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Abstract: This paper presents a robust stability problem for linear uncertain discrete-time systems with interval time-

varying delay and norm-bounded uncertainties. First, a necessary and sufficient stability condition is obtained by

employing a well-known lifting method and switched system approach for nominal discrete-time delay systems. Both

the stability method of checking the characteristic values inside the unit circle and a Lyapunov function-based stability

result are taken into consideration. Second, a simple Lyapunov–Krasovskii functional (LKF) is selected, and utilizing a

generalized Jensen sum inequality, a sufficient stability condition is presented in the form of linear matrix inequalities.

Third, a novel LKF is proposed together with the use of a convexity approach in the LKF. Finally, the proposed method

is extended to the case when the system under consideration is subject to norm-bounded uncertainties. Three numerical

examples are introduced to illustrate the effectiveness of the proposed approach, along with some numerical comparisons.

Key words: Discrete-time systems, time-varying delay, norm-bounded uncertainties, robust stability, lifting method,

Lyapunov–Krasovskii functional, linear matrix inequalities

1. Introduction

The aftereffect, or so-called time-delay, is one of the important issues for physical systems. Most real dynamical

systems are often subject to a time delay that leads to instability, a loss in performance, or a degradation in the

system’s response. The stability and/or stabilization of time-delay systems have been broadly investigated in

the literature for several decades; see, for example [1,2] and the references therein. In particular, many results

on the stability of discrete-time systems with constant or time-varying time-delay were developed in the existing

literature, such as those in [3–13].

Utilizing relations among all of the systems’ states, Liu et al. [14] developed some results on the stability

and stabilization of uncertain discrete-time systems with time-varying delay. The so-called lifting method was

employed in [15] to transform discrete-time systems with constant delay into a delay-free system, and thus some

necessary and sufficient stability conditions have been derived. Moreover, for the time-varying delay case, the

system was interpreted as a switched system. To avoid enlarging the time-varying delay to the upper bound

of the time delay, several conditions were obtained in [16] for the asymptotic stability of discrete-time systems.

Introducing an augmented form of the Lyapunov–Krasovskii functional (LKF) with a descriptor-type model

transformation and a generalized free-weighting matrix method, Yoneyama and Tsuchiya [17] obtained some

stability conditions for discrete-time delay systems. Yue et al . [18] divided the variation interval of the time-
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PARLAKÇI/Turk J Elec Eng & Comp Sci

delay into subintervals and employed a different LKF in every subinterval to derive some stability criteria for

linear discrete-time systems with time-varying delay. Chen and Fong [19] converted the discrete-time system into

an augmented one and developed some stability conditions that do not require the assumption of stability of the

system when the delay vanishes to 0. The delay-partitioning idea was used in [20] to investigate the stability of

linear discrete-time systems with time-varying delay in the state. Huang and Feng [21] avoided employing slack

variables or free-weighting matrices when studying the asymptotical stability analysis problem for discrete-time

systems with time-varying delay. Concerning the global asymptotic stability of a class of uncertain discrete-

time systems with time-varying delay, Kandanvli and Kar [22] utilized various combinations of quantization and

overflow nonlinearities to obtain delay-dependent stability conditions in terms of the linear matrix inequalities

(LMIs). An approximation model was adopted for the time-varying delay in [23], and using the lifting method

and LKF approach led to the deriving of sufficient conditions guaranteeing the robust asymptotic stability of the

discrete-time delay system. On the basis of the integral quadratic constraint framework, Kao [24] interpreted the

discrete-time systems with time-varying delay as the feedback interconnection of a linear time-invariant stable

operator and delay difference operator to get a set of stability criteria. Finally, Ramakrishnan and Ray [25]

developed a delay-dependent stability analysis for a class of uncertain discrete-time systems with time-varying

delay and nonlinear perturbations using the LKF approach. Inspired by the idea of combining the lifting method

and the LKF approach, we propose to convert the discrete-time system with time-varying delay into a switched

system and apply the LKF technique to conduct a stability analysis.

In this paper, we consider the robust stability problem for discrete-time systems with interval time-varying

delay and norm-bounded uncertainties. First, a lifting method is employed to develop necessary and sufficient

stability conditions. Introducing a simple form of LKF, secondly, some sufficient stability results are obtained

in the form of LMIs. As a third part of the stability analysis, the discrete-time system is transformed into a

switched system by viewing the time-varying delay, such that it can take one of the values from the interval when

the switching signal is applied. Therefore, some improved delay-dependent stability criteria are developed to

achieve less conservative results for the maximum admissible delay bound. Finally, the proposed stability result

is extended to take into account the existence of norm-bounded uncertainties. Several numerical examples are

given to exhibit the application of the proposed approach in terms of achievement on the maximum allowable

upper bounds of both the delay and the uncertainty.

2. Problem statement and preliminaries

Let us consider a linear uncertain discrete-time system with interval time-varying delay and norm-bounded

uncertainties as follows:

x(k + 1) = [A+DF (k)Ea]x(k) + [Ad +DF (k)Ed]x(k − d(k))

x(k) = ϕ(k), k = −dM ,−dM + 1, . . . , 0
, (1)

where x(k) ∈ ℜn is the memoryless state vector; A ∈ ℜn×n , Ad ∈ ℜn×n , D ∈ ℜn×l , and E ∈ ℜp×n are

the known real matrices; F (k) ∈ ℜl×p is a real matrix-valued function with Lebesgue measurable elements

satisfying FT (k)F (k) ≤ Ip , ∀(k); d(k) is a time-varying function representing the time-delay and satisfying

0 < dm ≤ d(k) ≤ dM , (2)

with dm and dM being positive integers denoting the lower and upper bound of the time-delay; and ϕ(·)
represents the initial condition, which is a set of points. Now, we first consider the nominal form of Eq. (1) by
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letting D = 0n×l to get:

x(k + 1) = Ax(k) +Adx(k − d(k))

x(k) = ϕ(k), k = −dM ,−dM + 1, . . . , 0
. (3)

Following the approach introduced in [15], the discrete-time time delay system can be easily lifted to a delay

free system. We first let

η(k) =
[
xT (k) xT (k − 1) . . . xT (k − dm + 1) xT (k − dm)

. . . xT (k − dm − i) . . . xT (k − dM + 1) xT (k − dM )
]T , (4)

with

η(0) =
[
ϕT (0) φT (−1) . . . ϕT (−dm + 1) ϕT (−dm)

. . . ϕT (−dm − i) . . . ϕT (−dM + 1) ϕT (−dM )
]T ,

i = 0, 1, . . . , dMm, and dMm = dM − dm . The discrete-time system in Eq. (3), with an interval time-varying

delay satisfying Eq. (2), is then equivalent to the following switched system:

η(k + 1) = Aση(k), (5)

where σ is a piecewise constant switching signal taking value from the finite index set ℑ = {0, 1, . . . , dMm} ,

and Aσ = Aσ0 +Aσ1 with Aσ0 =

[
0n×dMn 0n
IdMn 0dMn×n

]
,

Aσ1 =

[
A 0n×(dm+σ−1)n Ad 0n×(dMm−σ)n

0dMn×n 0dMn×(dm+σ−1)n 0dMn×n 0dMn×(dMm−σ)n

]
.

Moreover, we now introduce a generalized Jensen sum inequality as follows:

Proposition 1 Given the integers a, b, c such that a < b < c and a positive definite real symmetric matrix

0 < XT = X ∈ ℜn×n , then ∀υ(·) ∈ ℜn , and the following inequality is always satisfied:

−(c− a)
−a−1∑
i=−c

υT (i)Xυ(i) ≤ −

(−b−1∑
i=−c

αυ(i) +
−a−1∑
i=−b

βυ(i)

)T

X

(−b−1∑
i=−c

αυ(i) +
−a−1∑
i=−b

βυ(i)

)
, (6)

where α, β take values from the set {−1, 1} .

Proof Let us define

φ(i) =

{
α, −c ≤ i < −b

β, −b ≤ i < −a
. (7)

It is a fact that ∀i , and we have φ2(i) = 1; then it follows from the classical Jensen sum inequality [1] that we
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have:

− (c− a)
−a−1∑
i=−c

υT (i)Xυ(i) = −(c− a)
−a−1∑
i=−c

φ2(i)υT (i)Xυ(i)

≤ −

(−a−1∑
i=−c

φ(i)υ(i)

)T

X

(−a−1∑
i=−c

φ(i)υ(i)

)
(8)

= −

(−b−1∑
i=−c

αυ(i) +
−a−1∑
i=−b

βυ(i)

)T

X

(−b−1∑
i=−c

αυ(i) +
−a−1∑
i=−b

βυ(i)

)
.

This completes the proof. Note that when α = β , the generalized Jensen sum inequality reduces to the conven-

tional one [1]. The primary objective of this paper is to develop some improved stability criteria for discrete-time

systems that ensure a larger upper bound for the time-varying delay. Moreover, a secondary goal is to achieve

this aforementioned objective with less computational complexity.

3. Main results

In this section, we develop a stability analysis in 3 phases: 1) a necessary and sufficient stability result using

the lifting method with the switching system, 2) a sufficient stability result based on a simple LKF, and 3) an

improved sufficient stability result based on the utilization of a novel LKF and switched system approach. We

first consider the nominal discrete-time system defined in Eq. (3).

Lemma 1 [15] The discrete-time system in Eq. (5) with an interval time-varying delay, d(k) , satisfying Eq.

(2), is globally and asymptotically stable for any σ ∈ {0, 1, . . . , dMm} :

1. if and only if the polynomial det (λI−Aσ) = 0 has all roots lying inside the unit circle, or, equivalently,

2. given any positive definite real symmetric matrix Q , if and only if there exists a positive definite real

symmetric matrix P , such that:

AT
σPAσ − P = −Q < 0. (9)

Proof The proof is referred to in [15] and [26].

Next, we investigate a stability analysis via employing the classical LKF method.

Lemma 2 Given the positive integers dM and dm , the linear discrete-time system in Eq. (3) with an interval

time-varying delay, d(k) , satisfying Eq. (2), is globally and asymptotically stable if there exist positive definite

real symmetric matrices P , Q , R , S , T , and U , all with appropriate dimensions satisfying

Ω < 0, (10)

where Ω = ΓT
1 PΓ1+ΓT

2 (−P + T + U) Γ2+ΓT
3

(
d2mQ+ d2MmR+ d2MS

)
Γ3−ΓT

4 QΓ4−ΓT
5 RΓ5−ΓT

6 SΓ6−ΓT
7 TΓ7−

ΓT
8 UΓ8 with Γ1 = [A Ad 0n×2n] ,Γ2 = [In 0n×3n] , Γ3 =

[
A− In Ad 0n×2n

]
,Γ4 =

[
In 0n −In 0n

]
,

Γ5 =
[
0n 2In −In −In

]
, Γ6 =

[
In 0n×2n −In

]
,Γ7 =

[
0n×2n In 0n

]
,Γ8 =

[
0n×3n In

]
.
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Proof Let us choose a candidate of a simple form of LKF, as follows:

V (k) = xT (k)Px(k) + dm
−1∑

i=−dm

k−1∑
j=k+i

ηT (j)Qη(j) + dMm

−dm−1∑
i=−dM

k−1∑
j=k+i

ηT (j)Rη(j)

+dM
−1∑

i=−dM

k−1∑
j=k+i

ηT (j)Sη(j) +
k−1∑

i=k−dm

xT (i)Tx(i) +
k−1∑

i=k−dM

xT (i)Ux(i)

, (11)

where η(j) = x(j + 1)− x(j). We compute the forward difference on V (k) in Eq. (11) as:

∆V (k) = V (k + 1)− V (k) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

+dm
−1∑

i=−dm

[
k∑

j=k+1+i

ηT (j)Qη(j)−
k−1∑

j=k+i

ηT (j)Qη(j)

]

+dMm

−dm−1∑
i=−dM

[
k∑

j=k+1+i

ηT (j)Rη(j)−
k−1∑

j=k+i

ηT (j)Rη(j)

]

+dM
−1∑

i=−dM

[
k∑

j=k+1+i

ηT (j)Sη(j)−
k−1∑

j=k+i

ηT (j)Sη(j)

]
+

k∑
i=k+1−dm

xT (i)Tx(i)−
k−1∑

i=k−dm

xT (i)Tx(i) +
k∑

i=k+1−dM

xT (i)Ux(i)−
k−1∑

i=k−dM

xT (i)Ux(i)

= xT (k + 1)Px(k + 1)− xT (k)Px(k) + dm
−1∑

i=−dm

[
ηT (k)Qη(k)− ηT (k + i)Qη(k + i)

]
+dMm

−dm−1∑
i=−dM

[
ηT (k)Rη(k)− ηT (k + i)Rη(k + i)

]
+dM

−1∑
i=−dM

[
ηT (k)Sη(k)− ηT (k + i)Sη(k + i)

]
+xT (k)Tx(k)− xT (k − dm)Tx(k − dm) + xT (k)Ux(k)− xT (k − dM )Ux(k − dM )

= xT (k + 1)Px(k + 1) + xT (k) (−P + T + U)x(k) + ηT (k)
(
d2mQ+ d2MmR+ d2MS

)
η(k)

−dm
k−1∑

i=k−dm

ηT (i)Qη(i)− dMm

k−dm−1∑
i=k−dM

φ2(i)ηT (i)Rη(i)

−dM
k−1∑

i=k−dM

ηT (i)Sη(i)− xT (k − dm)Tx(k − dm)− xT (k − dM )Ux(k − dM )

. (12)

Employing the generalized Jensen sum inequality outlined in Proposition 1 allows one to rewrite Eq. (12) in

the form of an inequality, as follows:

∆V (k) ≤ xT (k + 1)Px(k + 1) + xT (k) (−P + T + U)x(k) + ηT (k)
(
d2mQ+ d2MmR+ d2MS

)
η(k)

−

(
k−1∑

i=k−dm

η(i)

)T

Q
k−1∑

i=k−dm

η(i)−

(
k−dm−1∑
i=k−dM

φ(i)η(i)

)T

R
k−dm−1∑
i=k−dM

φ(i)η(i)

−

(
k−1∑

i=k−dM

η(i)

)T

S
k−1∑

i=k−dM

η(i)− xT (k − dm)Tx(k − dm)− xT (k − dM )Ux(k − dM )

. (13)
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Now we introduce the following set of closed form representations as:

x(k + 1) = Γ1χ(k), x(k) = Γ2χ(k), η(k) = x(k + 1)− x(k) = (A− In)x(k) +Adx(k − d(k)) = Γ3χ(k),

k−1∑
i=k−dm

η(i) =
k−1∑

i=k−dm

x(i+ 1)−
k−1∑

i=k−dm

x(i) =
k∑

i=k+1−dm

x(i)−
k−1∑

i=k−dm

x(i)

= x(k)− x(k − dm) = Γ4χ(k),
k−dm−1∑
i=k−dM

φ(i)η(i) =
k−d(k)−1∑
i=k−dM

1 · η(i)

+
k−dm−1∑
i=k−d(k)

(−1) · η(i) =
k−d(k)−1∑
i=k−dM

x(i+ 1)−
k−d(k)−1∑
i=k−dM

x(i)−

[
k−dm−1∑
i=k−d(k)

x(i+ 1)−
k−dm−1∑
i=k−d(k)

x(i)

]

=
k−d(k)∑

i=k+1−dM

x(i)−
k−d(k)−1∑
i=k−dM

x(i)−

[
k−dm∑

i=k+1−d(k)

x(i)−
k−dm−1∑
i=k−d(k)

x(i)

]
= x(k − d(k))− x(k − dM )

− [x(k − dm)− x(k − d(k))] = 2x(k − d(k))− x(k − dm)− x(k − dM ) = Γ5χ(k),

k−1∑
i=k−dM

η(i) =
k−1∑

i=k−dM

x(i+ 1)−
k−1∑

i=k−dM

x(i) =
k∑

i=k+1−dM

x(i)−
k−1∑

i=k−dM

x(i)

= x(k)− x(k − dM ) = Γ6χ(k), x(k − dm) = Γ7χ(k), x(k − dM ) = Γ8χ(k)

,

(14)

where χ(k) =
[
xT (k) xT (k − d(k)) xT (k − dm) xT (k − dM )

]T
and Γi , i = 1, . . . , 8, are defined in

Lemma 2. As a result, we rewrite Eq. (13) in view of Eq. (14) as:

∆V (k) ≤ χT (k)Ωχ(k), (15)

where Ω is defined in Eq. (10). Hence, if the inequality in Eq. (10) is satisfied, then we obtain:

∆V (k) ≤ χT (k)Ωχ(k) < 0, (16)

implying that the nominal discrete-time system in Eq. (3) is guaranteed to be globally asymptotically stable.

This completes the proof.

Finally, we consider the use of a novel LKF combined with the switching system approach. We first

interpret the discrete-time state with the time-varying delay, x(k − d(k)), as follows:

x(k − d(k)) = x(k − dm − r), (17)

where r ∈ {0, 1, . . . , dMm} . Therefore, the nominal system in Eq. (3) can be transformed into a switching

system such that:

xr(k + 1) = Axr(k) +Adxr(k − dm − r)

xr(k) = φ(k), k = −dM ,−dM + 1, . . . , 0
. (18)

The following theorem summarizes the main results on the stability of discrete-time systems.

Theorem 1 : Given the positive integers dM and dm , the nominal discrete-time system in Eq. (3) with

an interval time-varying delay, d(k), satisfying Eq. (2), is stable if there exist positive definite real symmetric

matricesP , Q , R , S , T , U , and Z , all with appropriate dimensions satisfying for all r ∈ {0, 1, . . . , dMm}

Σr < 0, (19)
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where

Σr = ΓT
1rPΓ1r + ΓT

2r {−P + [1− δ(r)]T + U + [1− δ(r − dMm)]Z}Γ2r

+ΓT
3r

{
[1− δ(r)] d2mQ+ (dm + r)

2
R+ [1− δ(r − dMm)] d2MS

}
Γ3r − [1− δ(r)] ΓT

4rQΓ4r − ΓT
5rRΓ5r

− [1− δ(r − dMm)] ΓT
6rSΓ6r − [1− δ(r)] ΓT

7rTΓ7r − ΓT
8rUΓ8r − [1− δ(r − dMm)] ΓT

9rZΓ9r with

Γ1r =
[
A 0n×[1−δ(r)]n Ad 0n×[1−δ(r−dMm)]n

]
,Γ2r =

[
In 0n×[3−δ(r)−δ(r−dMm)]n

]
,

Γ3r =
[
A− In 0n×[1−δ(r)]n Ad 0n×[1−δ(r−dMm)]n

]
,Γ4r =

[
In −In 0n×[2−δ(r)−δ(r−dMm)]n

]
,

Γ5r =
[
In 0n×[1−δ(r)]n −In 0n×[1−δ(r−dMm)]n

]
,Γ6r =

[
In 0n×[2−δ(r)−δ(r−dMm)]n −In

]
,

Γ7r =
[
0n In 0n×[2−δ(r)−δ(r−dMm)]n

]
,Γ8r =

[
0n×[2−δ(r)]n In 0n×[1−δ(r−dMm)]n

]
,

Γ9r =
[
0n×[3−δ(r)−δ(r−dMm)]n In

]
, and

δ(r) =

{
1, r = 0
0, r ̸= 0

.

Proof We choose a set of candidate LKFs as follows:

Vr(k) = xT
r (k)Pxr(k) + [1− δ(r)] dm

−1∑
i=−dm

k−1∑
j=k+i

ηTr (j)Qηr(j)

+ (dm + r)
−1∑

i=−dm−r

k−1∑
j=k+i

ηTr (j)Rηr(j) + [1− δ(r − dMm)] dM
−1∑

i=−dM

k−1∑
j=k+i

ηTr (j)Sηr(j)

+ [1− δ(r)]
k−1∑

i=k−dm

xT
r (i)Txr(i) +

k−1∑
i=k−dm−r

xT
r (i)Uxr(i) + [1− δ(r − dMm)]

k−1∑
i=k−dM

xT
r (i)Zxr(i)

, (20)

where ηr(j) = xr(j + 1)− xr(j). We calculate the forward difference on Vr(k) in Eq. (20) as:

∆Vr(k) = Vr(k + 1)− Vr(k) = xT
r (k + 1)Pxr(k + 1)− xT

r (k)Pxr(k)

+ [1− δ(r)] dm
−1∑

i=−dm

[
k∑

j=k+1+i

ηTr (j)Qηr(j)−
k−1∑

j=k+i

ηTr (j)Qηr(j)

]

+(dm + r)
−1∑

i=−dm−r

[
k∑

j=k+1+i

ηTr (j)Rηr(j)−
k−1∑

j=k+i

ηTr (j)Rηr(j)

]

+ [1− δ(r − dMm)] dM
−1∑

i=−dM

[
k∑

j=k+1+i

ηTr (j)Sηr(j)−
k−1∑

j=k+i

ηTr (j)Sηr(j)

]
+ [1− δ(r)]

k∑
i=k+1−dm

xT
r (i)Txr(i)− [1− δ(r)]

k−1∑
i=k−dm

xT
r (i)Txr(i) +

k∑
i=k+1−dm−r

xT
r (i)Uxr(i)

−
k−1∑

i=k−dm−r

xT
r (i)Uxr(i) + [1− δ(r − dMm)]

k∑
i=k+1−dM

xT
r (i)Zxr(i)

− [1− δ(r − dMm)]
k−1∑

i=k−dM

xT
r (i)Zxr(i)

= xT
r (k + 1)Pxr(k + 1)− xT

r (k)Pxr(k) + [1− δ(r)] dm
−1∑

i=−dm

[
ηTr (k)Qηr(k)− ηTr (k + i)Qηr(k + i)

]
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+(dm + r)
−1∑

i=−dm−r

[
ηTr (k)Rηr(k)− ηTr (k + i)Rηr(k + i)

]
+ [1− δ(r − dMm)] dM

−1∑
i=−dM

[
ηTr (k)Sηr(k)− ηTr (k + i)Sηr(k + i)

]
+ [1− δ(r)]

[
xT
r (k)Txr(k)− xT

r (k − dm)Txr(k − dm)
]

+xT
r (k)Uxr(k)− xT

r (k − dm − r)Uxr(k − dm − r)

+ [1− δ(r − dMm)]
[
xT
r (k)Zxr(k)− xT

r (k − dM )Zxr(k − dM )
]

= xT
r (k + 1)Pxr(k + 1) + xT

r (k) {−P + [1− δ(r)]T + U + [1− δ(r − dMm)]Z}xr(k)

+ηTr (k)
{
[1− δ(r)] d2mQ+ (dm + r)

2
R+ [1− δ(r − dMm)] d2MS

}
ηr(k)

− [1− δ(r)] dm
k−1∑

i=k−dm

ηTr (i)Qηr(i)− (dm + r)
k−1∑

i=k−dm−r

ηTr (i)Rηr(i)

− [1− δ(r − dMm)] dM
k−1∑

i=k−dM

ηTr (i)Sηr(i)− [1− δ(r)]xT
r (k − dm)Txr(k − dm)

−xT
r (k − dm − r)Uxr(k − dm − r)− [1− δ(r − dMm)]xT

r (k − dM )Zxr(k − dM )

. (21)

Applying the Jensen sum inequality [1] in Eq. (21) yields:

∆Vr(k) ≤ xT
r (k + 1)Pxr(k + 1) + xT

r (k) {−P + [1− δ(r)]T + U + [1− δ(r − dMm)]Z}xr(k)

+ηTr (k)
{
[1− δ(r)] d2mQ+ (dm + r)

2
R+ [1− δ(r − dMm)] d2MS

}
ηr(k)

− [1− δ(r)]

(
k−1∑

i=k−dm

ηr(i)

)T

Q
k−1∑

i=k−dm

ηr(i)−

(
k−1∑

i=k−dm−r

ηr(i)

)T

R
k−1∑

i=k−dm−r

ηr(i)

− [1− δ(r − dMm)]

(
k−1∑

i=k−dM

ηr(i)

)T

S
k−1∑

i=k−dM

ηr(i)− [1− δ(r)]xT
r (k − dm)Txr(k − dm)

−xT
r (k − dm − r)Uxr(k − dm − r)− [1− δ(r − dMm)]xT

r (k − dM )Zxr(k − dM )

. (22)

In a similar manner as in the proof of Lemma 2, we now introduce the following set of closed form representations
as:

xr(k + 1) = Γ1rχr(k), xr(k) = Γ2rχr(k), ηr(k) = xr(k + 1)− xr(k) = (A− In)xr(k) +Adxr(k − d(k))

= Γ3rχr(k),
k−1∑

i=k−dm

ηr(i) =
k−1∑

i=k−dm

xr(i+ 1)−
k−1∑

i=k−dm

xr(i) =
k∑

i=k+1−dm

xr(i)−
k−1∑

i=k−dm

xr(i)

= xr(k)− xr(k − dm) = Γ4rχr(k),
k−1∑

i=k−dm−r

ηr(i) =
k−1∑

i=k−dm−r

xr(i+ 1)−
k−1∑

i=k−dm−r

xr(i)

=
k∑

i=k+1−dm−r

xr(i)−
k−1∑

i=k−dm−r

xr(i) = xr(k)− xr(k − dm − r) = Γ5rχr(k),

k−1∑
i=k−dM

ηr(i) =
k−1∑

i=k−dM

xr(i+ 1)−
k−1∑

i=k−dM

xr(i) =
k∑

i=k+1−dM

xr(i)−
k−1∑

i=k−dM

xr(i)

= xr(k)− xr(k − dM ) = Γ6rχr(k), xr(k − dm) = Γ7rχr(k), xr(k − dm − r) = Γ8rχr(k)

xr(k − dM ) = Γ9rχr(k)

, (23)
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where

χr(k) =


[
xT
r (k) xT

r (k − dm) xT
r (k − dM )

]T
, r ∈ {0, dMm}[

xT
r (k) xT

r (k − dm) xT
r (k − dm − r) xT

r (k − dM )
]T

, else

.

Now we substitute Eq. (23) appropriately into Eq. (22) to obtain:

∆Vr(k) ≤ χT
r (k)Σrχr(k), (24)

where Σr is defined in Eq. (19). Hence, if the inequality in Eq. (19) is satisfied, then we obtain:

∆Vr(k) ≤ χT
r (k)Σrχr(k) < 0, (25)

implying that the nominal discrete-time system in Eq. (3) is guaranteed to be globally asymptotically stable.

This completes the proof.

Next we consider the linear uncertain discrete-time system in Eq. (1) and present the following sufficient

robust stability result derived using Theorem 1.

Corollary 1 Given the positive integers dM and dm , the linear uncertain discrete-time system in Eq. (1)

with interval time-varying delay, d(k) , satisfying Eq. (2), is robustly globally asymptotically stable if there exist

positive definite real symmetric matrices P , Q , R , S , T , U , and Z , all with appropriate dimensions and a

positive scalar, ε > 0 , satisfying for all r ∈ {0, 1, . . . , dMm}

Σr =



Σr(1, 1) + εETE ΓT
1 P ΓT

3r


[1− δ(r)] d2mQ

+(dm + r)
2
R

+ [1− δ(r − dMm)] d2MS

 0[4−δ(r)−δ(r−dMm)]n×n

∗ −P 0n PD

∗ ∗ −


[1− δ(r)] d2mQ

+(dm + r)
2
R

+ [1− δ(r − dMm)] d2MS




[1− δ(r)] d2mQ

+(dm + r)
2
R

+ [1− δ(r − dMm)] d2MS

D

∗ ∗ ∗ −εIl



< 0,

(26)

where

Σr(1, 1) = ΓT
2r {−P + [1− δ(r)]T + U + [1− δ(r − dMm)]Z}Γ2r − [1− δ(r)] ΓT

4rQΓ4r − ΓT
5r

RΓ5r − [1− δ(r − dMm)] ΓT
6rSΓ6r − [1− δ(r)] ΓT

7rTΓ7r − ΓT
8rUΓ8r − [1− δ(r − dMm)] ΓT

9rZΓ9r,

E =
[
Ea 0p×[1−δ(r)]n Ed 0p×[1−δ(r−dMm)]n

]
.
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Proof Let us apply the Schur complement in Eq. (19) to obtain:

Ψr =



Ξr(1, 1) ΓT
1 P ΓT

3r

 [1− δ(r)] d2mQ+ (dm + r)
2
R

+ [1− δ(r − dMm)] d2MS


∗ −P 0n

∗ ∗ −

 [1− δ(r)] d2mQ+ (dm + r)
2
R

+ [1− δ(r − dMm)] d2MS




< 0. (27)

Replacing A and Ad with A+DF (k)Ea and Ad +DF (k)Ed , respectively, in Eq. (27) gives:

Ψr +∆ΨT
r (k) + ∆Ψr(k) < 0, (28)

where

∆Ψr(k) =


0[4−δ(r)−δ(r−dMm)]n×n 0[4−δ(r)−δ(r−dMm)]n×n 0[4−δ(r)−δ(r−dMm)]n×n

PDF (k)E 0n 0n [1− δ(r)] d2mQ+ (dm + r)
2
R

+ [1− δ(r − dMm)] d2MS

DF (k)E 0n 0n

 .

We shall now reexpress ∆Ψr(k) in closed form, as follows:

∆Ψr(k) = ΠT
1 F (k)Π2, (29)

where

Π1 =

 0[4−δ(r)−δ(r−dMm)]n×n DTP DT

 [1− δ(r)] d2mQ+ (dm + r)
2
R

+ [1− δ(r − dMm)] d2MS


 ,Π2 =

[
E 0p×n 0p×n

]
.

Substituting Eq. (29) into Eq. (28) and applying the well-known bounding inequality [1] yields:

Ψr +ΠT
2 F

T (k)Π1 +ΠT
1 F (k)Π2 ≤ Ψr + ε−1ΠT

1 Π1 + εΠT
2 Π2 < 0. (30)

Applying the Schur complement to the inequality in Eq. (30) allows one to obtain Eq. (26). This completes

the proof.

Remark 1 Note that Lemma 1 presents a necessary and sufficient stability condition for the nominal discrete-

time system in Eq. (3), while both Lemma 2 and Theorem 1 are capable of providing only sufficient stability

criteria. Similarly, when the linear uncertain discrete-time system in Eq. (1) is taken into consideration,

Corollary 1 gives only sufficient robust stability results.
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4. Numerical examples

In this section, we introduce several numerical examples to illustrate the application of the stability results

presented in the former section.

Example 1 Let us consider the nominal discrete-time time delay system in Eq. (3) with the following

parameters:

A =

[
0.8 0

0 0.97

]
, Ad =

[
−0.1 0

−0.1 −0.1

]
. It is clearly seen that the system is stable for the case

where d(k) = 0. Using the necessary and sufficient stability criterion given in Lemma 1, we find that the

nominal system in Eq. (3) is asymptotically stable for 0 ≤ d(k) ≤ 18. Note that the upper bound of the

time-varying delay obtained through Lemma 1 is in fact the analytical limit. Second, we consider Lemma 2

and obtain a feasible solution set for Eq. (10) with α = −β , guaranteeing the asymptotic stability of Eq. (3)

for 0 ≤ d(k) ≤ 15. Finally, employing Theorem 1 shows that the nominal system in Eq. (3) is guaranteed to

be asymptotically stable for 0 ≤ d(k) ≤ 16. In order to make a comparison, it was reported in [20] that the

asymptotic stability of this system is guaranteed for 0 ≤ d(k) ≤ 15. As a result, it is apparently seen among the

sufficient stability results given in Lemma 2, [20] and Theorem 1 that Theorem 1 gives a maximum allowable

upper bound for d(k), which remains the closest one to the analytical limit obtained by Lemma 1. Moreover,

although Theorem 1 is a bit far behind Lemma 1 concerning the admissible delay bound, it requires only 21

decision variables, while Lemma 1 utilizes 136 decision variables to get the analytical limit of the stability bound

of the delay.

Example 2 Let us now consider Eq. (1) with the following system parameters:

A =

[
0.8 0

0 0.91

]
, Ad =

[
−0.1 0

−0.1 −0.1

]
, Ea =

[
0.02 0

0 0.01

]
, Ed =

[
0.01 0

0 0.01

]
, D = ρ̄In,

and F (k) = ρ(k)/ρ̄ with ρ(k) ≤ ρ̄ . For ρ̄ = 1, when dm = 8, the allowable upper bound of dM was calculated

in [18] as 16. We find using Theorem 1 with ρ̄ = 1 and dm = 8 that Eq. (1) is robustly asymptotically stable

for an allowable upper bound of dM = 32. This shows that the proposed method of this paper gives a less

conservative result than that given by Yue et al. [18].

Example 3 Let us consider a slightly different version of Example 2 with

A =

[
0.8 0
0 0.9

]
, Ad =

[
−0.1 0
−0.1 −0.1

]
, Ea =

[
1 0

]
, Ed =

[
0 0

]
, D = ρ̄In,

F (k) = ρ(k)/ρ̄ with ρ(k) ≤ ρ̄ .

Table. Maximum allowable values of ρ̄ for Example 3.

Methods (dm/dM ) (2,7) (5,10) (8,15) (20,25) NoDV
Huang and Feng [21] 0.1920 0.1425 Not reported 0.0886 19
Li and Gao [23] 0.1938 0.1541 0.1032 Not reported 19
Ramakrishnan and Ray [25] 0.1954 0.1541 Not reported 0.0937 44
Corollary 1 0.1957 0.1581 0.1301 0.1119 22
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In the Table, NoDV represents the number of decision variables, and the calculated results are listed for

the maximum allowable values of ρ̄ such that this system is robustly asymptotically stable given the prescribed

integers of dm and dM in comparison to those reported in the existing literature. The first observation appears

in the Table, where Corollary 1 gives better results on the uncertainty bound compared to those reported in

[21], [23], and [25]. The number of decision variables required by Corollary 1, however, is much lower than that

in [25].

5. Conclusions

This paper presents a further stability result on linear uncertain discrete-time systems with interval time-varying

delays. Two different main methods were utilized. The first is the use of classical stability results for linear

time-delay systems in a Lyapunov sense based on the modified Jensen-type inequality and the second is the

use of a novel LKF together with the use of a convexity approach in the LKF. Three numerical examples were

given to illustrate the results. It was shown that the proposed method achieves less conservative results for the

numerical examples under consideration. Furthermore, the number of decision variables required in the present

paper remains lower than those reported in the literature.
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[2] M. Wu, Y. He, J.H. She, Stability Analysis and Robust Control of Time-Delay System, New York, NY, USA,

Springer, 2010.

[3] E. Gyurkovics, “Robust control design for discrete time linear uncertain systems with delayed control”, IEE

Proceedings D, Vol. 140, pp. 423–428, 1993.

[4] T.J. Su, W.J. Shyr, “Robust D-stability for linear uncertain discrete time delay systems”, IEEE Transactions on

Automatic Control, Vol. 39, pp. 425–428, 1994.

[5] V.N. Phat, “Robust stability and stabilizability of uncertain linear hybrid systems with state delays”, IEEE

Transactions on Automatic Control, Vol. 52, pp. 94–98, 2005.

[6] C.P. Huang, T.Y. Juang, “Robustness analysis of discrete time delay systems”, International Journal of Systems

Science, Vol. 37, pp. 1–7, 2006.

[7] V.J.S. Leite, M.F. Miranda, “Robust stabilization of discrete-time systems with time-varying delay: an LMI

approach”, Mathematical Problems in Engineering, pp. 1–15, 2008.

[8] J. Qui, Y. Xia, H. Yang, J. Zhang, “Robust stabilisation for a class of discrete-time systems with time-varying

delays via delta operators”, IET Control Theory and Applications, Vol. 2, pp. 87–93, 2008.

[9] B. Zhang, S. Xu, Y. Zou, “Improved stability criterion and its applications in delayed controller design for discrete-

time systems”, Automatica, Vol. 44, pp. 2963–2967, 2008.

[10] B.T. Anh, N.K. Son, “Robust stability of delay difference systems under fractional perturbations in infinite-

dimensional spaces”, International Journal of Control, Vol. 83, pp. 498–505, 2010.

[11] M.S. Mahmoud, N.B. Almutairi, “Robust stability and stabilization methods for a class of nonlinear discrete-time

delay systems”, Applied Mathematics and Computation, Vol. 215, pp. 4280–4292, 2010.

[12] H. Shao, Q.L. Han, “New stability criteria for linear discrete-time systems with interval-like time-varying delays”,

IEEE Transactions on Automatic Control, Vol. 56, pp. 619–625, 2011.

[13] C. Peng, “Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality”,

IET Control Theory and Applications, Vol. 6, pp. 448–453, 2012.

661

http://dx.doi.org/10.1049/ip-d.1993.0055
http://dx.doi.org/10.1049/ip-d.1993.0055
http://dx.doi.org/10.1080/00207720500327477
http://dx.doi.org/10.1080/00207720500327477
http://dx.doi.org/10.1155/2008/875609
http://dx.doi.org/10.1155/2008/875609
http://dx.doi.org/10.1016/j.automatica.2008.04.017
http://dx.doi.org/10.1016/j.automatica.2008.04.017
http://dx.doi.org/10.1080/00207170903199547
http://dx.doi.org/10.1080/00207170903199547
http://dx.doi.org/10.1016/j.amc.2009.12.054
http://dx.doi.org/10.1016/j.amc.2009.12.054
http://dx.doi.org/10.1109/TAC.2010.2095591
http://dx.doi.org/10.1109/TAC.2010.2095591
http://dx.doi.org/10.1049/iet-cta.2011.0109
http://dx.doi.org/10.1049/iet-cta.2011.0109
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