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Abstract: Since feed-forward artificial neural networks (FFANNs) are the most widely used models to solve real-life

problems, many studies have focused on improving their learning performances by changing the network architecture

and learning algorithms. On the other hand, recently, small-world network topology has been shown to meet the

characteristics of real-life problems. Therefore, in this study, instead of focusing on the performance of the conventional

FFANNs, we investigated how real-life problems can be solved by a FFANN with small-world topology. Therefore, we

considered 2 real-life problems: estimating the thermal performance of solar air collectors and predicting the modulus

of rupture values of oriented strand boards. We used the FFANN with small-world topology to solve both problems

and compared the results with those of a conventional FFANN with zero rewiring. In addition, we investigated whether

there was statistically significant difference between the regular FFANN and small-world FFANN model. Our results

show that there exists an optimal rewiring number within the small-world topology that warrants the best performance

for both problems.
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1. Introduction

Artificial neural networks (ANNs) are computational tools inspired by brain networks, and have been applied

to many diverse fields of life such as health, finance, statistics, industry, and cognitive sciences. An ANN is

typically composed of interconnected layers of simple processing units operating in parallel within the layers.

Each unit in the network represents a real neuron [1], and produces an output signal to the postsynaptic

neurons when it receives enough input from the presynaptic neurons. ANNs are characterized by their internal

nonlinearity, learning capability, prediction performance, and modular structure. Many ANN models have been

proposed with various connection architectures, namely feed-forward, feedback, single-layer, multilayer, and so

on. Feed-forward ANNs (FFANNs) are the most popular architecture due to their analytical tractability and

effectiveness.

In earlier works, the performance of the FFANN was usually investigated both depending on the hidden

structure of the networks, which includes the number of hidden layers, and the number of neurons per hidden

layer [2,3], and on the learning algorithms [4]. In the FFANN, a neuron in the next layer receives inputs

from all neurons in the preceding layer. This connection topology corresponds to a regular network. Since a
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regular network may be biologically questionable due to the brain’s sophisticated anatomical structure, random

network topologies have been proposed to bridge the gap between artificial and brain networks. In this context,

the small-world network topology, proposed by Watts and Storgatz [5], is one of the best models to reflect

the functional connectivity and anatomic structure of the brain [6–13]. Moreover, many recent investigations

showed that real-life networks such as the World Wide Web, protein interaction networks, email networks,

social networks, and metabolic networks, exhibit the small-world property [14–16]. A small-world network is

characterized by 2 parameters: the characteristic path length, which is the average node-to-node distance, and

the clustering coefficient, which is the tendency for clustering between the neighbors of a neuron. The small-

world network is obtained if the value of the clustering coefficient is high, like in regular networks, and the

value of the characteristic path length is small, like in random networks. Therefore, small-world networks have

properties given neither in regular nor in random networks [17].

Recently, several, though not many, works have explored the impact of small-world topology on the

FFANN’s performance. Simard et al. [17] studied supervised learning in a multilayered FFANN and found that

small-world connectivity reduces the learning error and learning time when compared to regular and random

networks. Shuzhong et al. [18] compared the performances of small-world neural networks and regular networks

constructed by various statistical methods, and reported that the network with small-world topology had higher

performances in several aspects compared to the regular networks. It has also been found that Hopfield networks

with small-world properties produce far better results in terms of memory storage and generalization abilities

than ones with random and regular connectivity [19,20].

In these studies, the performance of small-world–type ANNs was used with a synthetic dataset instead

of using a real-life problem dataset. Therefore, our aim in this study is to show how real-life problems can be

solved by a FFANN with small-world topology. In this context, we consider 2 real-life problems: estimating

the thermal performance of solar air collectors and predicting the modulus of rupture (MOR) values of oriented

strand boards (OSBs). We use a FFANN with small-world topology to solve both problems and compare the

results with those of a conventional FFANN.

2. The FFANN with small-world topology

Small-world network topology is constructed using regular lattice topology. We adapt the standard small-world

algorithm of Watts and Strogatz [21,22] to a regular conventional FFANN topology. The construction process

starts with disconnecting a randomly selected link from its end point and rewiring it to a randomly selected

neuron in the network. Notably, if the new connection already exists between 2 nodes, we cancel this rewiring

and select a new node randomly. This process is continued for up to the number of maximum possible rewirings.

A schematic illustration for the rewiring process is shown in Figure 1.

Removed  Connection New Connection

1

2 

3

4

5

  1

  2

  3 

5

  4

Figure 1. Small-world rewiring process.

Since a small-world network is characterized by 2 parameters, namely the characteristic path length (L)

and the clustering coefficient (C), they should be calculated to determine which topology the network has, i.e.
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regular, small-world, or random network. However, the L and C in a FFANN could not be calculated because

it has unconnected neurons within the same layer. Hence, we used the local efficiency (DLocal) and the global

efficiency (DGlobal) parameters, introduced by Latora et al. [23], which correspond to 1/C and L, respectively.

Therefore, the networks exhibit a small-world property when both the DLocal and DGlobal parameters are small

[23–25]. For a network, the global efficiency is defined as:

DGlobal =
1

EGlobal
, (1a)

EGlobal =
1

N(N − 1)

∑
i ̸=j∈N

1

dij
, (1b)

where N is the number of nodes in the network, and dij denotes the shortest path length between 2 nodes.

The local efficiency of a network is calculated by averaging each individual node’s efficiency, as follows [23–25]:

DLocal =
1

ELocal
, (2a)

ELocal =
1

N

∑
i∈N

E(Gi), (2b)

E(Gi) =
1

Ni(Ni − 1)

∑
k ̸=l∈N

1

dkl
, (2c)

where Ni is the number of neighbor nodes that are connected directly to node i , and dkl is the shortest path

length between the neighboring nodes when node i is disconnected from them.

We used a bipolar-sigmoidal function to activate each neuron and performed the backpropagation learning

algorithm for teaching small-world FFANNs. The backpropagation algorithm aims to determine the minimum

output error in weight space using the gradient descent method, where the weights for the output and hidden

layer neurons are defined as follows:

For neurons in the output layer:

δk(i) = yk(1− yk)(bc− yk), (3a)

∆Wmk(i) = αymδk(i), (3b)

Wmk(i+ 1) = Wmk(i) + ∆Wmk(i) +m∆Wmk(i). (3c)

For the neurons in the hidden layers:

δm(i) = ym(i)(1− ym(i))

l∑
k=1

δk(i)wmk(i), (3d)

∆wim(i) = αxi(i)δm(i), (3e)

Wim(i+ 1) = Wim(i) + ∆Wim(i) +m∆Wim(i), (3f)
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where α is the learning coefficient, which has a range of [0, 1]; W is the synaptic weight; ∆W is the change

in weight; δ is the derivation of the error; and m is the momentum coefficient. The mean square error value is

calculated while the network is being trained, and is defined as:

MSE =
1

N

N∑
i=1

(yi − ybi)
2, (4)

where N is the number of data samples, and yi and yb i denote the desired output and the network output,

respectively. In order to evaluate the performance of the network, we used 3 statistical parameters: the root

mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). These

parameters are determined as:

MAE =
1

N

N∑
i=1

|yi − ybi|, (5)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ybi)2, (6)

R2 = 1−

N∑
i=1

(yi − ybi)
2

N∑
i=1

yb2i

. (7)

In order to obtain reliable results, the value of R2 must be closer to 1 and the mean squared error (MSE),

MAE, and RMSE values must be closer to 0. In addition to these statistical parameters, we used the k-fold

cross-validation method. This method is commonly used to avoid the over-fitting problem in ANN applications

[26]. In a k-fold cross-validation, the data set is split into k approximately equal-size partitions. Each time,

one of the k partitions is used as the test set and the remaining k − 1 partitions are used as the training set.

The test error and statistical correction parameters (R2 , RMSE) of the partition are computed. This process

is repeated k times. The overall performance of the model is then found with the average of the partition test

errors and the correction parameters (R2 , RMSE). The model performance is defined as:

[ET , R
2
T , RMSET ] =

1

k

k∑
i=1

Ei, R
2
i , RMSEİ . (8)

3. Results

In this study, we show how real-life problems can be solved by the FFANN with small-world topology. Therefore,

we consider 2 real-life problems: estimating the thermal performance of solar air collectors and the prediction

MOR values of the OSB. We construct a FFANN with small-world topology, use it to solve these problems, and

compare the results with those of a conventional FFANN. The statistical parameters are calculated for both

networks. The predicted outputs for each model are compared with the experimental findings.

We carry out the simulations on a 2.4 GHz Quad Core Intel processor with a 4 GB memory. The model

is created using Microsoft Visual C# and is compiled with the Microsoft Visual Studio 2010 Editor.
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3.1. Estimating the thermal performances of solar air collectors

In this case, we consider the problem of estimating the thermal performance of a solar air collector, as reported

by Caner et al. [27]. They constructed 2 types of solar air collectors and examined them experimentally, and

they then used a 3-layer ANN (8, 20, and 1 neurons within each layer) to estimate the thermal performances of

the solar air collectors. We use their experimental findings and compare our results with those of their regular

FFAAN network. As a first step, we design a 3-layer FFANN (8, 12, and 1 neurons within each layer), as shown

in Figure 2.

We define the same variables as Caner et al. [27], as the inputs and the output. Eight variables are used

as inputs: the input and output of the temperatures, Ti ,To ; stored water, Tsw ; an ambient temperature of

the collector, Tamb ; surface temperature of the collector, Ts ; solar radiation intensity, I ; measuring time data,

Time; and model type number, Model type. One output variable is the performance of the solar air collector,
η .

As a second step, we apply the rewiring process for the regular network in Figure 2 to determine the

rewiring range of a small-world network. More than 8 rewirings cannot be applied to the network due to

finished unconnected neurons in the network. After each rewiring process, the DLocal and DGlobal parameters

are calculated and shown in Figure 3. The increasing of the rewiring number (RN) reduces the value of DLocal ,

while it increases the value of DGlobal . A small-world network is obtained when both of the parameter values

are small. In this context, Table 1 shows that a small-world network is obtainable for the rewiring range of

between 2 and 8.
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Figure 2. The constructed FFANN with zero rewiring for

estimating the thermal performances of solar air collectors.

Figure 3. The change in DGlobal and DLocal with the

RN for estimating the thermal performances of solar air

collectors.

As a third step, we use the 10-fold cross-validation method. The used dataset, which is scaled by the

min-max method in the range of [0–1], consists of 80 samples. It is then split into 10 approximately equal-

size partitions, where one of them is used for testing and the remainder are used for training; this process is

repeated 10 times. The overall test errors (MAE, MSE) and statistical correction parameters (R2 , RMSE) of

the model are calculated by averaging the test error and statistical correction parameters of each test partition.

We perform 60 experimental trials with a minimum training error (MSE) criterion. The ending error criterion

(MSE) of the training process is 0.000001. The results are given in Table 1. As indicated in Table 1, the best

performance is obtained for an optimal RN of RN = 6, within the small-world network range.
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Table 1. Rewiring-based error analysis results for estimating the thermal performances of solar air collectors.

RN R2 MAE MSE RMSE (%)
0 0.959341 0.049025 0.021994 5.922908
2 0.989063 0.02177 0.004267 2.911202
4 0.98624 0.025331 0.005196 3.183115
6 0.994048 0.017879 0.003085 2.297599
8 0.989019 0.022255 0.00381 2.86277

Table 1 indicates that the best performance is obtained for an optimal RN of RN = 6, within the

small-world network range.

Caner et al. [27] reported that their error analysis of their total data revealed the values of 0.9967,

0.0173, and 0.9879 for the statistical parameters of R2 , RMSE, and MAE, respectively. Figure 4 shows how the

thermal performance of the small-world FFANN for an optimal RN matches the experimental data. Therefore,

we conclude that the small-world FFANN improves the performance of a solar air collector for an optimal RN

compared to the regular FFANN.
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Figure 4. The thermal performance of the small-world FFANN at an optimal RN (RN = 6).

We investigated whether there is significant difference between a regular FFANN and our small-world

FFANN model. Thus, we used the independent 2-sample t-test [28]. The t-test was performed with SPSS and

the t value and P value were computed using a significance level of 0.01. The obtained results are shown in

Table 2.

Table 2. Result of the t-test for the absolute errors.

Regular FFANN model Small-world model
Mean 23.1387 8.5608
Std. deviation 37.6303 16.4435
Std. error mean 4.2072 1.8384
N 80 80
df 108.11
T value 3.1751
P value 0.0020
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As seen in Table 2, because P < 0.01 (0.0020), the H0 hypothesis is rejected with a significant level of

α = 0.01, and also it indicates that there is a statistically significant difference between the models. In this

context, the small-world network model is statistically better than the regular FFANN model.

3.2. Predicting the MOR values of the OSBs

In this case, we consider the problem of predicting the MOR values of the OSBs that was reported by Yapıcı

[29]. He conducted an experimental study as follows: Scots Pine wood (Pinus sylvestris L.) was used in the

production of the OSBs. The strand’s dimension was approximately 80 mm long, 20 mm wide, and 0.7 mm

thick. First, the wood strands were dried to a 3% moisture content before an adhesive was sprayed on them for

3 min. Next, an adhesive material without wax, a solid content of 47% liquid phenol-formaldehyde resin, was

applied at rates of 3%, 4.5%, and 6%, based on the weight of the oven-dried wood strands.

The press periods and press pressure were 3, 5, and 7 min under 35, 40, and 45 kg/cm2 press pressure,

respectively. The shelling rate was 40% for the core layer and 60% for the face layer, and the density of the

boards was aimed at 0.70 g/cm3 density. A total of 27 OSB panels, with dimensions of 56 × 56 × 1.2 cm,

were made for the experiments. There were 54 in total and 2 for each. Hand-formed mats were pressed in a

hydraulic press. These panels were labeled from 1 to 27. All of the mats were pressed under automatically

controlled conditions at 182 ± 3 ◦C. After pressing, the boards were conditioned to a constant weight at 65 ±
5% relative humidity and at a temperature of 20 ± 2 ◦C until they reached a stable weight [30]. Ten samples

were taken from the boards to perform the MOR values according to the related standard [31].

In the measurement of the MOR values, Yapıcı [29] used a Zwick/Roell Z050 universal test device with

a capacity of 5000 kg and measurement capability of 0.01 N in accuracy. In the testing, the loading mechanism

was operated at a velocity of 5 mm/min. As a result of the measurements, Yapıcı [29] obtained the dataset,

including the experimental data from 27 OSB panels.

Here, we use his experimental dataset for predicting the MOR values of the OSBs. We follow the same

steps as we did for the first problem in Section 3.1. As a first step, we construct a 4-layer FFANN (3, 8, 8, 2

neurons within each layer), as shown in Figure 5.

 

 

  

Adhesive Material  

Time  

Press Pressure  

MOR(Flexure Parallel)

MOR(Flexure Perpendicular)

 

Figure 5. The constructed FFANN with a zero rewiring for predicting the MOR values of the OSBs.

In defining the input and output variables, we followed the variables reported by Yapıcı [29], where 3

variables are used as inputs: adhesive material, time (min), and press pressure (kg/cm2), and 2 variables are

used as outputs: MOR (flexure parallel) and MOR (flexure perpendicular).

As a second step, we apply the rewiring process for the regular network in Figure 5 to determine the

rewiring range of a small-world network. More than 40 rewirings cannot be applied to the network due to

finished unconnected neurons in the network. After each rewiring process, the DLocal and DGlobal parameters
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are calculated, as shown in Figure 6. As in Figure 3, the increasing of the RN reduces the value of DLocal ,

while it increases the value of DGlobal . Since the small-world network is obtained when both parameter values

are small, the small-world network is obtainable for the rewiring range of between 8 and 40.
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Figure 6. The change in DGlobal and DLocal with the RN for predicting the MOR values of the OSBs.

As a third step, we use the 10-fold cross-validation method. The used dataset, which is scaled by the

min-max method in the range of [0–1], consists of 27 samples. It is then split into 10 approximately equal-size

partitions, and one of them is used for the testing and the remainder are used for the training; this process is

repeated 10 times. The overall test errors (MAE, MSE) and statistical correction parameters (R2 , RMSE) of

the model are calculated by averaging the test error and statistical correction parameters of each test partition.

We perform 60 experimental trials with the minimum training error (MSE) criterion. The ending error criterion

(MSE) of the training process is 0.000001.

The results are given in Table 3, which indicates that the best performance is obtained for an optimal RN

of RN = 16, within the small-world network range. Figure 7 also shows how the MOR values of the small-world

FFANN for an optimal RN match the experimental data. Therefore, we conclude that the small-world FANN

provides the best prediction of the MOR values of the OSBs.

Table 3. Rewiring-based error analysis results for predicting the MOR values of the OSBs.

RN R2- output 1 R2- output2 MAE MSE RMSE (%)
0 0.981913 0.94994 0.022299 0.004031 5.127057
4 0.997913 0.982364 0.012101 0.001127 2.801207
8 0.998752 0.980487 0.009118 0.000658 2.098895
12 0.995861 0.977478 0.010825 0.001001 2.382575
16 0.998496 0.995746 0.006923 0.000364 1.583459
20 0.996022 0.991652 0.010226 0.000781 2.226508
24 0.996045 0.976741 0.011605 0.001094 2.582601
28 0.992838 0.984314 0.013337 0.001312 2.979785
32 0.995462 0.977063 0.014287 0.001307 3.100186
36 0.737677 0.97934 0.025947 0.012859 5.760594
40 0.986455 0.974657 0.016255 0.002324 3.730499
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Figure 7. The prediction performance of the small-world FFANN at an optimal RN (RN = 16): a) MOR (flexure

parallel) and b) MOR (flexure perpendicular).

We investigated whether there is a statistically significant difference between the regular FFANN and our

small-world ANN model, as given in section 3.1. The obtained results are shown in Table 4.

Table 4. Results of the t-test for the absolute errors: a) MOR (flexure parallel) and b) MOR (flexure perpendicular).

Regular FFANN Small-world
model model

Mean 4.08059795 0.320180225
Std. deviation 3.295172256 0.229358048
Std. error mean 0.634156196 0.044139977
N 27 27
Df 26.25
T value 5.9155
P value 0.000003

Regular FFANN Small-world
model model

Mean 4.435303658 0.303957035
Std. deviation 4.782524812 0.447958736
Std. error mean 0.920397329 0.086209699
N 27 27
df 26.46
T value 4.4691
P value 0.000132

(a) (b)

As seen in Table 4, the P value is smaller than the significance level (0.01) for the 2 outputs of the

experimental model. Thus, the H0 hypothesis is rejected. In addition, it indicates that there is a statistically

significant difference between the regular FFANN and the small-world model. Thus, we conclude that the

small-world network model is better than the regular FFANN model, as given in Section 3.1

4. Conclusion

In summary, we investigated the impact of the small-world topology on the performance of the FFANN based on

2 real-life problems: estimating the thermal performance of solar air collectors and predicting the MOR values

of OSBs. We use a FFANN with small-world topology to solve both problems and compare the results with

those of conventional FFANNs. We show that the rewired FFANN performs better than a FFANN with zero

rewiring. We also show that the performances of both of the rewired FFANNs are the best if the RN is within

the small-world rewiring range, which we call an optimal RN. In addition, we demonstrate that small-world

networks perform statistically significantly better than the regular FFANN. Consequently, we propose that there

exists an optimal RN within the small-world topology that provides the best performance for both problems.

716



ERKAYMAZ et al./Turk J Elec Eng & Comp Sci

Acknowledgments

The authors would like to thank Dr Fatih YAPICI and Engin GEDIK of the Technical Education Faculty of

Karabük University for providing their experimental data.

References

[1] S. Haykin, Neural Networks—A Comprehensive Foundation, 2nd Edition, New Jersey, Prentice-Hall, 1999.

[2] M. Sun, A. Stam, R.E. Steuer, “Solving multiple objective programming problems using feed-forward artificial

neural networks: the interactive FFANN procedure”, Management Science, Vol. 42, pp. 835–849, 1996.

[3] N.A. Magnitskii, “Some new approaches to the construction and learning of artificial neural networks”, Computa-

tional Mathematics and Modeling, Vol. 12, pp. 293–304. 2001.

[4] F. Ham, I. Kostanic, Principles of Neurocomputing for Science & Engineering, New York, McGraw-Hill, 2001.

[5] D.J. Watts, S.H. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, Vol. 393, pp. 409–10, 1998.

[6] K. Fortney, J. Pahle, J. Delgado, G. Obernostor, V. Shah, “Effects of simulated brain damage on small-world neural

networks”, Proceedings of the Santa Fe Institute Complex Systems Summer School, 2007.

[7] O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, “Organization, development and function of complex brain

networks”, Trends in Cognitive Sciences, Vol. 86, pp. 418–425, 2004.

[8] D.S. Bassett, E. Bullmore, “Small-world brain networks”, The Neuroscientist, Vol. 12, pp. 512–523, 2006.

[9] M. Ozer, M. Perc, M. Uzuntarla, “Controlling the spontaneous spiking regularity via channel blocking on Newman-

Watts networks of Hodgkin-Huxley neurons”, Europhysics Letters, Vol. 86, 40008, 2009.

[10] M. Ozer, M. Perc, M. Uzuntarla, “Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons

with local periodic driving”, Physics Letters A, Vol. 373, pp. 964–968, 2009.
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