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Abstract:This paper introduces a new interconnection network topology called the star-crossed cube (SCQ). The SCQ

is observed to be superior to other contemporary networks in terms of various topological parameters such as diameter,

cost, average distance, and message traffic density. The various performance metrics of the proposed network, including

cost effectiveness and time-cost effectiveness, are found to be better. The optimal routing and broadcasting algorithms

for the new network are also presented. Embedding properties for the proposed network are also studied.
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1. Introduction

The performance of a distributed memory parallel computer heavily depends on the effectiveness of its inter-

connection network (IN) [1,2]. There exist numerous INs, such as crossbar, mesh, tree, and cube [3]. Among

all of these networks, the hypercube (HC) has received much attention due to its attractive properties, such

as regularity, symmetry, small diameter, low degree, and link complexity [4,5]. However, in a HC the link

complexity increases with the increase in the network size, which highly affects the performance of the network.

There are several cube-based derivatives. The prominent and most recent networks are the crossed cube

(CQ) [6], star graph [7,8], starcube [9], dualcube [10], metacube [11], folded metacube [12], and extended CQ

[13]. The diameter of the CQ is almost half that of the HC and also has a reduced mean distance. The star

graph is a permutation graph whose node degree is (n – 1) with n! nodes. The star graph, being regular and

vertex (edge) symmetric, is asymptotically superior to the HC. In spite of these improved features, the n-star

has a major disadvantage, which is that it grows to its next highest level by a very large value. For example,

a 4-dimensional star (4-star) has 4! = 24 nodes and a 5-star has 5! = 120 nodes. The significant gap between

2 consecutive dimensions of an n-star graph is considered as a major drawback. The incomplete star (IS),

an alternative star, has been introduced to eliminate this problem [14,15]. However, the IS is nonsymmetric

and irregular. Thus, it is not suitable for many practical systems. Another variation of the n-star, called the

hierarchical star network (HS(n,n)), is a 2-level IN [16]. The HS(n,n) consists of n!modules interconnected with

additional edges and each module is an n-star. Thus, the HS(n,n) contains (n!)
2
nodes with node degree n .

The growth rate of the HS is very high. When n is 3 and 4, the network contains 36 and 576 nodes. This

significant gap in the 2 consecutive sizes of the HS becomes a major disadvantage. Another disadvantage of the

HS is that the dimension cannot take any values of n like the metacube. It only takes values like (3,3), (4,4),
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(5,5), etc. The hyperstar(n,k) is another alternative to the n-star, in which there are n!
k!(n−k)! nodes at node

degree ‘n−−k′ [17] .The 2 parameters n and k decide the nature of the network. If n = 2k , then the network is

regular and symmetric and has a diameter of n− 1. In the case that the network is irregular, the construction

and addressing of the nodes becomes difficult.

Recently, the starcube, denoted as SC(m,n), has been proposed as a new network to eliminate the above

said problem. However, the CQ has been proven to be a better network when compared to the HC. The current

study proposes a new class of IN topology called the star-CQ (SCQ(m,n)). It is a product graph on the n-

star and m-dimensional CQ (CQ(m)). The proposed graph possesses all of the interesting properties that are

common to both the star and CQ. In terms of topological properties, it lies in between the n-star and CQ(m).

It is also very suitable for variable node size architectures.

The paper is organized as follows: Section 2 describes the basic terminologies and topological features of

the base networks. In Section 3, the topological properties of the proposed architecture are presented. Sections

4 to 7, respectively, discuss the performance analysis, embedding, routing, and results. Section 8 concludes the
paper.

2. Background

The basic terminologies of the INs are discussed below.

2.1. Basics

Throughout the paper, the IN is treated as an undirected graph, in which the vertices correspond to the processor

and the edges correspond to the bidirectional communication links.

Definition 1 The IN is a finite graph G = {V,E } , where V and E are a set of n tuples, v1v2..vn and

e1, e2 ,. . . en , respectively.

Definition 2 The degree of a vertex v in G is equal to the number of edges incident on v .

Definition 3 The diameter of a graph G denoted as DG is defined to be max. {dG (u,v): u,v ∈ V} , where

dG is the distance between 2 nodes.

Definition 4 A graph is said to be regular if all of its vertices have the same degree.

Definition 5 A graph G(V,E) is vertex symmetric if for every pair of vertices, u and v, there exists an

automorphism of the graph that maps u into v , u, v ∈ V .

Definition 6 A set of paths is said to be node disjoint if no node except for the source and destination nodes

appear in more than one path. The number of such paths provides a measure of the fault tolerance and reliability

of the network.

2.2. Construction

The proposed topology is based on the CQ and the n-star graph. The network structures of both the CQ and

star are briefly discussed below.

720



ADHIKARI and TRIPATHY/Turk J Elec Eng & Comp Sci

2.2.1. Crossed cube

The CQ(m) is a regular graph of 2m nodes. Every node in the CQ(m) is identified by a unique binary string

of length m [6].

Definition 1 Two binary strings, X = X1X0 and Y = Y1Y0 , of length 2 are said to be pair related if and

only if xy ∈ {(00,00) (10,10), ( 01,11),( 11,01)}.

Definition 2 The CQ(m) is recursively defined as follows:

CQ1 is a complete graph on 2 vertices with labels 0 and 1. For m >1, the CQ(m) contains CQ0
m−1 and

CQ1
n−1CQ1

m−1 , joined according to the following rule: the vertex u = 0um−2 . . . .u0 from CQ0
m−1 and the

vertex v = 1vm−1 . . . . . . v0 from CQ1
m−1 CQ1

n−1 are adjacent in the CQ(m) if:

1. um−2 = vm−2 if m is even, and

2. for 0 <= i <
⌊
l−1
2

⌋
⌊(n− 1) /2⌋ , u2i+1u2i ∼ v2i+1v2i .

Figure 1 shows the CQ(m) topology for m = 3 and m = 4. Every vertex in the CQ(m) with a leading 0 bit has

exactly 1 neighbor with a leading 1 bit and vice versa. In the CQ(m), when 2 adjacent vertices u and v have a

leftmost differing bit at position d, then v is called the d-neighbor of u and the edge (u,v) is called the edge of

dimension d. For any 2 nodes u and v of the CQ(m), it is possible to reach v from u in at most
⌈
m+1
2

⌉
hops.
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Figure 1. CQ of dimension 3 and 4: a) CQ(3) and b) CQ(4).

2.3. Star graph

The n-dimensional star graph S(n) consists of a set of nodes {x0, x1, x2, .xn−1} , where i = 1,2,3...n and xi ̸= xj

for 0 ≤ i and j ≤ n − 1, as shown in Figure 2. Hence, the total number of vertices is n! . There is an edge

between any 2 vertices if their labels differ in the first and in 1 additional position. That is, 2 permutations,

a1a2...an and b1b2 . . . b n , are adjacent if and only if there exists an i ̸=1, such that a1 = bi ,ai = b1 and aj = bj

for j /∈{1,i} . Such an edge is called an i -edge. For any 2 nodes a and b belonging to S(n), traveling from a to

b takes at most
⌊
3(n−1)

2

⌋
steps [8].
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Figure 2. Star graph of dimension 3.

Both of the base networks are regular, vertex, and edge symmetric.

3. Proposed topology

The network details of the proposed topology SCQ(m,n) are described below.

3.1. Star-crossed cube

The SCQ(m,n) is the product graph of the CQ(m) and S(n). That is, in an n-star, each vertex is replaced with

a CQ. Next, the node address of each vertex in the resulting graph will have 2 parts < xm−1, xm−2 . . . x 0 ,y0, y1 ,

. . . ,y n−1 > , where the x i s represent the CQ part and the y i s represent the star part. Each node will

have 2 types of neighbors, namely the CQ-part neighbor and star-part neighbor with node addresses <

xm−1, xm−2.. . . . .x
′
i.x0, y0, y1 , . . . ,y n−1 > and < xm−1, xm−2 . . . x 0, yi, y1, yi−1, y0 . . . ,y n−1 > , respectively.

The SCQ(3,3), along with the submodules, is shown in Figures 3a, 3b, and 3c, respectively. In Figure

3a, the first submodule with the star part labeled as 123 and the corresponding labels of the CQ are shown.

Similarly, Figure 3b shows the second submodule of the SCQ(3,3) with 213 as their star part level.

3.2. Topological properties

The following are the various topological properties of the proposed network.

Theorem 1 The total number of nodes in the SCQ(m,n) graph is n!× 2m .

Proof For the n-star, the total number of nodes is n!and in the CQ(m) it is 2m . The SCQ is a product

graph, where the total number of nodes is:

p = n!× 2m.

Theorem 2 The total number of edges in the SCQ(m,n) is n!× 2m−1(m+ n− 1) .

Proof In the SCQ(m,n) there are n! CQ(m)s connected to and from an n-star. Hence, n!

CQs will have n! × m ×2m−1 edges. Next, each CQ(m) is connected to (n – 1) neighbors. Hence, the

total number of edges interconnecting n! CQ(m)s is n! ×(n−1
2 )× 2m .
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Figure 3. The SCQ and its basic modules: a) SCQ123 , b) SCQ213 , and c) SCQ(3,3).

Hence, the total number of edges in the SCQ(m,n) is:

E = n! × m ×2m−1
+ n! ×(n−1

2 )× 2m ,

E =n!× 2m−1(m+ n− 1).

Theorem 3 The degree of the SCQ(m,n) is (m+ n− 1).

Proof In the CQ(m), the degree of each node is m. Next, there are (n – 1) edges incident on each vertex to

form the n-star. Hence, the degree of each vertex in the SCQ(m,n) is (m+ n – 1 ).

Theorem 4 The diameter of the SCQ(m,n) is
⌊
3(n−1)

2

⌋
+
⌈
m+1
2

⌉
.

Proof Let (u, v) and (u′, v′) be 2 nodes in the SCQ(m,n). Traveling from (u, v) to (u′, v) then takes at most⌈
m+1
2

⌉
steps, as they belong to the same CQ(m). Next, traveling from

(u′, v) to (u′, v′) takes at most
⌊
3(n−1)

2

⌋
steps in the Sn , as the nodes with the same CQ part label form

an n-star.

Hence, in at most
⌊
3(n−1)

2

⌋
+
⌈
m+1
2

⌉
steps, the node (u′, v′) can be reached from (u, v).
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Theorem 5 The cost of the SCQ network is ξ = (m+ n− 1)
(⌊

3(n−1)
2

⌋
+
⌈
m+1
2

⌉)
Proof In symmetric networks, the cost factor ξ is defined as the product of the degree and diameter. From

Theorem 3, the degree of the SCQ is (m+ n – 1 ). From Theorem 4, the diameter is
⌊
3(n−1)

2

⌋
+
⌈
m+1
2

⌉
.

Hence, the cost is given by ξ = (m+ n− 1)
(⌊

3(n−1)
2

⌋
+
⌈
m+1
2

⌉)
.

Theorem 6 The average distance of the SCQ(m,n) is dscq = 11x+4y
8 + n − 4 + 2

n +
n∑

i=1

1
i , where m = 3x +

y, y < 3, and x ,y are integer values.

Proof The average distance of the CQ is 11x+4y
8 and for the star graph it is

n− 4 + 2
n +

n∑
i=1

1
i . Hence, the result follows.

Theorem 7 The message density of the SCQ is given by ρ =
2d̄scq

(m+n−1) .

Proof This message density is defined as ρ ≡ d̄N
E , where N is the total number of nodes, d̄ is the average

node distance, and E is the total number of links. It is assumed that each node is sending one message to a

node at distance d on the average.

From Theorem 6, dscq = 11x+4y
8 + n− 4 + 2

n +
n∑

i=1

1
i . Next, using Theorems 1 and 2,

p = n!× 2m and E = n!× 2m−1(m+ n− 1).

Hence, themessage density is given by:

11x+ 4y

8
+ n− 4 +

2

n
+

n∑
i=1

1

i
n!2m−1(m+ n− 1)ρ =

n!2m( )
=

11x+ 4y

8
+ n− 4 +

2

n
+

n∑
i=1

1

i

()

(m+n−1
2 )

or, ρ =
2d̄scq

(m+ n− 1)

Theorem 8 Partitioning of the SCQ(m,n) can be done into 2 SCQ(m–1,n)s in m ways and into 2 SCQ(m,n–1)s

in (n−1) ways.

Proof From the structure of the SCQ, it is evident that the basic modules are CQs, which are connected in

star graph fashion. The CQ(m)s can be partitioned into CQ(m–1)s in m ways. The skeleton of the SCQ is an

n-star that can be partitioned into (n− 1) stars in (n− 1) ways.

Theorem 9 The SCQ(m,n) has (m+ n− 1) node disjoint paths between any 2 of its nodes.

Proof The node connectivity of the CQ(m) is m. Similarly for the n-star, it is (n−1). Hence, in the SCQ, the

node connectivity becomes (m+n−1). Hence, there are (m+n−1) node disjoint paths between any 2 nodes.
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The different topological parameters of the proposed topology are compared with those of the parent

networks in Table 1.

Table 1. Comparison of the topological parameters.

Parameters HC CQ Star Star cube SCQ

Nodes 2m 2m n! n!2m n!2m

Links m2m−1 m2m−1 n!
(
n−1
2

)
n!2m−1(m+ n− 1) n!2m−1(m+ n− 1)

Degree m m n-1 m+ n− 1 m+ n− 1

Diameter m
⌈
m+1

2

⌉ ⌊
3
2
(n− 1)

⌋
m+

⌊
3
2
(n− 1)

⌋ ⌈
m+1

2

⌉
+

⌊
3
2
(n− 1)

⌋
Avg. dist. m

2
(11x+4y)

8
n- 4+ 2

n
+

∑n
i=1 1/i

m
2
+ n− 4 + 2

n
+

∑n
i=1 1/i

11x+4y
8

+n− 4+ 2
n
+

n∑
i=1

1
i

Cost m2 m
⌈
m+1

2

⌉
(n-1)

⌊
3
2
(n− 1)

⌋
(m+ n− 1)(m+

⌊
3
2
(n− 1)

⌋
) (m+ n− 1) (

⌈
m+1

2

⌉
+⌊

3
2
(n− 1)

⌋
)

Msg. density 1
2d̄cq
n

2d̄s
n−1

2d̄sc
(m+n−1)

2d̄scq
(m+n−1)

4. Performance analysis

In this section, 2 important measures of performance of the proposed network, namely the cost effectiveness

factor (CEF) and the time cost effectiveness factor (TCEF), are analyzed.

The CEF is defined as the ratio of the cost effectiveness and the efficiency. It takes into account the cost

of the system (that is, the processor cost and link cost), as well as the processor utilization [18].

Theorem 10 The cost effectiveness factor of the SCQ(m,n) is 1
1+ρm+n−1

2

, where ρ is the ratio of the link cost

to the processor cost.

Proof In general, the number of links is a function of the number of nodes in the system. In the proposed

network, the number of nodes is given by p = 2mn! . The total number of links is given by E = 2m−1n!(m+n−1)

= n! 2m
(
m+n−1

2

)
= p(m+n−1

2 ) = f(p).

g (p) =
f (p)

p
=

m+ n− 1

2

CEF(p)= 1
1+ρg(p) =

1

1+ρ(m+n−1
2 )

Theorem 11 The TCEF of the SCQ(m,n) network is given by TCEF = 1+σ

1+ρ(m+n−1
2 )( 1

2mn! )
.

Proof The TCEF is given by TCEF(p,Tp) =
1+σTα−1

1

1+ρg(p)+σ
p
, where T1 is the time required to solve the problem

by a single processor using the fastest sequential algorithm, Tp is the time required to solve the problem by a

parallel algorithm using a multiprocessor system having p processors, and ρ is the cost of the penalty / cost of

the processors [18]. As is seen in Theorem 10 above, g (p) = m+n−1
2 and σ andα are assumed to be 1.

Hence, TCEF = 1+σ

1+ρg(p)+(σ
p )

= 1+σ

1+ρ(m+n−1
2 )+( σ

2mn! )
.
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5. Embedding

The embedding is regarded as an important property of any topology. The embedding of rings, meshes, and

binary trees into star graphs and CQs was previously studied [19,20]. This section investigates the embedding

of rings and meshes into the SCQ.

The embedding of a guest graph G(V,E) into another host graph S is a mapping of the set of vertices

V (G) into that of S , that is, V (S) and E(G) into E(S). The mapping is denoted by R. Thus, any vertex x

of G is mapped through R(x) of S uniquely. That means R(x) ̸= R(y) for x ̸=y and x, y ∈ V (G). However, for

the embedding to exist, |S| ≥ |G| and S has to be connected. The ratio |S|/|G| is called the expansion.

The dilation is defined as follows: dilation (d) = max. {length of the shortest path from R(x) to R(y)} .

The congestion of any edge e of S is the number of paths (each path representing an edge of Gmapped toS) of

G, which contains e. The maximum of the congestions of all of the edges of S is the congestion of the embedding.

5.1. Embedding of the ring in the SCQ(m,n)

A ring can be embedded into the SCQ(m,n) using Gray codes. A Gray code is a well-known sequence of binary

bits, where 2 consecutive codes differ by only 1 bit, G1 = (0,1). From G1 , G2 can be derived as (00,01,11,10).

For n > 2,Gn = (0Gn−1, 1G
r
n−1)), where Gr

n is the reverse string of Gn . Hence, G3 = (0G2 , 1Gr
2) =

(000,001,011,010,110,111,101,100).

Next, G4 = (0G3 ,1,G
r
3) and G5 = (00G3 ,01G

r
3 ,11G

r
3 ,10G3). The first and last labels differ by 1 bit

only.

A ring can be successfully embedded in the SCQ. In Figure 4, the arrow heads show the sequence of

embedding. A ring with 8 nodes bearing the codes as in G3 = (0,1,3,2,6,7,5,4) can be easily embedded in

SCQ123 as defined above.

R(0) = (0,123), R(1) = (1,123), R(3) = (3,123) . . . . , and R(4) = (4,123).

For a 16-node ring with codes as in G4 = (0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8), the embedding extended

to SCQ1 and SCQ2 is as follows:

R(0) = (0,123), R(1) = (1,123), R(3) = (3,123) . . . . , and R(4) = (4,123).

R(12) = (4,213), R(13) = (5,213), R(15) = (7,213), R(14) = (6,213) . . . , and R(8) = (0,213).

Obviously, the dilation and expansion for this embedding are both 1.

5.2. Mesh embedding in the SCQ(m,n)

Generally, in a CQ(m), a family of disjoint 3-dimensional (3D) meshes measuring 2 × 2 × 2m−3 can be embedded

for m ≥ 4 [20]. The current work illustrates the embedding of 3D meshes into the SCQ topology.

Theorem 12 For m ≥ 3, a family of 2m−2 (n) (n− 1) (n− 2) . . . 3 disjoint 3D meshes measuring 2 × 2 × 2m−3

can be embedded into the SCQ(m,n) with unit dilation and unit expansion.

The Theorem is proven by the induction method.
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Figure 4. Ring embedding in SCQ1 and SCQ2 .
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Figure 5. SCQ(3,4).

Lemma 1 In SCQ(3,3), a family of 23−2 × 3 = 6 disjoint 3D meshes can be embedded.

Proof In SCQ(3,3), the subgraph SCQ(CQ3 ,123) will combine with SCQ(CQ3,321). Next, SCQ(CQ3 ,213)

will combine with SCQ(CQ3 ,312) and SCQ(CQ3 ,231) with SCQ(CQ3 ,132). Thus, there are 3 sets of interlinks

and each interlink forms 2 disjoint meshes. Hence, the number of meshes embedded = 2 × 3= 6. The meshes

are as follows:

m11 =

((
0, 123 2, 123
0, 321 2, 321

)(
1, 123 3, 123
1, 321 3, 321

))
m12 =

((
4, 123 6, 123
4, 321 6, 321

)(
5, 123 7, 123
5, 321 7, 321

))
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m21 =

((
0, 231 2, 231
0, 132 2, 132

)(
1, 231 3, 231
1, 132 3, 132

))
m22 =

((
4, 231 6, 231
4, 132 6, 132

)(
5, 231 7, 231
5, 132 7, 132

))
m31 =

((
0, 213 2, 213
0, 312 2, 312

)(
1, 213 3, 213
1, 312 3, 312

))
m32 =

((
4, 213 6, 213
4, 312 6, 312

)(
5, 213 7, 213
5, 312 7, 312

))

The cube part node addresses are represented by decimal numbers; that is, 0, 1, 2, . . . 7.

This embedding has unit dilation and unit expansion.

Lemma 2 In SCQ(4,3), a family of (24−2 × 3) = 12 disjoint 3-D meshes can be embedded.

Proof In SCQ(4,3), the CQ4 is the basic module in the 3-star. Hence, there are 6 CQ4 s. Each CQ can embed

disjoint 3D meshes. Again, 3 sets of interlinks can be used in the 3-star. Each interlink can form 4 disjoint

meshes. Hence, the number of meshes embedded in SCQ(4,3) = (24−2 × 3) = 12. The meshes are as follows:

M1 =
(
0(m11) 0(m12) 1(m12) 1(m11)

)
(where 0 and 1 are appended in front of the cube part of

the node address).

=

((
0, 123 2, 123
0, 321 2, 321

)(
1, 123 3, 123
1, 321 3, 321

)(
4, 123 6, 123
4, 321 6, 321

)(
5, 123 7, 123
5, 321 7, 321

)
(

8, 123 10, 123
8, 321 10, 321

)(
15, 123 13, 123
15, 321 13, 321

)(
9, 123 11, 123
9, 321 11, 321

)(
12, 123 14, 123
12, 321 14, 321

))
M2=

(
0(m21) 0(m22 ) 1(m22) 1(m21 )

)
M3 =

(
0(m31) 0(m32 ) 1(m32) 1(m31 )

)
.

Lemma 3 In SCQ(3,4), a family of (2
3−2 × 4× 3)= 24 disjoint 3D meshes can be embedded.

Proof Here, CQ3 is kept on a 4-star, as shown in Figure 5. Hence, there can be 4! = 24 CQs in total. Next,

the number of interlinks is n(n-1) = 4 × 3. In SCQ(3,4), each set of interlink forms 23−2 meshes. In total,

there can be (2
3−2 × 4× 3)= 24 disjoint meshes.

Lemma 4 In SCQ(4,4) a family of (2
4−2 × 4× 3)= 48 disjoint 3D meshes can be embedded.

Proof In SCQ(4,4), CQ4 becomes the building block on a 4-star. Hence, there are 24 CQs. These can be

connected using n(n–1) = 4 × 3 = 12 interlinks. Now each set of interlinks can form 24−2 = 4 meshes. Hence,

in total, there can be 48 meshes embedded.

Lemma 5 In SCQ(3,5) , a family of (2
3−2 × 5× 4× 3)= 120 disjoint 3D meshes can be embedded.

Proof In SCQ(3,5), the basic building blocks are 3D CQs on a 5-star. Hence, there can be 5! = 120 CQs. In

SCQ(3,5), there are 5 clusters, as shown in Figure 6. Hence, the number of interlinks is 5 × 4 × 3 = 60. Now,

each set of interlinks can form a total of 23−2 = 2 meshes. Hence, in total, there can be 60 × 2 = 120 disjoint

meshes embedded.
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Figure 6. SCQ(3,5) with all 5 clusters.

Proof of Theorem 12

In the SCQ(m,n), the CQ(m) becomes the basic building block on an n-star graph. By induction on m

and n, according to Lemma 1 to 5, the CQ(m) can admit 2m−2 meshes. Next, in the n-star, there are n clusters

and each cluster is an (n-1)-star. Hence, the number of interlinks is n(n-1)(n-2). . . .3. Thus, the total number

of disjoint 3D meshes in the SCQ(m,n) is 2m−2 × n(n− 1)(n− 2) . . . .3. Hence, the result.
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6. Routing and broadcasting

The problem of finding a path from a source node s to a destination node t and forwarding the message

along the path is called routing. For any parallel processing network, the routing should be simple and fast.

The CQ and star graph both have self-routing algorithms. Hence, in the hybrid network, the SCQ also allows

self-routing. The current section describes the routing algorithm for the SCQ network.

The source and destination nodes are u(c, s) and v(c
′
s
′
), respectively.

Routing in the SCQ(m,n)

{

Step 1: Route the message from u to u 1 . The address of u 1 will be either ( c
′
, s) or (c, s

′
). For the

first case, CQ routing will be used as discussed in [21]. In the second case, star routing is used.

Step 2: Next, from ( c
′
s) the destination node ( c

′
s
′
) can be easily reached using star routing. If the

intermediate node is (c, s
′
), then CQ self-routing will be used to reach the destination node, that is, ( c

′
s
′
).

}
Algorithm one-to-all broadcast

An optimal broadcasting algorithm is proposed for the proposed SCQ network. For this, the star-

broadcast algorithm [22] is used as a subroutine. Suppose u(c, s) is an arbitrary node in any cluster of the

SCQ. The following algorithm broadcasts a message to all of the other nodes in the SCQ(m,n).

Step 1: Suppose the cluster (c,*) contains the source node u(c,s). Next, using the CQ-broadcast algorithm,

a message can be transmitted to all other nodes within the cluster. Para do

{
Step 2: Next, for intercluster communication, the star links are used, in which each node (x,v) of cluster

(c,*) transmits the message to node (x,v
′
) using star-broadcast. Next, in the other clusters, at least 1 node will

be loaded with the message.

Step 3: Now, the loaded nodes in each cluster will do a broadcast within the cluster using the CQ-broadcast

algorithm [21].

}

Theorem 13 The one-to-all broadcast algorithm for the SCQ(m,n) takes O(m+ nlogn) time .

Proof The 3 steps in the above algorithm take O (m), O(nlogn), and O (m) time, respectively. Thus, the

entire algorithm takes O(m+ nlogn) time.

Algorithm all-to-all broadcast

In all-to-all broadcasting, every node in the network sends a message to all other nodes in the network.

Hence, the one-to-all algorithm can be executed for each node for complete broadcasting of the message in the

network.

Theorem 14 In the SCQ(m,n) the time complexity for all-to-all broadcasting is O(M + nlogn) .

Proof For a cube-type network of dimension m, consisting of M nodes, the time complexity for all-to-all

broadcasting is O(M) [22]. In an n-star, any sequence of nodes that constitutes a one-to-all broadcasting

algorithm is also an all-to-all broadcasting algorithm.
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Hence, in the SCQ(m,n), the time complexity of the all-to-all broadcasting algorithm is O(M+nlogn).

7. Results and discussions

This section presents the different results obtained. Moreover, a comparative study is made to establish the

superiority of the proposed topology.

While comparing with star and HS, and hyperstar, the growth of the SCQ is slower, as shown in Figure

7. However, it has a better packing density than the CQ and the HC with same node degree. The node degree

of the starcube and the SCQ(m,n) is the same but it is higher than that of the star graph and the traditional

HC, as well as CQ due to the hybrid structure. The HS has a degree equal to that of HC and CQ. For even

dimensions, the degree of the hyperstar is the same as that of the n-star. The comparison of the node degree

against the dimensions is shown in Figure 8.
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Figure 7. Comparison of the packing densities. Figure 8. Comparison of the node degrees.

While comparing the diameter, it is observed that the HS possesses the highest value as its size grows at

a faster rate. The HC and the CQ both possess smaller values, as they are smaller networks. The SCQ stands

lowest among the hybrid networks, as shown in Figure 9. At even dimensions, the SCQ bears lower values than

the hyperstar. For odd dimensions, both have the same values.

The SCQ, being a hybrid network, has a cost that is higher than that of its parent networks, namely the

HC, CQ, and n-star, as shown in Table 2. However, the cost is found to be less than that of the starcube, the

HS, and hyperstar, as shown in Figure 10. In Figure 10, the cost is compared against the node degree. With

node degree 5 and beyond, the SCQ bears the lowest value.

Table 2. Comparison of the cost of SCQ with the parent networks.

Degree Star SC SCQ HC
3 6 9
4 12 16
5 24 20 20 25
6 35 42 36 36
7 54 63 56 49
8 70 80 72 64
9 96 108 99 81
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A comparison of the average node distance of the SCQ shows that it is a better network topology at

higher dimensions than the other networks. The comparison is shown in Figure 11.
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Figure 11. Average node distance comparison. Figure 12. Message density comparison.

Next, the average message density of the SCQ is compared with the parent networks in Figure 12. The

message traffic density of the HC is always 1. For the star graph, the value is higher with more nodes. Being a

hybrid graph, the SCQ possesses better values with a higher packing density. It is always less than that of the

starcube and the star graph.

Figures 13 and 14 show the variation of CEF and TCEF with respect to the dimensions. The proposed

network is cost-effective due to the monotonic decreasing nature of the curves, similar to HC. It is more beneficial

when the dimensions lie between 4 and 8.
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8. Conclusion

This paper proposes a new interconnection topology suitable for large-scale parallel systems. Being a hybrid

structure, the SCQ bears the advantages of both of the networks. Compared to the existing hybrid networks, it

possesses better characteristics, such as regularity, degree, diameter, cost, average distance, and traffic density.

Moreover, mesh and ring embedding into the SCQ is possible with the unit dilation and unit congestion. Different

performance measures make the SCQ(m,n) a very promising and suitable candidate for parallel systems.
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