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Abstract:This paper proposes a new method using an artificial neural network to remove random-valued impulse noise

(RVIN) in images. The inputs of the neural model used to detect the RVIN are formed using basic and related gradient

values. The detection of the noisy pixels is realized in 3 phases using the proposed neural detector. In order to obtain a

more robust detector, 2 different networks, which are trained with an artificial training image corrupted with high and

low clutter densities, are used. The extensive simulation results show that the proposed method is significantly better

than the compared filters in terms of its image restoration and noise detection performance.
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1. Introduction

Digital images are degraded by impulse noise (IN) during acquisition, storage, and transmission because of

transmission errors, camera sensors with distorted pixel elements, and incorrect memory positions [1]. Thus,

suppression of such IN from an image is necessary for further processing. If Oij is the luminance value of a true

image O at pixel coordinates (i ,j) and [nmin ,nmax ] represents the dynamic range of O , the IN model with

noise ratio r can be given as:

Aij =

{
Oij , with probability 1− r

ηij , with probability r
, (1)

where ηij ∈ [nmin ,nmax ] are random values. For IN, noise distributions can be grouped as fixed-valued impulse

noise (FVIN), which can also be described as salt-and-pepper noise, and random-valued impulse noise (RVIN).

The noise value ηij only takes values of 0 or 255 with r/2 equal probabilities for 8-bit FVIN-corrupted gray-scale

images. However, for RVIN, the noise value ηij can take any uniformly distributed integer value between 0 and

255. Therefore, removal of the RVIN is quite a bit more difficult than the removal of FVIN.

Many methods have been proposed in the literature to remove IN [2–32]. For example, the standard

median filter is widely utilized for removing IN. It has the advantages of good noise reduction power [2] and

effective computation [3]. IN has a gray-level value different from uncorrupted neighborhood pixels. The

standard median filter uses this fact to remove IN. If the impulse noise rate is higher than 50%, the filter blurs

the base image [4]. In order to overcome this drawback, center-weighted median (CWM) filters [5], tri-state

median (TSM) filters [6], and lower-upper median (LUM) filters [7] have been proposed. At a low noise density,
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these methods have good performances, but at a high noise density, their performances decrease. These methods

modify both the corrupted and noncorrupted pixels of a noisy image.

Recently, to prevent the damage of good pixels, many noise removal methods that employ different noise

detectors have been proposed [8–20]. The recursive adaptive-CWM (ACWM) filter [10] utilizes the differences

between the existing pixel and the CWM filter’s output [5] with changed center weights to form estimates.

The switching structure of the ACWM filter consists of impulse detection mechanisms. It uses the differences

between the outputs of the CWM filters and the existing pixel to make the impulse detection. The final output

is switched among the median and the existing pixel itself. As such, although the edge and detail protection

performance of the ACWM filter is better than that of the median filter, its noise removal performance decreases.

The modified progressive switching median (MPSM) filter [12] is based on the known progressive switching

median (PSM) filter [11] and ACWM filter [10]. The switching strategy of the MPSM filter consists of 2 stages:

the ACWM-based impulse noise detector is utilized to find noisy pixels in the first stage and the PSM filtering

procedure is performed for these noisy pixels in the second stage.

In the switching median (SM) filter [13], a switching strategy for median filtering is proposed for removing

IN in images. The local impulse measurements are used in the switching procedure.

The multistate median (MSM) filter [14] presents a generalized median-based switching strategy. The

output of the MSM filter is switched using simple thresholding logic. The output is switched among a set of

different CWM filters.

In [15], a 2-state recursive signal-dependent rank-order mean filter (SDROM) method for removing IN

was proposed. In the SDROM method, the filtering step is related to a state variable that is defined as the

output of a classifier. It provides a good transition between noise reduction and detail protection over the simple

median filter with little increase in the computational complexity.

Recently, artificial advanced soft computing methods such as neural networks (NNs) [31,32] and fuzzy

systems have been used for IN detection and reduction [21–32]. In the if-then-else fuzzy reasoning (FIRE) filter

[21], a fuzzy logic approach is used to enhance the images degraded by IN. The fuzzy operator is dependent

on 2-stage fuzzy judgment. The fuzzy IN detection and reduction method (FIDRM) [22] is proposed to reduce

different types of impulse noise. The FIDRM can also be used for images that have a mixture of IN and other

noise types. It consists of 2 different stages: an IN detection stage and a reduction stage. In the detection stage,

a fuzzy set IN is constructed using the fuzzy gradient values concept. The membership functions are used to

represent this fuzzy set and it will be utilized in the filtering stage. In the filtering stage, a fuzzy averaging of

neighboring pixels is performed. The fuzzy random impulse noise reduction method (FRINRM) [23] is also a

2-step fuzzy filter that uses a fuzzy logic method to restore the images degraded with IN. The FRINRM method

contains a fuzzy detection procedure and a fuzzy filtering technique for removing RVIN from corrupted images.

The fuzzy system-based methods given in [21–24] are suitable to model the uncertainty of a noisy image.

However, creating the rule-base structure is quite difficult for highly corrupted images. For this reason, many

methods [25–29] related to the adaptive neuro-fuzzy inference system (ANFIS) are presented to prevent this

difficulty. When ANFIS-based methods are trained properly, they can maintain the details of the images during

detection and suppression of the noise.

In [30], a NN was proposed for impulse detection. The inputs of the neural model used in [30] are the

median deviations described as the difference between the median value and actual value of the existing pixel.

It is decided whether the pixel under test is corrupted or not using the neural model. The main disadvantages

of the neural model presented in [30] are that it requires much input data and the difficulty of the training
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images selection. In [31], a preliminary and NN detector named 2 subdetectors was presented to detect IN. In

order to avoid false classification, the impulses assigned in the preliminary stage are applied to the NN. The

local statistics are used as input by the NN. A feedforward NN-based detector to detect salt-and-pepper noise

was also presented in [32]. The NN has 3 inputs, median, current pixel, and rank-ordered absolute difference

values.

The NN based detectors given in [30–32] were used to detect FVIN. However, the presented neural

detector can detect RVIN. The inputs of the neural model are the mean value of the 8 basic gradient values

and maximum values of the 2 related gradients defined in [22]. The neural detector is trained with an artificial

training image formed on a computer [27]. The most important advantage of the presented neural detector is

that it does not require discovering the rule-base structure as in [22]. Once the neural detector is trained, it

can be used to detect the RVIN of any test image. The success of the presented method is evaluated with the

results of the CWM, TSM, ACWM, MPSM, SM, MSM, SDROM, FIRE, and FIDRM methods.

The rest of the paper is outlined as follows: the details of the presented neural detector are given in

Section 2. The simulation results are presented in Section 3 and, finally, conclusions are given in Section 4.

2. Proposed method

The main structure of the presented neural detector is given in Figure 1, where it is shown that the presented

detector consists of a multilayer perceptron (MLP) NN [33] and a decision maker. For the neural model, input

variables are formed using the gradient values described in [22]. The first input of the neural model is the

mean value of the 8 basic gradient absolute values, defined by ∇̄A(i, j). The second and the third inputs of

the neural model are the maximum values of the 2 related gradients, which are defined by max ∇′A(i, j) and

max ∇′′A(i, j). In Figure 1, the output of the detector is represented by Y (i ,j). The neural detector output

is fed into the inputs of the decision maker. The decision maker output, represented by y(i ,j), is calculated as

follows:

y(i, j) =

 Lmin if Y (i, j) < Lmin+Lmax

2

Lmax if Y (i, j) ≥ Lmin+Lmax

2

, (2)

where Lmin and Lmax show the minimum and the maximum allowable gray-level values. For 8-bit images,

Lmin and Lmax are equal to 0 and 255, respectively.

),( jiA

y(i, j) Y(i ,j) 
Decision 

Maker

Neural

detector 
max ),( jiA

max ),( jiA

Figure 1. The general structure of the proposed neural RVIN detection operator.

The good generalization of the proposed neural noise detector is closely related to the selected training

image. In this paper, the neural detector is trained with the artificially generated training image given in [27].
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The artificial training image is preferred because it leads to increased generalization capability. The 512 × 512

artificial training image used as the original training image is illustrated in Figure 2a. In this image, 16 pixels

within each 4 × 4 square box have the same randomly generated integer gray-level value, uniformly distributed

in [0, 255].

(a)

(a) (b) (c) (d) (e)

Figure 2. Training images: a) base training image, b) first input training image, c) second input training image, d)

first target training image, e) second target training image.

The first and second input training images illustrated in Figures 2b and 2c are formed by corrupting the

original training image with RVIN noise densities of 15% and 60%. It is seen from the simulation results that

after the training is implemented, the neural detector gives the best results if the noise density of the input

training image is equal to that of the noisy test image. It is also seen that if the difference between the noise

densities of the input training image and test image increases, the performance of the proposed neural detector

decreases. For this reason, 2 different neural models that have 2 different training images with 15% and 60%

RVIN, respectively, are used to obtain a more stable filter for all of the noise densities.

Figures 2d and 2e show the target training images used to train the neural detector. These images

are difference images obtained by subtracting the input training image pixel values from the corresponding

original training image pixel values. Next, the nonzero and zero values are converted to white and black pixels,

respectively. In this situation, the white pixels in the obtained target training image show corrupted pixels in

the input training image.

In this paper, the MLP NN was trained using the Levenberg–Marquardt (LM) algorithm [34]. The

simulation studies show that the change in the learning method does not change the performance of the proposed

detector. For this reason, the LM algorithm is preferred because of its fast learning ability. In the MLP, linear

transfer functions are used for the input and output layers and tangent sigmoid functions are used for the hidden

layers. After several trials, the most proper network structure is chosen as 1 hidden layer with 3 neurons. This

network configuration is trained with the 2 different training data sets described above. As such, 2 different

trained networks are obtained to detect the noisy pixels of the different test images corrupted with RVIN. The

number of epoch was 20 for the training. The value of µ used in the LM algorithm for weight updating is

chosen as 0.001. The mean squared error (MSE) values obtained in the training are 0.194 and 0.714 for the first

and second networks, respectively.

After the IN detection step is implemented using the proposed neural detector for any test image, the

filtering step is realized [17]. First, the detected corrupted pixels are eliminated from 3 × 3 pixel window W.

Next, median gray-level values of the other pixels within W are calculated. Finally, the calculated median value

is used as the new gray-level value of the corrupted pixel. When the noise density is high, there may not be

any uncorrupted pixels within W. In this situation, window size W is increased until at least one pixel within

W is ensured.

The proposed neural detector gradually detects the corrupted pixels in 3 phases. First, the testing data

set for the test image is formed and applied to the trained network. As such, many of the corrupted pixels
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are eliminated and the filtering step is realized. After the first detection and filtering phase is completed, the

restored image is used as a noisy image in the second phase and similar steps as in the first phase are repeated.

Hence, some of the corrupted pixels missed in the first phase are detected and suppressed. The restored image

is again used as a noisy image in the third phase. Finally, the third and last detection phase is completed, which

is realized to help the determination of the noisy pixels missed in the first and the second phases.

According to all of the information given above, the algorithmic steps of the presented method can be

given as follows:

Training stages:

1. Form training inputs ∇̄A(i, j), max ∇′A(i, j), and max ∇′′A(i, j) using an artificially generated training

image corrupted with RVIN at 15% noise density for the first network. Form target training image by

subtracting the gray-level values of the input training image from the gray-level values of the corresponding

pixels of the original training image. Next, convert the nonzero and zero values to white and black pixels,

respectively.

2. Train the neural model for 20 epochs with the LM learning algorithm using the data set generated in step

1.

Operational stages:

For a given image, A = [A(i, j)], i = 1, 2, . . .M, and j = 1, 2, . . . , N, apply the following:

1. First phase:

(a) Form test inputs ∇̄A(i, j), max ∇′A(i, j), and max ∇′′A(i, j) for any noisy test image for all i =

1, 2, . . .M, and j = 1, 2, . . . , N.

(b) Compute decision maker output Y (i, j) for the test inputs utilizing the NN that is trained in step

2.

(c) Feed the network output Y (i, j) for each pixel into the inputs of the decision maker, as shown in

Figure 1. Find the decision maker output y(i, j) for each pixel using Eq. (2). If the decision maker

output is 255, then this pixel is determined as a RVIN-corrupted pixel.

(d) Perform the filtering step for each corrupted pixel to complete the first phase.

2. Second phase: Use the restored image obtained from the first phase as the corrupted image for the

second phase. Repeat the procedures realized in the first phase.

3. Third phase: Use the restored image obtained from the second phase as the corrupted image for the

third phase. Repeat the procedures realized in the first phase.

4. Repeat above third phases for the second network trained with the artificially generated training image

corrupted with RVIN at 60% noise density.

5. If the PSNR value of the filtered image obtained utilizing the second network is smaller than that of

the first network, accept the results obtained from the second network as the best restoration results.

Otherwise, accept the results obtained from the first network as the best restoration results.
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A block diagram of the proposed expert system for removing RVIN is given in Figure 3, where neural

detector-I and neural detector-II represent the first and second neural detectors trained with the artificially

generated training image with RVIN at 15% and 60% noise densities, respectively.
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Figure 3. The proposed neural system for removing RVIN in the images.

3. Simulation results

In this section, the success of the presented method is evaluated with a number of experiments under different

noise densities. The 512 × 512-sized 4 popular 8-bit gray-level Zelda, Peppers, Bridge, and Goldhill images

from the literature are used for the simulations. The 4 images used to test the proposed detector are shown

in Figure 4. The noisy test images used in the experiments are generated at different noise densities, changing

between 15% and 75%, using a uniformly distributed RVIN model that is within the dynamic range of [0–255].

The CWM, TSM, ACWM, SM, MSM, SDROM, and FIRE comparison filters use a number of threshold

parameters. For the simulation studies performed in this paper, these parameters are as follows: CWM (T0 =

55, T1 = 40, T2 = 25, T3 = 15), TSM (window size = 3 × 3 pixels, T = 20), ACWM (δ1 = 40, δ2 = 25, δ3 =

10, δ4 = 5, s = 0.1), SM (ws = 3, T = 40, R = 0), MSM (window size = 3 × 3 pixels, wmax = 5, T = 20, R

= 0), SDROM (δ1 = 8, δ2 = 20, δ3 = 40, δ4 = 50, s = 0.1, and window size = 3 × 3 pixels), and FIRE (L =

256, a = 40, b = 32).

3.1. Comparison of image restoration

In this study, in order to illustrate the restoration performance of the proposed method, the peak signal-to-noise

ratio (PSNR) and normalized cross-correlation coefficient (NCC) [35] image quality assessment metrics are used.

The PSNR is given by:

PSNR = 10 log10

(
2552

MSE

)
dB, (3)

where the MSE is described as:
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(a) (c)

(b) (d)

Figure 4. Test images: a) Zelda, b) Peppers, c) Bridge, d) Goldhill.

MSE =
1

MN

M∑
i=1

N∑
j=1

[org(i, j)− img(i, j)]
2
, (4)

where org and img are the original and filtered images of sizes M and N , respectively .

The NCC is given as:

NCC =

M∑
i=1

N∑
j=1

(
org(i, j)− µorg(i,j)

) (
img(i, j)− µimg(i,j)

)
√

M∑
i=1

N∑
j=1

(
org(i, j)− µorg(i,j)

)2 M∑
i=1

N∑
j=1

(
img(i, j)− µimg(i,j)

)2 , (5)

where µorg(i,j) and µimg(i,j) are the mean values of the original and filtered image pixels and are defined as:

µorg(i,j) =
1

MN

M∑
i=1

N∑
j=1

org(i, j) (6)

and

µimg(i,j) =
1

MN

M∑
i=1

N∑
j=1

img(i, j). (7)

The PSNR and NCC values of the presented method and the other methods are listed in Tables 1–4 for making

a quantitative evaluation of the presented method against the above-mentioned benchmark methods, based on

the test images. Tables 1–4 clearly show that the PSNR and NCC values for the proposed method are better
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than those of the other filters, except for the MPSM, ACWM, and FIDRM at a 15% noise density for only 1

test image. It is also clear from Tables 1–4 that the proposed method is better than the other mentioned filters

in terms of noise suppression and detail preservation, although the impulse noise rate is very high.

Table 1. PSNR and NCC values of the proposed filter and comparison filters for the Zelda test image at different noise

densities.

Method
PSNR NCC
15% 30% 45% 60% 75% 15% 30% 45% 60% 75%

Noisy 17.16 14.19 12.39 11.15 10.19 0.704 0.513 0.365 0.247 0.149
CWM 34.66 29.81 25.57 21.00 16.58 0.993 0.979 0.945 0.847 0.596
TSM 36.29 27.80 21.81 17.60 14.69 0.995 0.966 0.872 0.685 0.434
ACWM 36.56 31.04 25.88 20.72 16.14 0.996 0.984 0.949 0.837 0.572
MPSM 38.92 31.14 24.52 19.33 15.49 0.997 0.984 0.930 0.780 0.510
SM 32.86 27.11 21.80 17.67 14.76 0.989 0.961 0.872 0.689 0.439
MSM 35.66 26.74 21.02 17.11 14.37 0.994 0.957 0.848 0.654 0.411
SDROM 36.59 27.95 21.85 17.50 14.54 0.995 0.967 0.874 0.680 0.427
FIRE 30.73 27.35 24.52 21.17 16.98 0.983 0.963 0.931 0.853 0.631
FIDRM 39.05 32.54 23.90 17.42 13.41 0.997 0.988 0.918 0.675 0.356
Proposed 39.51 33.86 30.72 26.86 20.84 0.992 0.981 0.967 0.939 0.832

Table 2. PSNR and NCC values of the proposed filter and comparison filters for the Peppers test image at different

noise densities.

Method
PSNR NCC
15% 30% 45% 60% 75% 15% 30% 45% 60% 75%

Noisy 16.69 13.70 11.91 10.65 9.69 0.803 0.631 0.475 0.331 0.199
CWM 32.98 28.47 24.16 19.50 15.17 0.994 0.985 0.961 0.887 0.678
TSM 33.71 26.23 20.62 16.48 13.64 0.996 0.976 0.913 0.768 0.530
ACWM 34.05 29.21 24.29 19.29 14.81 0.996 0.988 0.963 0.881 0.652
MPSM 34.96 29.08 23.10 18.00 14.34 0.996 0.987 0.951 0.839 0.606
SM 31.55 25.90 20.65 16.54 13.71 0.993 0.974 0.913 0.771 0.537
MSM 33.25 25.36 19.94 16.06 13.39 0.995 0.971 0.898 0.743 0.505
SDROM 33.72 26.45 20.66 16.41 13.53 0.996 0.977 0.913 0.765 0.524
FIRE 30.27 26.76 23.63 19.81 15.53 0.990 0.979 0.956 0.895 0.706
FIDRM 32.70 29.57 22.12 16.03 12.51 0.994 0.989 0.938 0.747 0.450
Proposed 34.92 31.40 27.34 22.38 18.50 0.994 0.988 0.975 0.952 0.867

The restoration results for the Bridge test image corrupted with 60% IN are shown in Figure 5, where

it is clear that the visual quality of the proposed method is better than those of the other filters, even if the

impulse noise rate is high.

3.2. Detection performance

In order to obtain a satisfactory restoration performance from the noise reduction filter, the performance of the

noise detector is very important. In this study, the performance of the presented method is evaluated with the

methods that have noise detectors. Only the CWM method does not use a noise detector. Table 5 illustrates the

number of uncorrupted pixels (false detections) and the number of missed corrupted pixels (missed detections)

for the Zelda image corrupted with 15% and 75% noise densities. Because the luminance values of the noisy
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pixels may be similar to those neighbors for RVIN, it is not easy for a noise detector to find most of the corrupted

pixels while ensuring the rate of false detection be as small as possible. A good noise detector can find most of

the corrupted pixels and its false detection rate must be as low as possible.

Table 3. PSNR and NCC values of the proposed filter and comparison filters for the Bridge test image at different noise

densities.

Method
PSNR NCC
15% 30% 45% 60% 75% 15% 30% 45% 60% 75%

Noisy 17.06 14.05 12.24 10.99 10.03 0.799 0.624 0.463 0.321 0.192
CWM 28.07 24.76 21.75 18.63 15.39 0.982 0.962 0.924 0.837 0.627
TSM 27.64 24.01 20.04 16.66 14.10 0.980 0.955 0.885 0.737 0.499
ACWM 28.39 24.91 21.73 18.32 14.98 0.984 0.963 0.923 0.827 0.602
MPSM 27.49 25.00 21.54 17.85 14.74 0.980 0.964 0.920 0.804 0.572
SM 27.60 23.86 20.07 16.73 14.17 0.980 0.954 0.886 0.743 0.507
MSM 27.78 23.66 19.57 16.28 13.84 0.981 0.951 0.872 0.714 0.476
SDROM 27.93 24.02 20.00 16.56 13.96 0.982 0.955 0.885 0.734 0.493
FIRE 27.95 24.61 21.86 18.94 15.73 0.982 0.961 0.926 0.850 0.661
FIDRM 27.30 21.72 20.37 16.07 12.83 0.979 0.924 0.894 0.708 0.416
Proposed 27.12 25.46 22.94 20.58 17.10 0.976 0.963 0.935 0.891 0.797

Table 4. PSNR and NCC values of the proposed filter and comparison filters for the Goldhill test image at different

noise densities.

Method
PSNR NCC
15% 30% 45% 60% 75% 15% 30% 45% 60% 75%

Noisy 17.37 14.35 12.57 11.33 10.37 0.771 0.586 0.430 0.294 0.174
CWM 32.04 27.88 24.52 20.67 16.76 0.991 0.977 0.950 0.873 0.665
TSM 32.44 26.80 21.77 17.84 14.99 0.992 0.970 0.903 0.754 0.509
ACWM 32.85 28.44 24.57 20.32 16.24 0.992 0.980 0.950 0.865 0.638
MPSM 32.95 28.81 23.88 19.38 15.77 0.993 0.981 0.941 0.830 0.590
SM 30.94 26.24 21.72 17.89 15.06 0.988 0.966 0.903 0.758 0.516
MSM 32.45 26.06 21.06 17.34 14.66 0.992 0.964 0.886 0.725 0.481
SDROM 32.72 26.79 21.71 17.72 14.83 0.993 0.970 0.902 0.750 0.501
FIRE 29.92 26.56 23.88 20.78 17.19 0.985 0.969 0.942 0.877 0.702
FIDRM 32.15 28.89 23.39 17.59 13.66 0.991 0.981 0.934 0.744 0.428
Proposed 32.84 29.31 26.95 24.70 20.56 0.988 0.974 0.958 0.935 0.855

Table 5 clearly illustrates that at 15% clutter density, the proposed detector produces the lowest false

detection rate. Although the missed detection number of the proposed detector is higher than those of the other

methods, it is shown from Table 5 that the proposed method produces the lowest sum, except for the MPSM

when the numbers of false and missed detected pixels are added. For the 75% low clutter density, the sum of

the missed and false detected pixels is also the lowest for the proposed method among all of the methods. If the

number of false detections increases in the filtered image, a large number of residual noises will seriously damage

the image. On the contrary, if the number of missed detections increases, the image is blurred. Therefore, the

proposed neural detector gives a better tradeoff between false detection and missed detection.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Output images of the operators for the Bridge image corrupted with RVIN at 60% noise density: a) original

Bridge image, b) noisy Bridge image, c) new, d) CWM, e) TSM, f) ACWM, g) MPSM, h) SM, i) MSM, j) SDROM, k)

FIRE, l) FIDRM.
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Table 5. Comparison of the noise detection results for the Zelda test images corrupted with random-valued impulse

noise.

Method
15% 75%
False Miss False Miss

TSM 602 6509 15,586 63,033
ACWM 17 7794 3351 86,047
MPSM 460 4666 11,518 69,970
SM 87 12,018 12,093 75,774
MSM 488 6359 11,167 73,930
SDROM 105 6522 9792 80,402
FIRE 52 11,683 8118 66,171
FIDRM 10,574 2329 7666 99,411
Proposed 361 5192 37,453 12,293

Another crucial demand expected from modern noise reduction filters is robustness. It is clearly shown

from Tables 1–5 and Figure 5 that the presented neural detector is fairly robust for different noise ratios.

3.3. Running time

The running time for the presented method and the other methods mentioned are given in Table 6, where it

is clear that the running time of the proposed method for the Peppers test image is better than those of the

CWM, ACWM, FIRE, and FIDRM methods and worse than the others at a high noise density. The runtime

analysis of the mentioned filters is performed using a Pentium dual-core, 2.52-GHz PC.

Table 6. Runtimes of the mentioned methods for the Peppers image for different IN levels.

Method
Runtime (s)
15% 75%

CWM 33.45 34.45
TSM 8.65 8.68
ACWM 39.73 40.61
MPSM 3.53 5.91
SM 0.31 0.31
MSM 0.97 1.01
SDROM 0.66 0.67
FIRE 20.41 20.43
FIDRM 4.38 62.79
Proposed 18.92 18.70

4. Conclusions

In this paper, a new high-performance noise removal method based on a NN is presented. The realization of

the proposed neural detector is very easy. The main structure of the detector is a simple 3-input, 1-output NN

system. Training of the detector can easily be realized by utilizing artificial training images. The performance

of the proposed method for different test images can be easily shown from Tables 1–4, where it is clearly seen

that the MSE and NCC values of the presented method are better than the MSE and NCC values of the CWM,

TSM, ACWM, MPSM, SM, MSM, SDROM, FIRE, and FIDRM methods. It can also be seen from Figure 5

that the proposed method produces better restoration results according to the other mentioned filters.
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The advantages of the proposed method may be summarized as follows. First, the realization of the

method is very easy. It is based on a simple 3-input, 1-output NN system. The parameters of the NN system

are obtained by training. Training of the system can easily be performed using artificial images generated on a

computer. Next, the proposed method effectively removes RVIN from images and the restored image obtained

with the proposed method has a higher resolution according to the comparison filters mentioned in this paper,

especially for highly corrupted images. Finally, the proposed method gives a better tradeoff between false

detection and missed detection and it is robust at low and high noise densities.

The disadvantage of the proposed method is that its computation time is higher than those of the TSM,

MPSM, SM, MSM, and SDROM methods at high noise densities.
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