databases in this paper, if an employee leaves a company, his/her

information is typically never deleted from the database. The bitemporal attributes’ valid time upper bound is

replaced with the provided valid time, and the sysdate is recorded as the transaction time’s upper bound. The

function receives the primary key, EMP# of the employee, and the valid time when the employee leaves the

company. For every bitemporal attribute, the function finds the last BTA where the valid time upper bound

is end value, and then replaces it with the valid time when the employee was/is/will no longer be employed.

The BtSQL’s DELETE page indicates that EMP# 13456 will not be working beginning on 15 January 2007,

as shown in Figure 10. Figure 11 depicts the actual SQL code as to how the delete is done for BTA ADT.

Figure 10. Delete a tuple with the preprocessor.

5.4. Retrieval in BtSQL

Retrieval in BtSQL has the following semantics in SQL:

Select BtSQL (Result, Source, Condition, AS OF, [Valid Time], [Transaction Time]) → Select SQL

(SELECT Result [Valid Time], [Transaction Time]

FROM Source

WHERE Condition AND [AS OF] AND [Time Slice])

490



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

Figure 11. Delete a tuple with the BTA ADT type in SQL.

where Select BtSQL is the retrieval specification in BtSQL and Select SQL is the corresponding select statement

in SQL. A specification that is enclosed within square brackets is optional.

Result: list of attributes

Source: list of relations

Condition: list of SQL conditions connected by AND, OR, NOT, etc.

AS OF: rollback (transaction) time for rolling back the relation to the specified time. This is embedded

in the WHERE clause as a function call.

Valid time: valid time in the result.

Transaction time: transaction time in the result.

Time slice: time slice operation on the specified attributes. This is embedded in the WHERE clause as

a function call.

BtSQL accepts queries in a bitemporal context, in a current context, or in a historical context. Queries of

course involve the relation name listed in the FROM clause. The query selects tuples that satisfy the condition(s)

of the WHERE clause, and then projects the result to the attributes listed in the SELECT clause. All of the

options and flavors of the SELECT statement in SQL can also be used in BtSQL.

491



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

If the query is in a historical context, then the transaction time point or interval is specified in the AS OF

clause, in which all other restrictions, as well as the capabilities for the bitemporal context, apply as well. If

2 bitemporal attributes’ common time intervals, or ‘when’, need to be queried, then the Slice operation (its

operation or clause) should be chosen. Slice is used in queries as any other clauses independent of the bitemporal

context, current context, or historical context.

As an example, Figure 12 displays a query that lists employee numbers and names that currently work

in Department 22 and earn more than 100K. This current context query selects the employee numbers and

names that satisfy the conditions DEPARTMENT = ‘DEP ID22’ and SALARY>100000, and whose BTA’s

valid times are equal to end value, which is used for now. It then passes the result to the EMP# and NAME

attributes listed in the SELECT clause. Figure 13 shows how this query is written with BTA ADT.

Figure 12. Current context query with BtSQL.

Figure 13. Current context query with the BTA ADT type.

6. Performance evaluation

We conduct experiments to measure the performances of the 2 implementation methods. The experiments are

intended to compare the performances of the bitemporal tables stored in the nested table collection type with 2

492



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

different implementations: BTAs defined as a string (BTA String) and as an abstract data type (BTA ADT).

The performance of a bitemporal relational model is measured by examining the processing time for queries

and updates on an already populated database.

Each database contains a bitemporal table that has 6 explicit attributes: 2 nontemporal attributes are

EMP#, the primary key of the table, of type INTEGER, and Birthday, of type DATE. The other bitemporal

attributes, NAME, ADDRESS, and SALARY bitemporal attributes, use a nested table collection type. DE-

PARTMENT is a nested table with 2 columns, DNAME and MANAGER. DNAME records the department

with which the employee is affiliated, and MANAGER records the employee’s manager; each stores BTAs in

the nested table collection type.

In comparing the relative performances, the following question is considered: which implementation

method, BTA String or BTA ADT, performs faster in terms of database modifications and queries? The

answer to this question is important, because it should significantly affect the bitemporal DBMS design and

implementation decisions.

6.1. System configuration

For the experiment, an object RDBMS, Oracle9i, is used. It is run on a Pentium IV 3.0-GHz PC with 1 GB of

memory and 1500–3000 MB of system-controlled swap space. During the study, the system was used exclusively

for our experiments. The server and client processes ran on the same machine.

6.2. Data generation

In this step, a set of bitemporal data objects are generated. Since bitemporal data in real-world applications

could not be obtained, objects containing bitemporal data are generated synthetically, objects whose bitemporal

attributes are random variables drawn from normal distributions between 01.01.1995 and 01.01.2007. The
granularity of the DATE values is ‘MM.DD.YYYY’. All of the methods presented here can be utilized for any

granularity in the application.

Unique employee numbers between 10,001 and 20,000 are used, and they increase by 1 sequentially. Each

employee is assigned a birth date in the MM.DD.YYYY format. A total of 10,000 distinct names and addresses

are generated for the testing. There are 30 departments and 30 managers from DEP ID1 through DEP ID30

and from MANAGER ID1 through MANAGER ID30, respectively. Each employee is assigned to 1 department

and 1 manager at a time. Employees change their departments and managers 5 times on average, and receive

an additional 5% salary increase when their department changes. Every employee has a 3% salary increase each

new year. For these updates, it is assumed that the transaction time bounds are within 1 to 10 days, less or

more, from the valid time bounds.

6.3. Update operations and queries

We conduct 3 experiments. In the first experiment, we insert 10,000 tuples into both tables created with

BTA String and BTA ADT. We run the other 2 experiments starting with 10 years of data. Each table thus

contains approximately 10,000 tuples, 50,000 nested bitemporal relations that represent sets of BTAs, and

300,000 BTAs.

In the second experiment, the tests are performed by executing modifications as a series of updates

for each bitemporal attribute. The first 3 update operations modify only a single tuple in the table. The

second update modifies a group of tuples, depending on a condition such as updating DNAME or changing the

department’s MANAGER name. The last update operation modifies all of the tuples in a NBRM table.

493



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

In the third experiment, the main goal is to show that the NBRM allows the formulation of useful

queries. To demonstrate the NBRM’s functionality, we illustrate this point with 2 sets of queries. The queries

are designed and run, and the required time is measured over both databases.

Insert 10,000 initial data: The insert time is the same for BTA String and BTA ADT. Both tables

insert 10,000 data within 21 s. This is possibly because of the sequential disk writes for inserting the tuples in

both cases.

Update 1: Change the name to ‘KAMERON JUANA ONCE’ for the employee whose EMP# is 19955,

valid from 07.07.2007.

Update 2: For the employee with EMP# 19955, change his/her department to ‘DEP ID12’, valid from

07.07.2007 to now.

Update 3: For the employee with EMP# 19955, change his/her salary to 65,000 during the validity

period (07.07.2007, now].

Updates 1 to update 3 involve 1 tuple that requires 1 disk access for both implementation methods.

Because the execution times for the BTA ADT type are shorter than the BTA String execution times, the

BTA ADT type performs better than the BTA String type. This result is presented in Figure 14.

Update 4: Change MANAGER ID13 to MANAGER ID05 for all employees, valid from 07.07.2007.

Update 4 updates a set of tuples resulting from a selection condition applied to a table. The BTA ADT

performs slightly better than the BTA String since updating the string type requires more time than the abstract

data type. Figure 15 depicts the results of this update. Unlike updates 1 to 3, update 4 accesses many tuples

that require more disk access.

Update 1, 2, 3

66  101  96  

531  

266  
312  

0 

100  

200  

300  

400  

500  

600  

T
im

e 
(m

s)

BTA_StringBTA_ADT  

Update 4

4

53  

0

10

20

30

40

50

60

T
im

e 
(s

)
 

 

BTA_StringBTA_ADT

Figure 14. Updating times of a single tuple. Figure 15. Updating times of a group of tuples.

Update 5: Give a 5% salary increase to all employees, valid from 07.07.2007.

Figure 16 shows the results of updating the time-related attributes for all of the tuples. Clearly, the

BTA String performs poorly compared to the BTA ADT because updating the string type requires more time

than the abstract data type.

BTA String requires more processing in updating because the SUBSTR string function reads the whole

BTA String to find tuples that are valid. On the other hand, only the transaction and valid time upper bound

fields are read in the BTA ADT type. Therefore, it is expected that the BTA ADT type would perform better

than the BTA String type in updating the tuple(s).

494



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

Query 1: List the salary values in the database that are stored between the times 01.01.2001 and

01.01.2006.

This is a bitemporal context query, and it uses a valid time interval. The selection operation picks tuples

where the valid time components are between 01.01.2001 and 01.01.2006. The projection operation retains the

EMP# as the first attribute, and the value and other 4 components from the SALARY bitemporal attribute.

Both methods return the selected tuples almost at the same run time for Query 1, as shown in Figure

17. The BTA ADT and BTA String time components are extracted and successfully used in the expression in

bitemporal context.

Update 5

T
im

e 
(s

)

3

35

0 

5 

10  

15  

20  

25  

30  

35  

40  

BTA_ADT BTA_String

Query 1

62 
61

54

56

58

60

62

  64  

  66  

BTA_ADT BTA_String

T
im

e 
(m

s)

Figure 16. Updating times of all of the tuples. Figure 17. Run time for Query 1.

Query 2: Find the names of employees that have shared the same address. When was it?

This is also a bitemporal context query. This query joins the table with itself, and then uses the time

slice operation. The selection operation picks tuples where the ADDRESS attributes’ value components are

equal. The time slice operation synchronizes the valid time component of the ADDRESS with respect to the

ADDRESS A valid time component, and hence implements ‘when’. Finally, the projection operation retains

ENAME’s and the ADDRESS bitemporal attributes’ value components, and the common valid time lower and

upper bounds. The main goal of this query is to show that the NBRM allows the formulation of useful queries

by joining 2 bitemporal nested tables.

BTA String outperforms BTA ADT for Query 2 as shown in Figure 18. The join operation requires more

disk reads in the case of BTA ADT, since the abstract data type implementation involves subtables, which

require more tuples. However, BTA String requires fewer disk accesses since BTAs are stored as a set within a

tuple.

Query 3: Get records for all of the departments in which the employee CANAN ATAY has worked in

the database as of [‘01.01.2004’, ’12.12.2006’].

This is a historical context query with a time interval. The AS OF operation rolls back the department

attribute to time value interval ‘01.01.2004’, ’12.12.2006’. The selection operation picks tuples from the name

attribute where the value is ‘CANAN ATAY’, and then the projection operation displays the department

attribute value and valid time components.

Query 4: As of 01.01.2006, who was working in the DEP ID22 department?

This is a historical context query retrieving the state of a table as of ‘01.01.2006’ in the past. The selection

operation picks tuples where value component is equal to ‘DEP ID22’. The projection operation retains the

EMP#, name attribute value part, department attribute’s name, and valid time components.

495



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

Query 3 selects one tuple, namely the department of a particular employee, from a rolled-back attribute.

A rolled-back bitemporal attribute is on 2 levels of nesting. BTA String and BTA ADT perform almost alike.

Query 4 first rolls back the 2 level-nested ‘DEPARTMENT’ bitemporal attributes. Next, it goes through every

tuple and returns the names of employees who are affiliated with the given department ID. In this query type,

BTA ADT and BTA String perform closely, as shown in Figure 19. It is also interesting to observe that Queries

3 and 4 resemble the performance patterns of the update queries.

Query 2
 

108  

2.4 

 0 

20 

40 

60 

80 

100 

120 

T
im

e 
(m

s)

BTA_StringBTA_ADT

Queries 3 and 4

860 

264  

960 

390

0 

200 

400 

600 

800 

1000  

1200  

Query 3 Query 4

T
im

e 
(m

s)
 

BTA_String BTA_ADT 

Figure 18. Run time for Query 2. Figure 19. Run times for Queries 3 and 4.

7. Conclusion

This paper demonstrates the feasibility of implementing a bitemporal database on a commercially available

object-relational database system. Time stamps are attached to the attributes (temporally grouped) where

N1NF (nested) relations are used. We implemented a bitemporal database as a test bed by considering 2

alternative methods and evaluated their performances. The database can be viewed within a bitemporal,

historical, or current context. It was shown that the proposed model can be used successfully while implemented

with bitemporal, historical, or current context.

We constructed nested bitemporal relational databases with 2 types of BTA, BTA ADT and BTA String.

We showed that since the BTA’s 5 components are stored in BTA String and in BTA ADT, it is possible to

extract and manipulate any one of them in the expressions. BTAs are stored in a nested table collection type.

The performance tests showed that while a BTA ADT BTA is better with updates, a BTA String is slightly

better with querying. The bitemporal relational algebraic operators, time slice and rollback performed equally

well for the 2 representations.

Object-relational database systems have richer semantics and data types, such as abstract data types,

than RDBMSs. Moreover, they have the capability to define temporal semantics through these abstract data

types. The standard query language SQL3 includes object-relational features that can serve as built-in temporal

semantics, and which, therefore, provide a robust platform for implementing temporal databases. Commercial

object-relational database systems implement some features of SQL3 and provide readily available platforms to

test the concepts developed in [1].

We extend the SQL with bitemporal querying constructs and developed a graphical user interface. A

preprocessor translates temporal statements into standard SQL statements. A core set of statements such as

insert, update, delete, and select are available in BtSQL. Modification and simple selects on bitemporal relations

are supported, including slicing in both the transaction-time and valid-time dimensions. The user interface hides

tedious bitemporal query specifications for the user.

496



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

The experimental results showed that implementation of the NBRM on an object-relational database

is quite attainable. Our bitemporal database system can be used as a test bed to demonstrate the feasibility

of bitemporal databases in many application domains, since it supports the essential constructs needed in

bitemporal databases. The main conclusion of this work is that a user-friendly graphical query language can

be designed and implemented for attribute time-stamped (temporally grouped) bitemporal databases within

the framework of an object-relational database. It is our hope that our work will lay the foundation for the

widespread implementation of bitemporal relational databases.

TSQL2 is based on homogeneous tuples, but BtSQL also supports heterogeneous tuples. While TSQL2

uses a special operator, coalescing, to collapse all value-equivalent tuples into a single tuple, the result is

also coalesced in our model. The relational bitemporal algebra is defined for both languages. Although an

equivalent relational bitemporal calculus is provided in the NBRM, a corresponding calculus is not defined in

TSQL2. While SpyTime does not have any current queries, we have an example of a ‘now’ query. Both the

SpyTime and NBRM queries have examples of valid/transaction time points and valid time interval-related

bitemporal queries. While SpyTime does not support transaction time interval-type queries, the NBRM queries

do. The NBRM queries query given time points or time intervals in the past (historical context), but SpyTime

does not have such an example. Both the SpyTime and NBRM queries have auditing purpose-type bitemporal

context queries. Because BtSQL is powerful enough to support all of the semantics of the queries listed in [12],

the NBRM queries satisfy more than the requirements of the SpyTime benchmark queries.

We are working on a comparison of the NBRM and various tuple time-stamped bitemporal models. We

will use the same tests on the same data to carry out a performance evaluation of our proposed model against

the tuple time-stamped bitemporal models. We specifically plan to use the SpyTime database and its set of

benchmark queries to evaluate the performance of the BTA String and BTA ADT representations. We will also

have an opportunity to compare the performance of tuple time-stamped and attribute time-stamped bitemporal

data models, since our model is capable of supporting both approaches. We plan to extend the bitemporal data

model by data definition and data management capabilities. Data warehouses store historical data and therefore

could clearly benefit from the research on temporal databases. We are working on a project that incorporates

the NBRM into a data warehouse. Implementing bitemporal data types as a built-in type into an open source

DBMS, such as PostgreSQL, is another possible future work. We also plan to incorporate spatial data into the

NBRM, which would effectively create a spatio-bitemporal database. Such spatio-bitemporal databases would

have built-in support for both space and time(s) and, consequently, could enable new database applications.

Acknowledgments

We would like to express our deep gratitude for the valuable comments of the anonymous reviewers, which

improved the manuscript significantly.

References

[1] A.U. Tansel, C.E. Atay, “Nested bitemporal relational algebra”, International Symposium on Computer and

Information Sciences, pp. 622–633, 2006.

[2] M. Stonebraker, D. Moore, Object-Relational DBMSs: Tracking the Next Great Wave, San Francisco, The Morgan

Kaufmann Series in Data Management Systems, 1999.

[3] J. Melton, Understanding Object-Relational and Other Advanced Features, San Francisco, Morgan Kaufmann

Publishers, 2003.

497



ATAY and TANSEL/Turk J Elec Eng & Comp Sci

[4] A.U. Tansel, J. Clifford, S.K. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass. Temporal Databases: Theory, Design,

and Implementation, San Francisco, Benjamin/Cummings, 1993.

[5] J. Ben-Zvi, The Time Relational Model, PhD, University of California, 1982.

[6] R.T. Snodgrass, “The temporal query language TQuel”, ACM Transactions on Database Systems, Vol. 12, pp.

247–298, 1987.

[7] S.K. Gadia, “A homogeneous relational model and query languages for temporal databases”, ACM Transactions on

Database Systems, Vol. 13, pp. 418–448, 1988.

[8] G. Özsoyoğlu, M.Z. Özsoyoğlu, V. Matos, “Extending relational algebra and relational calculus with set-valued

attributes and aggregate functions”, ACM Transactions on Database Systems, Vol. 12, pp. 566–592, 1987.

[9] G. Bhargava, S.K. Gadia, “Relational database systems with zero information loss”, IEEE Transactions on Knowl-

edge and Data engineering, Vol. 5, pp. 76–87, 1993.

[10] C.S. Jensen, M.D. Soo, R.T. Snodgrass, “Unifying temporal data models via a conceptual model”, Information

Systems, Vol. 19, pp. 513–547, 1994.

[11] R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, C.S. Jensen, R. Elmasri, F. Grandi, W.

Käfer, N. Kline, K.G. Kulkarni, T.Y.C. Leung, N.A. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo, S.M. Sripada,

The TSQL2 Temporal Query Language, Dordrecht, Kluwer, 1995.

[12] D. Shasha, Y. Zhu, “SpyTime – a performance benchmark for bitemporal database”,

www.cs.nyu.edu/shasha/spytime/spytime.html, last accessed 1 December 2009.

[13] C. Combi, A. Montanari, G. Pozzi, “The T4SQL temporal query language”, ACM International Conference on

Information and Knowledge Management, pp. 193–202, 2007.

[14] M. Dumas, M.C. Fauvet, P.C. Scholl, “TEMPOS: a platform for developing temporal applications on top of object

DBMS”, IEEE Transactions on Knowledge and Data Engineering, Vol. 16, pp. 354–374, 2004.

[15] J. Yang, H. Ying, J. Widom, “TIP: a temporal extension to informix” Proceedings of the Special Interest Group

on the Management of Data, pp. 596–671, 2000.

[16] V.T. Chau, S. Chittayasothorn, “A temporal compatible object relational database system”, Proceedings of the

IEEE Southeast Conference, pp. 93–98, 2007.

[17] J. Clifford, A. Croker, “The historical relational data model (HRDM) and algebra based on lifespans”, Proceedings

of the 3rd International Conference on Data Engineering, pp. 528–537, 1987.

[18] F. Wang, C. Zaniolo, “XBiT: an XML-based bitemporal data model”, Proceedings of the 23rd International

Conference on Conceptual Modeling, pp. 810–824, 2004.

[19] F. Wang, X. Zhou, C. Zaniolo, “Using XML to build efficient transaction-time temporal database systems on

relational databases”, Proceedings of the 22nd International Conference on Data Engineering, pp. 131–135, 2006.

[20] K.A. Ali, J. Pokorny, “A comparison of XML-based temporal models”, Advanced Internet Based Systems and

Applications, pp. 339–350, 2009.

[21] C.E. Atay, A.U. Tansel, Bitemporal Databases: Modeling and Implementation, Saarbrücken, VDM Verlag, 2009.

[22] A.U. Tansel, “Temporal relational data model”, IEEE Transactions on Knowledge and Data Engineering, Vol. 3,

pp. 464–479, 1997.

498

http://dx.doi.org/10.1145/22952.22956
http://dx.doi.org/10.1145/22952.22956
http://dx.doi.org/10.1145/49346.50065
http://dx.doi.org/10.1145/49346.50065
http://dx.doi.org/10.1145/32204.32219
http://dx.doi.org/10.1145/32204.32219
http://dx.doi.org/10.1109/69.204093
http://dx.doi.org/10.1109/69.204093
http://dx.doi.org/10.1016/0306-4379(94)90013-2
http://dx.doi.org/10.1016/0306-4379(94)90013-2
http://dx.doi.org/10.1109/TKDE.2003.1262189
http://dx.doi.org/10.1109/TKDE.2003.1262189
http://dx.doi.org/10.1007/978-3-642-01350-8_31
http://dx.doi.org/10.1007/978-3-642-01350-8_31

	Introduction
	Related work
	The Nested Bitemporal Relational Model
	Preliminaries
	Nested bitemporal relation schemes
	Nested bitemporal relation algebra and calculus

	Implementation of the NBRM
	BTA type 
	Nested bitemporal relation
	Implementation of the nested bitemporal relational algebraic operations
	Slice operation
	AS_OF operation


	BtSQL
	Insert in BtSQL
	Update in BtSQL
	Delete in BtSQL
	Retrieval in BtSQL

	Performance evaluation
	System configuration
	Data generation
	Update operations and queries

	Conclusion

