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Abstract:This paper analyzes the behavior of Hong’s point estimate method to account for uncertainties in probabilistic

energy management systems to optimize the operation of a microgrid (MG). These uncertainties may arise from different

sources, such as the market prices, load demands, and electric power generation of wind farms and photovoltaic systems.

Point estimate methods constitute a remarkable tool to handle stochastic power system problems because good results can

be achieved using the same routines as those corresponding to deterministic problems, while keeping the computational

burden low. The problem is formulated as a nonlinear constraint optimization problem to minimize the total operating

cost. Weibull, beta, and normal distributions are used to model the uncertain input variables in this study. Moreover,

the firefly algorithm is applied to achieve optimal operational planning with regard to cost minimization. The efficiency

of Hong’s point estimate method is validated on a typical MG. Results for the case study are presented and compared

against those obtained from the Monte Carlo simulation. Specifically, this paper shows that the use of the 2m+1 scheme

provides the best performance when a high number of random variables, both continuous and discrete, are considered.
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1. Introduction

In recent years, there has been a global movement in the direction of the adoption and deployment of distributed

and renewable resources. Renewable energy (RE) sources differ from conventional sources in that generally they

cannot be scheduled, they are much smaller than conventional power stations, and they are often connected

to an electricity distribution system rather than a transmission system. The integration of such time-variable

distributed or embedded sources into electricity networks requires special consideration. Due to the ever-

increasing demand for high-quality and reliable electric power, the concept of distributed energy resources

(DERs) has attracted widespread attention in recent years [1]. DERs consist of relatively small-scale generation

and energy storage devices that are interfaced with low- or medium-voltage distribution networks and can offset

the local power consumption, or even export power to the upstream network if their generation surpasses the local

consumption. A new philosophy of operation that is expected to enhance the utilization of DERs is known as

the microgrid (MG) concept [2,3]. MGs should widely utilize RE resources such as wind, sunlight, and hydrogen

to play a significant role in the electric power systems of the future, for cleaner air, reduced transmission and

distribution costs, and the enablement of energy efficiency enhancement initiatives. In addition, using energy

storage devices such as batteries, energy capacitors, flywheels, or controllable loads along with distributed

generation (DG) units makes MGs operate in a more flexible and economic manner [4,5]. From a customer’s
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point of view, MGs similar to traditional low-voltage (LV) distribution networks not only provide their thermal

and electricity needs, but, in addition, enhance local reliability, reduce emissions, improve power quality by

supporting voltage and reducing voltage dips, and lead to lower costs of the energy supply [6].

Several studies were performed to optimize the operation, load dispatch, and management of energy

storage systems of MGs. The particle swarm optimization (PSO) method, accordingly, was employed in [7]

to minimize the cost of MGs with controllable loads and battery storage. This was done by selling the stored

energy at high prices and shaving peak loads of the larger system. A linear programming algorithm was

used in [8] to optimize MG operation cost and battery charge states. Maximizing of benefits owing to energy

pricing differences between on-peak and off-peak periods was obtained by electrical and thermal storage charge

scheduling in [9]. The authors in [10] presented a simple approach for predicting wind speed by means of

short-term prediction. The proposed hybrid algorithm used the Hellman equation and a neural network to

predict Hellman coefficients and wind speed. The autoregressive moving average algorithm was then used for

short-term wind speed and power prediction. Morais et al. [11] proposed the classical unit commitment. Dukpa

et al. [12] proposed a new optimal participation strategy for a wind power generator that employs an energy

storage device for participating in a day-ahead unit commitment process considering stochastic power output.

The important drawback of the above works is that they do not consider all of the uncertainties of

the problem. Although employing RE sources obviates environmental concerns and fossil fuel consumption, it

introduces uncertain and fluctuating power because of stochastic wind and solar variation [13]. In addition,

regarding the open-access power market and diverse commercial, residential, and industrial consumer types,

the daily load demand also has a random nature [14]. Moreover, in an open-access power market, the degree

of uncertainty of the load forecast error and market price can be even more perceptible [14]. Engineers require

computational methods that could provide solutions less sensitive to the environmental effects, so techniques

should be used that take uncertainty into account to control and minimize the risks associated with design and

operation [15]. In order to consider uncertainty in the optimal energy management planning of MGs effectively,

the optimization problem should be solved for a suitable range of each uncertain input variable instead of just

one estimated point. Using a deterministic optimization problem, a large computational burden is required to

consider every possible and probable combination of uncertain input variables. Hence, from a system planning

point of view, it turns out to be convenient to approach the problem of the energy management planning of MGs

as a probabilistic problem. This leads to a problem known as energy management planning under uncertainty,

where the output variable of a MG objective function is obtained as a random variable, and thus it becomes

easy to identify the possible ranges of the total operating cost.

There are several techniques for dealing with problems under uncertainty. The 3 main approaches are

analytical, simulation (Monte Carlo simulated), and approximate methods [16]. The vast majority of techniques

have been analytically based and simulation techniques have taken a minor role in specialized applications. The

main reason for this is that simulation generally requires large amounts of computing time, and analytical models

and techniques have been sufficient to provide planners and designers with the results needed to make objective

decisions [17]. Moreover, analytical models require some mathematical assumptions in order to simplify the

problem.

Simulation methods estimate uncertainty by simulating the actual process and random behavior of the

system. The techniques can theoretically take into account virtually all aspects and contingencies inherent in

the planning, design, and operation of a power system [17]. The main drawback of the simulation (Monte Carlo)

is the great number of simulations required to attain convergence.
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Approximate methods give an approximate description of the statistical properties of output random

variables. These methods provide a satisfactory balance between speed and precision. Among these techniques,

the first-order second-moment [18] and point estimate methods stand out. The point estimate method [19] can

be used to calculate the statistical moments of a random quantity that is a function of one or several random

variables and has been used in the transfer capability uncertainty computation [20]. The focus in use of the

point estimate method may be on simultaneously and efficiently evaluating several probability distributions of

a system.

In this paper, the point estimate method is devised to optimize the energy management of MGs. The

main advantages of point estimate methods are that they use deterministic routines for solving probabilistic

problems and overcome the difficulties associated with the lack of perfect knowledge of the probability functions

of stochastic variables, since these functions are approximated using only their first few statistical moments (i.e.

mean, variance, skewness, and kurtosis).

The aim of any point estimate technique is to compute the moments of a random variable Z that is a

function of m random input variables pl , i.e. Z = F (P1 , P2 ,..., Pm). The first point estimate method was

proposed by Rosenblueth in 1975 [21] for only symmetric variables, and it was later revisited in 1981 [22] to

consider asymmetric variables. Since then, several methods that improve the original Rosenblueth method have

been presented. They mainly differ in the type of random variables they consider (symmetric or asymmetric,

correlated or not) and on the number of evaluations to be performed.

In practical power system problems, the number of input random variables involved is high [23]. Therefore,

the original Rosenblueth method, as well as recent and more accurate point estimate methods based on the

Rosenblueth approach [24,25], are not appropriate because the number of simulations could be even greater

than in the Monte Carlo simulation. Moreover, the number of simulations to be performed using the point

estimate methods developed by Harr [26] or Hong [27] grows linearly with the number of input random variables.

Moreover, although Harr’s method is appropriate for correlated variables, it is constrained to symmetric variables

(skewness equals zero).

In this paper, Hong’s point estimate schemes are devised to optimize the energy management of MGs to

take into account the uncertainty in the MG’s parameters. Three different concentration schemes are presented

and tested over a typical MG. The results are compared against those obtained using a Monte Carlo simulation.

2. Operation management of a MG

2.1. Objective function

The objective function for each hour’s intervals can be written as:

Minf(X) =
NT∑
t=1

Costt =
NT∑
t=1

{
Ng∑
i=1

[ut
ip

t
GiB

t
Gi + SGi

∣∣ut
i − ut−1

i

∣∣]
+

Ns∑
j=1

[ut
jp

t
sjB

t
sj + Ssj

∣∣ut
j − ut−1

j

∣∣] + ptGridB
t
Grid},

(1)

where X = [X1X2...Xt...XNT ] and Xt is a state variable vector, including the active powers of the units and

their related states, which can be described as follows:

Xt = [ptG1, p
t
G2, ..., p

t
GNg, p

t
s1, p

t
s2, ..., p

t
sNs, u

t
1, u

t
2, ..., u

t
Ns+Ng]. (2)
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2.2. Constraints

Unit constraints in energy management systems, including the unit capacity, ramping rates, minimum up/down,

crew, fuel, start-up, shut-down, and AC power transmission constraints, calculate the commitment of the units

for supplying the hourly load. The constraints for the problem are as follows.

2.2.1. System power balance

The total power generation from DGs in the MG must cover the total demand inside the grid. Hence,

Ng∑
i=1

ptGi +
Ns∑
j=1

ptsj + ptGrid =

ND∑
D=1

P t
LD

. (3)

2.2.2. Unit generation output limits

For a steady state operation, the active power output of each DG is limited by the lower and upper bounds, as

follows:

ptGi,min ≤ ptGi ≤ ptGi,max, p
t
sj,min ≤ ptsj ≤ ptsj,max, p

t
grid,min ≤ ptGrid ≤ ptgrid,max. (4)

2.2.3. Spinning reserve constraint

Ng∑
i=1

ut
ip

t
Gi,max +

Ns∑
j=1

ut
jp

t
sj,max + ptgrid,max ≥

ND∑
D=1

P t
LD

+Rt. (5)

2.2.4. Charge and discharge rate limit related to the storage device

Due to the fact that there are some limitations on the discharge and charge rates of storage devices during each

time interval, the following equation and constraint can be considered for a typical battery:

W t
ess = W t−1

ess + ηch arg ePch arg e∆t− 1

ηdisch arg e
Pdisch arg e∆t, (6)

{
Wess,min ≤ W t

ess ≤ Wess,max

Pch arg e,t ≤ Pch arg e,max;Pdisch arg e,t ≤ Pdisch arg e,max

. (7)

3. Hong’s point estimate method

Point estimate methods can be used to calculate the statistical moments of a random quantity that is a function

of one or several random variables and have been used in transfer capability uncertainty computations. These

methods concentrate the statistical information provided by the first few central moments of a problem’s input

random variable on K points for each variable, named concentrations. Using these points and function F , which

relates to the input and output variables, information about the uncertainty associated with the problem’s output

random variables can be obtained. The Kth concentration (pl,k , wl,k) of a random variable pl can be defined

as a pair composed of a location pl,k and a weight wl,k . The location pl,k is the Kth value of variable pl , at

which function F is evaluated. The weight wl,k is a weighting factor that accounts for the relative importance of

this evaluation in the output random variables. Using Hong’s method, function F has to be evaluated only K

times for each input random variable pl at the K points made up of the Kth location pl,k of the input random
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variable pl and the mean (µ) of the m− 1 remaining input variables, i.e. at the K points. In other words, the

deterministic problem has to be solved K times for each input random variable pl , and the difference among

these problems is the deterministic value pl,k assigned to pl , while the remaining input random variables are

fixed to their corresponding mean. The number K of evaluations to be carried out depends on the scheme

used. Therefore, the total number of evaluations of F is K ×m .

Specific variants, or schemes, of Hong’s point estimate method take into account one more evaluation of

function F at the point made up of the m input random variables means (µp1, µp2, ..., µpl, ..., µpm). Therefore,

for these schemes, the total number of evaluations of F is K ×m+ 1.

Let pl be a random variable with probability density function (PDF) fpl ; then the k concentrations

(pl,k, wl,k) of the m input random variables are obtained from the statistical input data. The location pl,k to

be determined is [27]:

pl,k = µpl + ξl,k + σpl, (8)

where µpl and σpl (input data) are the mean and standard deviation of the input random variable fpl , and ξl,k

is the standard location. Weight wl,k and standard location ξl,k are obtained by solving the nonlinear system

of equations [27]. 
K∑

k=1

wl,k (ξl,k)
j
= λl,j , j = 1, ..., 2k − 1

K∑
k=1

wl,k(ξl,k) =
1
m

(9)

This system can be solved using the procedure developed by Miller and Rice [28]. In this system, λl,j is the

ratio of the j th moments about the mean of pl to (σk)
j
; that is:

λl,j =
Mj(pl)

(σpl)
j
, (10)

where

Mj(pl) =

∞∫
−∞

(pl − µpl)
jfpldpl. (11)

Note that λl,1 = 0, λl,2 = 1 and λl,3, λl4 are, respectively, the skewness and kurtosis of pl .

Once all of the concentrations (pl,k, wl,k) are obtained, function F is evaluated at points (µp1, µp2, ...,

µl,k, ..., µpm), yielding Z(l, k), where Z is the vector of the output random variables. The jth moment of the

output random variables can be obtained from the proposed method using weighting factor wl.k and Z(l, k)

values as follows:

E(Zj) ∼=
m∑
l=1

K∑
k=1

wl,k × [Zi(l, k)]
j =

m∑
l=1

K∑
k=1

wl,k × [Fi(µp1, ..., pl,k, ..., µpm)]j . (12)

The standard deviation of Z is computed as follows:

σZ =
√
var(z) =

√
E(Z2)− [E (Z)]

2
. (13)
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Three different concentration schemes (2m , 2m+1, and 4m+1) are considered in this paper. The 3m+1

scheme is not considered since normally distributed input random variables yield complex standard locations

and, thus, the concentration parameters are also useless nonreal values.

Analytically solving Eq. (9) to calculate the weights and standard locations is only possible for the 2m

and 2m+1 schemes. For 3m and 4m+1, the solution of the system [Eq. (9)] can be obtained using Miller and

Rice’s procedure [28]. These 4 schemes are described below.

3.1. 2m scheme (K = 2)

If K = 2, the solution of the system of equations is given by:

ξl,k = λl,3/2 + (−1)3−k
√
m+ (λl,3/2)2, k = 1, 2. (14)

ξl,1 and ξl,2 depend on the m number of input random variables. While m increases, locations pl1 and pl2

move away from the mean µpl according to
√
m . The λl,3 expressed in Eq. (14) to denote the coefficient of

skewness of pl can be computed as follows:

λl,3 =
E[(pl − µpl

)
3
]

(σpl)
3 . (15)

wl,k , expressed in Eq. (16) to denote the weighting of the concentration located at (µp1, µp2, ..., µl,k, ..., µpm),

is then used to scale these estimates to take into account the skewness of the probability distribution of Z.

wl,1 = − 1

m
× ξl,2

ξl,1 − ξl,2
, wl,2 =

1

m
× ξl,1

ξl,1 − ξl,2
(16)

The value of each wl,k ranges from 0 to 1 and the sum of all of the wl,k values is unity. The 2m scheme

has important advantages related to its simplicity, its low computational burden, and the fact that it provides

real-value solutions for the concentrations.

3.2. 2m + 1 scheme (K = 3 and ξl,3 = 0)

If 3 concentrations (K = 3) are used for each random variable and 1 of the locations of the concentrations is

fixed at its mean value, we can match only the first 4 moments of the marginal PDF of the random variables.

The solution of the system is:

ξl,k =
λl,3

2
+ (−1)3−k

√
λl,4 −

3

4
λ2
l,3, k = 1, 2 and ξl,3 = 0. (17)

It can be seen that the standard location values of the 2m+1 (K×m+1) scheme do not depend on the number

m of input random variables, as do the K ×m-type schemes.

The weights are:

wl,k =
(−1)

3−k

ξl,k (ξl,1 − ξl,2)
k = 1, 2 and wl,3 =

1

m
− 1

λl,4 − λ2
l,3

. (18)
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By noting that m of 3m concentrations are located in the same point (µp1, µp2, ..., µl,k, ..., µpm) as the sum of

the weights equal tow0 :

w0 =

m∑
l=1

wl,3 = 1−
m∑
l=1

1

λl,4 − λ2
l,3

. (19)

This 3m concentration scheme can be viewed as a 2m+1 concentration scheme. From Eq. (17), we

indicate that the 3m scheme yields nonreal locations because in the Weibull distribution λl,4− (3/4)×λ2
l,3 < 0.

The 2m+1 scheme is more accurate than the 2m scheme because it takes into account the kurtosis λl,4

of the input random variables, while only 1 additional evaluation of function F is needed.

3.3. 3m scheme (K = 3)

For K = 3, the solution of the system [Eq. (9)] can be obtained using Miller and Rice’s procedure, and the

standard locations ξl,k are the roots of this third-order polynomial:

π(ξ) = ξ3 + C2ξ
2 + C1ξ + C0, (20)

where C0, C1 , and C2 are computed through:

 1
m 0 1
0 1 λl,3

1 λl,3 λl,4

×

 C0

C1

C2

 = −

 λl,3

λl,4

λl,5

 , (21)

and then the concentration weights are given by:

wl,k =

1 + 1
m

∏
j ̸=k

ξl,j∏
j ̸=k

(ξl,j − ξl,k)
. (22)

The 3m scheme theoretically provides higher accuracy than the 2m scheme because it takes into account more

detailed statistical information (the fourth and fifth central moments are also considered) of the random variable,

and 3 points for each input random variable, instead of only 2, are considered. The 3mscheme usually provides

useless complex concentration values when the Weibull distribution is used to model the input data uncertainty.

If the input data uncertainty is modeled to normally distributed random variables, the 3m scheme becomes a

2m+1scheme. Therefore, this scheme is not used in this paper because we use the Weibull distribution for the

wind power.

3.4. 4m + 1 scheme (K = 5 and ξl,5 = 0)

The 4m+1 scheme is derived from the 5m scheme by setting to zero 1 of the 5 standard locations (let ξl,5 = 0).

Such as in the 3m scheme, there is not an analytical formula to calculate the concentration values. The other

4 standard locations ξl,k are the roots of the following fourth-order polynomial:

π(ξ) = ξ4 + C3ξ
3 + C2ξ

2 + C1ξ + C0, (23)
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where,C0, C1 , C2 , and C3 are computed through:


0 1 λl,3 λl,4

1 λl,3 λl,4 λl,5

λl,3 λl,4 λl,5 λl,6

λl,4 λl,5 λl,6 λl,7

×


C0

C1

C2

C3

 = −


λl,5

λl,6

λl,7

λl,8

 . (24)

Once ξl,1, ξl,2, ξl,3 , and ξl,4 are obtained, the weights are determined by solving the linear system.


ξl,1 ξl,2 ξl,3 ξl,4
ξ2l,1 ξ2l,2 ξ2l,3 ξ2l,4
ξ3l,1 ξ3l,2 ξ3l,3 ξ3l,4
ξ4l,1 ξ4l,2 ξ4l,3 ξ4l,4

×


wl,1

wl,2

wl,3

wl,4

 =


0
1
λl,3

λl,4

 (25)

We take into account that the weight wl,5 that corresponds to ξl,5 = 0 is calculated by:

wl,5 =
1

m
−

4∑
k=1

wl,k. (26)

In Eq. (8), setting ξl,5 = 0 yieldspl,k = µpl , and thus m of the 5m locations are the same (µp1, µp2, ..., µl,k, ..., µpm).

Therefore, the weight of this concentration must be updated to the value w0 .

w0 =
m∑
l=1

wl,5 = 1−
m∑
l=1

4∑
k=1

wl,k (27)

For this reason, the 4m+1 scheme can be viewed as a 5m scheme with a computational burden decrease of

m – 1 evaluations of F .

4. Hong’s point estimate method for computing the optimal production cost

The overall computational procedure of Hong’s point estimate method is shown in Figure 1. The load demand,

wind turbine (WT) power generation, photovoltaic (PV) power generation, and market price are some of the

most uncertain variables in the new deregulated power systems, especially in MGs. For instance, the uncertainty

of the load can stem from many different variables, like weather conditions, temperature variations, humidity,

or programs pursued by governments. In the case of a WT, the wind speed variations as an input variable are

converted to the output power, which can affect the total production. Similar discussions can be had for the

PV production and market price.

Normal, beta, and Weibull distributions are used to handle the uncertain input random variables and,

depending on the concentration scheme used, the locations and weights have to be computed as described previ-

ously. A deterministic analysis must be run for each point (µp1, µp2, ..., µpl, ..., µpm). Note that a deterministic

routine may be used to carry out the computations because only deterministic values are involved. The cost

function solution can be expressed as follows:

Z(l, k) = Fi (µp1, µp2, ..., pl,k, ...µpm) . (28)

742



MOHAMMADI et al./Turk J Elec Eng & Comp Sci

Figure 1. Flow diagram of Hong’s point estimate method.

Function f transfers the uncertainty from the input random variables to the output random variables and

Z(l, k) is the vector of the output random variables associated with the K th concentration of random variable

pl . The total number of deterministic analyses to be run depends on the concentration scheme considered. The
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vector of the output random variables is used to estimate the raw moments of the output random variables as

follows:

E (Z) ∼= E(Z) + wl,kZ(l, k)
E(Zj) ∼= E(Zj) + wl,k(Z(l, k))j

. (29)

The process ends once all of the concentrations of all of the input random variables are taken into account. After

that, the estimated raw moments of the output random variables are used to compute the desired statistical

information. In order to obtain the PDFs and the cumulative density functions (CDFs) of the output random

variables, the Gram–Charlier expansion is used [29]. To improve the optimization process, the firefly algorithm

(FA) is utilized.

5. Firefly algorithm

The original FA was inspired by the behavior of firefly insects during the summer in tropical areas. The FA is a

metaheuristic optimization algorithm that was first introduced at Cambridge University, based on 3 key ideas

[30]: 1) given that any 2 fireflies may be attracted to each other, all fireflies are supposed to be unisex; 2) a firefly

with less brightness is attracted to a firefly with more brightness and it is the brightness of each firefly that

determines its attractiveness (light intensity); 3) in the case that no firefly with more brightness is recognized, a

firefly can move randomly in the search space. It is worth noting that, in optimization problems, the brightness

of a firefly is determined by the objective function value. The FA is a population-based optimization algorithm

that has many similarities to other population-based algorithms, such as the artificial bee colony, PSO algorithm,

and bacteria foraging optimization. However, the existence of some characteristics, like the low dependability

of the algorithm on adjusting the parameters, the appropriate ability of a local search, and the simplicity of

both idea and implementation, distinguish the FA from the rest. Moreover, the random characteristics of the

FA allow the algorithm to perform a deep search for the global solution.

5.1. Distance between fireflies

The distance among the fireflies in the air is similar to the distance among the fireflies’ vectors in the opti-

mization search space. Consequently, any mathematical framework such as Cartesian (or Euclidean) distance,

Mahalanobis distance, or Manhattan distance can be utilized to calculate the distance among the vectors of the

fireflies. In this paper, the distance between the ith and j th fireflies is calculated in the Cartesian framework

as follows:

rij = ∥Xi −Xj∥ =

√√√√ d∑
L=1

(xi,L − xj,L)2. (30)

5.2. Attractiveness of the fireflies

In reality, as the distance between 2 fireflies increases, less light can be seen by the fireflies (less attractiveness).

In order to simulate this behavior of the fireflies, any monotonically decreasing function, as in Eq. (16), can be

used [31]:

β(r) = β0 × exp(−γrm);m ≥ 1. (31)
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5.3. Movement of the fireflies

One of the main ideas of the FA is that a firefly with less brightness is attracted to a firefly with more

brightness. The movement of the j th firefly (with less brightness) toward the ith firefly (with more brightness)

is mathematically formulated as follows:

Xj = Xj + β0 × exp(−γrm)× (Xi −Xj) + uj

uj = α(rand− 1
2 )

. (32)

This equation consists of 3 segments: 1) the first segment is the current position of the j th firefly; 2) the second

segment simulates the brightness of the ith firefly seen by the j th firefly; and 3) the third segment allows the

j th firefly to move randomly in the entire search space when no brighter firefly is visible around it. The constant

value α as the randomization parameter is in the range of (0,1).

However, there exist some points for the appropriate performance of the FA to be considered. According

to recent works, it is shown that the tuning of the 2 variables, β0 and γ , depends on the characteristics of

the investigated problem. Consequently, there is no accurate formulation to give for the adjustment of these

parameters for all types of optimization problems. Meanwhile, some keys should be regarded in all cases. As the

distance between 2 fireflies is increased, the attractiveness of each firefly in view of the other firefly is reduced.

Similarly, as the absorption coefficient γ reaches 0, the attractiveness coefficient (β) moves to β0 . Consequently,

the distance between 2 fireflies does not have an effect on the light intensity, which simulates a local or global

solution. This limiting feature corresponds to the original PSO algorithm [32]. In contrast, as the value of γ

moves toward infinity, the bright density function is changed to a Dirac delta function (β(r) → δ(r)). This

phenomenon simulates a situation in which the fireflies cannot see each other, so they have to move randomly.

6. Case study

A typical study case LV network, shown in Figure 2, was proposed in [27] and used in [6,28]. The system

data were extracted from [6], where a complete data set can be found. The network comprises 3 feeders: 1

serving a primarily residential area, 1 industrial feeder serving a small workshop, and 1 feeder with commercial

consumers. A variety of DG sources, such as microturbine (MT), proton-exchange membrane fuel cell, WT,

PV, and nickel-metal-hydride battery, are installed in the network. It is assumed that all of the DG sources

produce active power at a unity power factor, i.e. neither requesting nor producing reactive power. Moreover,

the thermal load is not considered in the proposed MG system. Moreover, there is a power exchange link

between the utility and the MG during the time step in the study period based on the decisions made by the

MG central controller.

The maximum and minimum production limits of the DGs are given in Table 1. The bid coefficients

in euro cents (€ ct) per kilowatt hour (kWh) are given in Table 2. Table 3 offers the real-time market energy

prices for the examined period of time. In order to account for their production in the optimization functions,

renewable source forecasting is required. A simple method that performs admirably well for very short-term

forecasting and even outperforms most sophisticated state-of-the-art techniques in high temporal resolution

applications is the ‘persistence’ method. This assumes that the renewable source production for the next time

interval is equal to the current production and can be easily used in our application. The hourly forecasted

load demand of the MG, the normalized forecasted output power of the WT and PV, and the hourly forecasted

market price for a typical day can be found in Figure 3.
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Figure 2. The study case LV network.

Table 1. The limits of the installed DG sources.

ID Type Min. power (kW) Max. power (kW)
1 MT 6 30
2 PAFC 3 30
3 PV 0 25
4 WT 0 15
5 Bat –30 30
6 Utility –30 30

Table 2. Bids of the DG sources.

ID Type Bid (€ ct/kWh) Start-up/shut-down cost (€ ct)
1 MT 0.457 0.96
2 PAFC 0.294 1.65
3 PV 2.584 0
4 WT 1.073 0
5 Bat 0.38 0

The total load demand within the MG for a typical day is 1695 kW. In this paper, the output power of

the WT and the PV are considered equal to their forecasted values and the other value of the load demand

is satisfied by the other units. In order to make the analysis simpler, it is assumed that the storages could

supply or store power within their limit given in Table 1, without considering how much they were discharged

or charged previously. Table 4 gives the detailed data of the economic dispatch and it can be inferred that all

equality and inequity constraints are satisfied.
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Table 3. Real-time market prices.

Price (€ ct/kWh) Hour Price (€ ct/kWh) Hour
1.50 13 0.23 1
4.00 14 0.19 2
2.00 15 0.14 3
1.95 16 0.12 4
0.60 17 0.12 5
0.41 18 0.20 6
0.35 19 0.23 7
0.43 20 0.38 8
1.17 21 1.50 9
0.54 22 4.00 10
0.30 23 4.00 11
0.26 24 4.00 12
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Figure 3. Forecasted values of the load demand, market price, and PV and WT power production.

The probabilistic data for the test system were obtained from [17,23,33,34]. The coefficient of variation,

defined as the standard deviation and mean value ratio, is used to indicate the dispersion of the random variables

[20]. The probabilistic data for the test system are determined as follows [12,21]:

• Load demand and market prices are modeled as normal distribution with a standard deviation of 5%.

• Output powers of the PV units have a beta distribution.

• The Weibull PDF is considered for the wind power.

In order to demonstrate the efficiency and accuracy of Hong’s point estimate method, comparisons are

made with the Monte Carlo simulation using 7000 samples. This amount of simulations is high enough to
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guarantee the convergence of the Monte Carlo method. The differences among the solutions obtained by

running several executions of the Monte Carlo simulation with 7000 samples are on the order of 10−4 per unit.

These differences are small enough to consider the results provided by the Monte Carlo simulation with 7000

samples as reference or exact values.

Table 4. Economic dispatch.

Time MT PAFC PV WT Battery Utility
(h) (kWh) (kWh) (kWh) (kWh) (kWh) (kWh)
1 6 29.43 0 1.7850 –13.4456 30
2 6 21.6326 0 1.7850 –14.7850 30
3 6 27.70 0 1.7850 –13.7855 30
4 6 21.80 0 1.7850 –12.7850 30
5 6 21.2433 0 1.7850 –11.7888 30
6 6.0004 29.12 0 0.8150 –3.9150 29.897
7 6.0004 21.3047 0 1.7850 12.2150 30
8 6 29.999 0 1.7855 20.8499 –15.6451
9 30 29.9999 0 1.7855 30 –20.5350
10 30 30 7.5250 3.0855 30 –20.6133
11 30 30 9.2277 8.7724 30 –30
12 30 30 11.9500 10.4133 30 –30
13 30 30 22.9000 3.91227 30 –27.77
14 30 30 16.0500 2.3785 30 –30
15 30 30 10.8450 1.7855 30 –15.6600
16 30 30 4.2250 1.3017 30 –11.4522
17 29.9999 30 0.5500 1.7854 30 –4.3542
18 6.0001 30 0 1.7855 30 24.1210
19 6 30 0 1.3021 29.6980 25
20 6.0007 329.99 0 1.7855 30 20.996
21 30 30 0 1.3010 30 –13.301
22 29.996 30 0 1.3010 30 –18.9484
23 6 29.96 0 0.9155 –12.9150 29.95
24 6 15.7852 0 0.6157 –10.6150 329.950

Table 5 shows the mean and standard deviation results of the total cast for the network, which have been

considered as representative of the general results obtained from the different point estimate schemes analyzed

in this paper. It is clear that the 2 K ×m + 1 type of schemes provide good results compared with the Monte

Carlo values, both for the standard deviation and the mean. The 2m scheme results also yield acceptable

values, but the differences are greater. This is due to the fact that the 2m scheme concentrations depend on the

number m of input random variables. This effect was also mentioned in a previous work [35], applying point

estimate methods to power systems. The 3m+1 and 3m schemes were not considered due to the complex values

obtained for the concentrations of the input random variables modeled with normal and Weibull distributions.

Table 5. Mean and standard diviation results for the total cost.

Parameters (µ, σ)
Methods
Monte Carlo 2m 2m + 1 4m + 1

Mean (µ ) 274.3457 283.2336 274.3432 274.3447
Standard deviation (σ ) 12.564 43.534 12.243 12.262
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However, the 2m+1 and 4m+1 schemes maintain their good behavior when m increases because their

concentrations do not depend on it. This stable behavior over the number of input random variables is the

reason why these K × m+1-type schemes provide better results than K × m -type schemes when a practical

power system is considered. Table 6 shows the error comparisons of different methods. The results for the test

system (see Table 6) also show that the errors of the estimations incurred by schemes 2m+1 and m+1 are

much smaller than those corresponding to the estimations of the 2m scheme. For example, with regard to the

mean values calculated by schemes 2m+ 1 and 4m+1, the largest error corresponding to the total cost does not

exceed 0.0005%, but in the case of scheme 2m , the highest error corresponds to the total cost, which is about

2.74%. As for the standard deviations, the differences between the estimations provided by the 2m scheme and

those provided by the Km + 1 schemes are still more remarkable. For instance, the error associated with the

estimation of the 2m scheme for the standard deviation of total cost is greater than 237%, whereas this error

does not exceed 2.5% in the case of schemes 2m+1 and 4m+1.

Table 6. Error percentage in different methods.

Parameters (µ, σ)
Methods
2m 2m + 1 4m + 1

Mean 3.2% 0.00091% 0.0003%
Standard deviation 237.32% 2.55% 2.4%

Tables 5 and 6 show that Hong’s point estimate method gives good modeling of the relationship between

the cost function and the uncertain input parameters. In order to obtain the PDFs and the CDFs of the output

random variables, the Gram–Charlier expansion is used. The PDFs of the operation cost are presented in Figure

4. In Figure 5, the CDFs are also compared with that obtained using Monte Carlo simulation. Figures 4 and 5

show that the PDF and CDF corresponding to the 2m+1 scheme are almost not evident because they match

those of the 4m+1 scheme, and both provide good fitting to the CDF obtained with the Monte Carlo method.

In Figure 5, the CDF estimated by the 2m scheme is different from the others.
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Figure 4. PDF of the expected cost. Figure 5. CDF of the expected cost.

This is another symptom of the bad behavior of the 2m scheme because there is a good fit for the mean

but a high estimation error for the standard deviation. The 4m+1 scheme exhibits the highest computational

burden due to the high number of deterministic analysis performed.
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On the other hand, it should be noted that the 2m+1 scheme is faster than the 2m scheme, even though

an additional deterministic cost function has to be solved. All of the simulations are carried out in MATLAB
7.12 on a Pentium-IV, core i3, 2.13-GHz personal computer with 3 GB of RAM. Table 7 shows the CPU time

needed to analyze the statistical moments of the output variables for each scheme considered, as well as the

Monte Carlo simulation with 7000 evaluations.

Table 7. CPU time (s).

Methods
Monte Carlo 2m 2m + 1 4m + 1

CPU time 38.23 0.133 0.126 0.278

7. Conclusion

This paper presented a stochastic cost model to address the influence of the load demand, WT and PV unit

generation, and market price uncertainties on the optimal operation of MGs.

The test results indicated that if the uncertain parameters considered can be measured or estimated,

the distributions of all of the state variables and optimal costs can be accurately and efficiently evaluated with

Hong’s point estimate method.

The FA is a metaheuristic algorithm inspired by the flashing behavior of fireflies. The primary purpose

for a firefly’s flash is to act as a signal system to attract other fireflies. Since this problem is a type of nonlinear

and complex optimization problem with equality and inequality constraints, a new optimization algorithm based

on the adaptive modified FA (AMFA) is proposed. The proposed AMFA makes use of a powerful modification

process to enhance the diversity of the firefly population, as well as a self-adaptive technique to increase the

ability of the algorithm to move toward the promising global optimal solution quickly.

The 2m , 2m+1, and 4m+1 schemes considered in this paper were tested on the stochastic cost model.

Results were presented and compared against those obtained from the Monte Carlo simulation. Weibull and

normal distributions were used to model input random variables. The results showed that the use of the 2m+1

scheme provides the best performance. Similar results were obtained using the 4m+1 scheme, although they

implied a considerably higher computational burden. The 2m scheme accuracy decreases more than that of

the other schemes because the 2m scheme concentrations depend on the number m of input random variables.

Moreover, Hong’s point estimate method was tested and verified by comparison with results from the Monte

Carlo simulations on the test system. Using the results obtained from the Monte Carlo simulations as a basis,

Hong’s point estimate method could reach results similar to those of the Monte Carlo simulations with less

effort in the numerical computations.

Nomenclature
pl Value of the l th input random variable
pl,k The k th location of pl
wl,k The k th weighting factor of pl
µpl The mean of pl
σpl The standard deviation of pl
ξl,k The standard location of pl
ptGi, p

t
sj Active power output of the ith generator andj th storage device at time t ,

respectively
ptGrid Active power bought/sold from/to the utility at time t
Bt

Gi, B
t
sj Bid of the j th DG source and j th storage device at hour t , respectively
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Bt
Grid Bid of the utility at hour t

SGi, Ssj Start-up/shut-down costs for the ith DG unit and j th storage device, respectively
pLD The amount of the D th load level
ptG,min, p

t
G,max Minimum and maximum active power production of the ith DG at hour t ,

respectively
pts,min, p

t
s,max Minimum and maximum active power production of the j th storage at hour t ,

respectively
ptgrid,min, p

t
grid,max Minimum and maximum active power production of the utility at hour t ,

respectively
W t

ess,W
t−1
ess Battery energy storage at time tand t− 1, respectively

PCh arg e(Pdisch arg e) Permitted rate of charge (discharge) through a definite period of time ∆t
ηch arg e(ηdisch arg e) Charge (discharge) efficiency of the battery
Wess,min(Wess,max) Lower and upper bounds on the battery energy storage, respectively
Pch arg e,max(Pdisch arg e,max) Maximum rate of charge (discharge) during a definite period of time ∆t
Rt The scheduled spinning reserve at time t
N Total number of optimization variables
NT Total number of hours
Ng Total number of generation units
ND Total number of load levels
t, k Time interval and iteration index, respectively
M Number of input random variables of Hong’s point estimate methods
ut
i Status of unit i at hour t

λl,3 The skewness of pl
λl,4 The kurtosis of pl
E(zj) The j th moment of the output random variable
Ns Total number of storage units
Z(l, k) The vector of the output random variables associated with the k th concentration

of random variable pl
d The dimension of the control vector
γ Absorption coefficient
r Distance between any 2 fireflies
β0 Initial attractiveness at r = 0
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[10] O. Özgönenel, D.W.P. Thomas, “Short-term wind speed estimation based on weather data”, Turkish Journal of

Electrical Engineering & Computer Sciences, Vol. 20, pp. 335–346, 2012.
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[35] G. Verbic, C.A. Cañizares, “Probabilistic optimal power flow in electricity markets based on a two-point estimate

method”, IEEE Transactions on Power Systems, Vol. 21, pp. 1883–1893, 2006.

753

http://dx.doi.org/10.1109/TPWRS.2003.818743
http://dx.doi.org/10.1109/TPWRS.2003.818743
http://dx.doi.org/10.1016/j.asoc.2011.09.017
http://dx.doi.org/10.1016/j.asoc.2011.09.017
http://dx.doi.org/10.1016/S0142-0615(97)00050-1
http://dx.doi.org/10.1016/S0142-0615(97)00050-1
http://dx.doi.org/10.1109/TPWRS.2006.881146
http://dx.doi.org/10.1109/TPWRS.2006.881146

	Introduction
	Operation management of a MG
	Objective function
	Constraints
	System power balance
	Unit generation output limits
	Spinning reserve constraint
	Charge and discharge rate limit related to the storage device


	Hong's point estimate method
	2m scheme (K = 2)
	2m + 1 scheme (K = 3 and l,3 =0)
	3m scheme (K = 3)
	4m + 1 scheme (K = 5 and l,5 =0)

	Hong's point estimate method for computing the optimal production cost 
	Firefly algorithm
	Distance between fireflies
	Attractiveness of the fireflies
	Movement of the fireflies

	Case study
	Conclusion

