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Abstract: A retinal image contains vital information. Extracting these features is the first and most important step in

the analysis of retinal images for various applications of medical or human recognition. In this study, a morphological-

based blood vessel extraction algorithm using adaptive-local analysis from colored retinal images is proposed. In this

algorithm, by applying the appropriate morphology functors and local histogram stretching on the retinal images, the

brightness of the images is considerably uniformed. Furthermore, curvelet transform (CT) is used to enhance the

retinal images by highlighting the edges of the images in various scales and directions and by the adaptive and local

improving of the CT coefficients. Since the blood vessels in retinal images are distributed in various directions, we use

the morphology functors with multidirectional structure elements to extract the blood vessels from the retinal images.

Geodesic conversion-based morphology functors are used to properly refine the appeared frills with a size smaller than

those of the arterioles in the images. Finally, by locally applying the connected component analysis in the images and

locally applying an adaptive filter on the connected components, all of the residual frills are refined from the images.

The obtained results of the proposed algorithm show that the blood vessels are extracted from the background of the

images with high accuracy, which in turn shows the high ability of the proposed algorithm in extracting the retinal blood

vessels.

Key words: Blood vessel extraction, retinal image, curvelet transform, adaptive-local analysis, geodesic conversion-

based morphology functors, multidirectional morphology functors

1. Introduction

One of the most important internal components in the eye is the retina, covering the entire posterior compart-

ment, on which all of the optic receptors are distributed. Disorders of the retina resulting from special diseases

are diagnosed by special images of the retina that are obtained using optic imaging called fundus photogra-

phy. Blood vessels are important parts of retinal images, consisting of arteries and arterioles. Checking the

obtained changes in retinal images in a special period can help the physician to diagnose disease. Applications

for retinal images include diagnosing the progress of some cardiovascular diseases, diagnosing the region with

no blood vessels (macula), using such images in helping automatic laser surgery on the eye, and using such

images in biometric applications. On the other hand, extracting retinal blood vessels is done in some cases

by a physician manually, which is difficult and time-consuming, and is accompanied by many mistakes due

to much dependence on the physician’s skill level. Hence, the exact extraction of the blood vessels from the

retinal images necessitates using an algorithm and instruments that reduce the dependency on the functor and

eliminate the error factors. Among the most common methods used to extract the blood vessels, tracking-based
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[1], classifying-based [2], and window-based [3] methods can be referenced. Because of the variability of the

light reflection coefficient in different parts of the retina layer, which are also due to the defects in imaging

systems, there occurs very nonuniform illumination in the retinal images, which impairs modeling the blood

vessels in window-based methods and tracking in tracking-based methods. Since all of the connected regions

in the retinal images are classified by a low-level algorithm in classifying-based methods, the pixels related to

the blood vessels cannot be classified carefully due to the intrinsic noise in the retinal images and oscillating

changes in the image illumination. Hence, for the extraction of blood vessels with high accuracy, we need an

effective algorithm.

In this paper, using appropriate morphology functors [4] and locally applying the histogram stretching,

the illumination of an image is uniformed. Since the preprocessing phase plays an important role in the final

extraction results, locally applying the morphology functors and histogram stretching on a retinal image will

have a noticeable effect on improving the accuracy of the final edge image. Next, by locally applying an adaptive

function [5] on the curvelet coefficients [6], along with amplifying the desired signal and enhancing the image

contrast, amplifying of the noise is prevented. One of the advantages of the proposed algorithm is applying

the histogram stretching locally and curvelet transform on the image to reduce the noise and improve the

contrast. Therefore, the inadequacy of previous methods is resolved. Since the blood vessels are distributed in

different directions, we use the morphology functors [7] with multidirectional structure elements to extract the

blood vessels from retinal images. Applying the multidirectional structure elements in this study causes the

blood vessels to be separated from the background with high accuracy. Finally, using geodesic conversion-based

morphology functors, connected component analysis (CCA), and locally applying the adaptive filter on the

connected components with a defined threshold [8], the frills in the image are removed and the extracted blood

vessels are obtained.

The rest of the paper is organized as follows: In Section 2, the proposed algorithm is described. In Section

2.1, the preprocessing phase is introduced. In Section 2.2, the blood vessel extraction method is described. The

frill deleting method is described in Section 2.3. In Section 3, the experimental results are presented and

discussed. Conclusions are presented in Section 4.

2. Proposed retinal image blood vessel extraction algorithm

Figure 1 shows a summary of the proposed algorithm. First, the step of preprocessing is done on the images to

extract the retinal blood vessels from the color images.
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Figure 1. Summary of the proposed algorithm.

The images taken from retina are colored ones, so we can convert them into gray images with the best

contrast. For this purpose, we decompose the original and color images into subbands of red, green, and blue,

and then by defining the criterion Cµr , we select the best subband in terms of the dynamic range and signal

rate [8]. Since the nonuniformity of the illumination in the retinal images generates frills in the final edge image,

769



SHAHBEIG/Turk J Elec Eng & Comp Sci

it is necessary to uniform the image illumination. The BotHat morphology function [4] and local histogram

stretching are then used to uniform the illumination of the images. The BotHat morphology function, with an

appropriately sized structure element, produces an image with a uniformed background and highlighted blood

vessels.

Locally applying the histogram stretching on the produced images increases the dynamic range of the

gray levels of the image’s components considerably and highlights the image data. Since enhancing the edges

of the image increases the contrast, using the multiscale and multidirectional curvelet transform [6], the edges

of image are enhanced. Selecting the adaptive nonlinear function [5] and locally applying it on the curvelet

coefficients of the retinal images enhances the contrast of the retinal images. To start the process of extracting

the retinal blood vessels, we use the improved TopHat function [7] with multidirectional structure elements.

There occur some frills in the extracted blood vessel image (edge image) in addition to the extracted blood

vessels because of the intrinsic noise in the retinal images. Applying the morphology functors based on geodesic

conversions to delete the frills smaller than arterioles and then locally applying the CCA and adaptive filter to

delete the rest of frills are proposed in this study. Finally, the image of the blood vessels is extracted from the

retinal image.

3. Preprocessing

3.1. Selecting the proper subband of image

The subband G (green) from the colored retinal images has the best contrast by experience, but sometimes it

has a low contrast. Hence, in this study, to get the best gray images from colored retinal images, the criterion

Cµr is defined in the following equation [8]:

Cµr =

µr∑
j=0

(pr(rj)), (1)

where µr is the mean of the gray levels in the image of subband R (red) and Cµr is the sum of the probability

density function (pr(.)) of the gray level from rj = 0 to rj = µr , related to subband G. For example, if Cµr >

0.45, it means that the illumination of subband G is proper, and we use only it in the rest of the process;

otherwise, we increase the dynamic range of the gray level of subband G by histogram matching and with the

aid of subband R.

3.1.1. Curvelet transform

The curvelet transform [6] is considered as a new generation multiscale transform, which results in a set of

coefficients in various directions and scales by applying a specific wavelet in different directions and scales on

the image. Each of these sets of coefficients, located in a polar wedge in the frequency domain, indicates data

from the image in that scale and direction. Curvelet transform in this section works throughout in 2 dimensions,

ℜ2 , with spatial-domain variable x , frequency-domain variable ω , and r and θ , which are polar coordinates in

the frequency domain.

At first, a pair of windows, W(r) and V(t), must be defined, which are called the ‘radial window’ and

‘angular window’, respectively. These are smooth, nonnegative, and real-valued. The radial window takes

positive real arguments and is supported on r ∈ (1/2 ,2), and the angular window takes real arguments and is

supported on t ∈ [−1,1].

770



SHAHBEIG/Turk J Elec Eng & Comp Sci

Now, for each scale ‘j ’, where j ≥ j0 , the frequency window U j is defined in the Fourier domain by Eq.

(2):

Uj(r, θ) = 2−3j/4W (2−jr)V (
2 ⌊j/2⌋ θ

2π
), (2)

where ⌊j/2⌋ is the integer part of j/2. Thus, Uj covers an area that is a polar ‘wedge’, where this range is

determined by the radial and angular windows (W and V).

The width of the range in each direction will depend on the scale. We work with the symmetrized version

of Eq. (2), namely Uj(r, θ) + Uj(r, θ + π), to obtain the real-valued curvelets.

The waveform ϕj(x) by means of its Fourier transform is defined as
⌢

ϕ j(x) = Uj(ω). Here, ϕj can be

considered as a ‘mother’ curvelet. Thus, all of the curvelets at scale 2−j will get the rotations and translations

of ϕj . Now, we introduce:

• the equally spaced sequence of rotation angles θl = 2π2−⌊j/2⌋l , with l = 0, 1, ... , such that 0 ≤ θl < 2π ,

• and the sequence of translation parametersk = (k1, k2) ∈ Z2 .

With these notations, the curvelets (as a function of x = (x1 ,x2)) at scale 2−j , with orientation θl and position

x
(j,l)
k = R−1

θl
(k1.2

−j , k2.2
−j/2), are defined by the following equation:

ϕj,l,k(x) = ϕj(Rθl(x− x
(j,l)
k )), (3)

where Rθl is the rotation by θl radians and is defined in the following equation:

Rθl =

(
Cosθl Sinθl

−Sinθl Cosθl

)
. (4)

A curvelet coefficient is then simply the inner product between an element f ∈ L2(ℜ2) and a curvelet ϕj,l,k .

C(j, l, k) = ⟨f, ϕj,l,k⟩ (5)

Since digital curvelet transforms operate in the frequency domain, it will prove useful to apply Plancherel’s

theorem and express this inner product as the integral over the frequency plane.

C(j, l, k) =
1

(2π)
2

∫
f(ω)Uj(Rθlω)e

i
⟨
x
(j,l)
k , ω⟩

dω (6)

Here, f is the Fourier transform of the signal and U j is the frequency window applied in the frequency domain.

Hence, C(j, l, k)is achieved in the scale j, direction l, with the transition parameter k. Figure 2 shows

the tiling of the curvelet in the frequency plane. The curvelet in the frequency domain covers approximate

parabolic wedges. The shaded area shows one of the typical wedges.
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∼2j/2

∼2j

Figure 2. Curvelet tiling of the frequency plane.

Further details and equations relating to the curvelet transform were given in [6] as a new generation of

multiscale transforms.

3.1.2. Adaptive function locally applied on the curvelet coefficients of the image

The parameters for the adaptive function [5] are defined in Eq. (3), based on some statistical characteristics of the

curvelet coefficients of the input image, which result in the curvelet coefficients being improved more effectively.

Because the defining of the parameters of the adaptive function is based on the statistical characteristics of the

curvelet coefficients of the input image, if we apply the following adaptive function on the uniformed image

coefficients, the function acts adaptively and adapts itself to each input image and based on the statistical

characteristics of the curvelet coefficients of that image. In addition to amplifying the desired signal, it prevents

the noise from being increased simultaneously, so the inadequacy of the previous methods is resolved.

y(x) =


k1(

m
c )

p
if |x| < ac

k2(
m
|x| )

p
if ac ≤ |x| < m

k3 if m ≤ |x|

(7)

Here, p is the degree of the function nonlinearity; k1 , k2 , and k3 are the coefficients of such a function; and m

is defined as:
m = k(Mij − σ), (8)

where Mij is the greatest coefficient in a specific scale and direction indicating that the coefficients are improved

in every band according to their maximum value. C = σ is the standard deviation of the estimated noise from

image [9], which prevents noise from being increased while amplifying the desired signal simultaneously. Two

parameters, M ij and c, lead the above function to act adaptively and to adapt itself to different input images.

The above function increases the small coefficients more than the bigger ones. This function is applied on the

coefficients locally, where Mij is calculated in any specific scale and direction and then the aforesaid function is

applied on the coefficients of this polar wedge (frequency band with specific scale and direction); this, in turn,

influences the image more.

3.2. Blood vessel extraction by morphology functors and multidirectional structure elements

Many morphology functions are applied for extracting blood vessels; for example, the TopHat function is one

of them, but the problem with this function is that the pixels in the resulting image from applying the opening
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function have gray-level values equal to or less than corresponding pixels in the original image. In this paper,

the improved TopHat function [7] was used to extract blood vessels from the background of retinal images. The

improved TopHat function [7] is defined as:

TopHat = I −min((I • Sc) ◦ So; I). (9)

In the output of the improved TopHat function, an image is produced that is equal to the original one, except

for the edges, so the sensitivity to the noise is resolved. So and Sc are the structure elements applied to opening

and closing morphology functions. ◦ and • are the opening and closing markers. Since the blood vessels and

arterioles are distributed in different directions in the retinal image, using a simple structure element is not

effective, and so in this paper, we apply the multidirectional structure elements in the improved TopHat function

[7]. For instance, Figure 3 shows some of the substructure elements with dimensions of 7 × 7 and an angular

accuracy of 15◦ .

θi = 45° θi = 30° θi = 15°

Figure 3. Substructure elements with dimensions of 7 × 7.

Each of the structure elements with a specific direction is able to extract a specific direction of the data

in the blood vessel image. The final edge image, which is the extracted blood vessel image, is obtained through

a linear combination of such subimages of the edge. It can be written as in Eq. (10):

F (I) =

M−1∑
i=0

ωiF (I)i. (10)

On the other hand, we define the weights ωi so that each resulting subimage of the edge can influence the final

edge image, depending on the existing data therein.

3.3. Deleting frills

3.3.1. Applying morphology functors based on geodesic conversions

If we consider a second image in addition to the main image and it is imposed in any step of the morphology

dilation or erosion, where the resulting image remains bigger or smaller than the second image, the fundamentals

of the morphology functors based on geodesic conversions are formed [10]. If the functors are repeated

successively until the stability time, they introduce robust algorithms. Applying the opening functor based

on geodesic conversions [10] with multidirectional structure elements, as introduced in the previous section,

deletes some of the appearing frills. Since some of the appeared frills have the same size as arterioles in the

retinal image, we cannot select a structure element bigger than a certain limit, because in addition to the frills,

some part of the data will be removed. Hence, we need another step to remove the remaining frills in the edge

image.
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3.3.2. CCA and applying adaptive filter locally on such components

This step is done to label the connected components in the resulting edge image. Since we have in mind 8

neighborhoods of pixels in the edge image, we consider a mask as in Figure 4. It is moved to the center of this

mask on the pixels of the binary image if there is a pixel with a white color, p, to be labeled. If the labeled and

unlabeled pixels are shown by * and –, respectively, we label the connected components in the image according

to the following rules:

Figure 4. The 3 × 3 mask for the CCA.

• If all * have the label 0, we give a new label to the pixel p.

• If only one * has the label 1, we dedicate the label of that neighborhood to pixel p.

• If more than one * has the label 1, we give the label of one of the neighborhoods to pixel p and a sign to

the labels as equivalence.

Now there is an image in which all of the connected blood vessels and arterioles have label 1. For local processing,

the labeled image is divided into subimages and defines an adaptive threshold T [11] as:

T = µ− ασ, (11)

where σ and µ are the adaptive values of above threshold and mean value and standard deviation of length of

labels in each produced subimage, respectively. α is a constant value that controls the amount of the threshold

T , where α < 1 and is usually obtained by trial-and-error method.

The aforesaid filter acts so that it recognizes the labeled components whose lengths are lower than the

threshold T as noise and removes them.

4. Results

4.1. Database

This approach was applied to the well-known database DRIVE [12]. From this database, 40 images were selected

from the images related to 400 diabetic patients, ranging between 50 to 90 years of age, in the Netherlands.

The images in this database are of 584 × 565 pixels and in JPEG format.

4.2. Evaluation parameters

To evaluate our algorithm for enhancing the contrast, we can use 2 criteria, the peak signal-to-noise ratio

(PSNR) and the contrast increase index (CII). The equations for the PSNR and CII are defined as follows:

PSNR = 10 log10
MaxI2

MSE
, MSE =

1

mn

m∑
i=1

n∑
j=1

∥Io(i, j)− Ie(i, j)∥2. (12)
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Here, MAXI and MSE are the maximum illumination and mean squared error of the image, respectively. Io is

the original image and Ie is the enhanced image.

CII =
CEnhanced

COriginal
, C =

r − b

r + b
(13)

Here, CEnhanced and COriginal are the contrast of the enhanced and original images, respectively, and r and b

are the mean values of the gray-level of the foreground and background of the image, respectively.

Considering the segmented images by humans in the DRIVE database, the following 2 criteria are defined

in order to compare the results from the algorithm with the results from the segmentation by the specialist:

• True positive (TP): Indicates the pixels that the algorithm recognized as blood vessels, and, in fact, they

are related to the blood vessels.

• False positive (FP): Indicates the pixels that the algorithm recognized as blood vessels, but, in fact, they

are not related to the blood vessels.

• True negative (TN): Indicates the pixels that the algorithm did not recognize as blood vessels, and, in

fact, they are not related to the blood vessels.

• False negative (FN): Indicates the pixels that the algorithm did not recognize as blood vessels, but, in

fact, they are related to the blood vessels.

TPR is the ratio of true positives to all of the pixels belonging to the blood vessels, FPR is the ratio of false

positives to all of the pixels that do not belong to the blood vessels, TNR is the ratio of true negatives to all of

the pixels that do not belong to the blood vessels, and FNR is the ratio of false negatives to all of the pixels

belonging to the blood vessels.

4.3. Preprocessing

It is noteworthy that different parameter values in the preprocessing and main processing stages are selected

for implementation by the method of trial and error. For example, in the correction functions, the best possible

values are selected according to the desired application.

This section deals with the results from applying some of the aforesaid steps in image 21 from the DRIVE

database. In the selecting a proper subband section, we chose the criterion Cµr as 0.45: that is, if Cµr > 0.45,

the illumination of the subimage of band G is proper and we use only the subimage of band G; otherwise, we

use histogram matching with the aid of subband R to increase the dynamic range of the gray level of subband

G. In our algorithm, the adaptive function parameters a, p, k, k1 , k2 , and k3 are set to a = 1, p = 0.1, k = 1,

k1 = 1.1, k2 = 1.4, and k3 = 1, heuristically.

We also estimate the standard deviation of the image by the mask and the following equation in the

spatial domain [9]:

σ =

√
π

2

1

6(k − 2)(l − 2)

∑
|f(x, y) ∗M,|M =

 1 −2 1
−2 4 −2
1 −2 1

 , (14)

where f is the original image and (k×l ) is the size of the image. In this paper, we use the ‘wrapping’ method to

implement the fast discrete curvelet transform in the discrete domain. The wrapping implementation is simpler,
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faster, and less redundant than the existing proposals. We use 5 bands, in which the images are analyzed with

various scales, to apply the curvelet transform. Moreover, the angular accuracy is selected as 22.5◦ in the first

scale; that is, 16 directions are selected in the first scale. Figures 5a and 5b show the results of the preprocessing

stage. By applying the preprocessing algorithm, the mean value and standard deviation of all of the retinal

images in the database are given in Table 1.

Figure 5. a) The best subband of original image; b) the enhanced image in terms of illumination and contrast, PSNR

= 29.813, CII = 1.155; c) the extracted blood vessels with frills; and d) the final extracted blood vessels, TPR = 0.8612,

FPR = 0.0157, accuracy = 0.9593.

Table 1. Image enhancement results for all retinal images on DRIVE database.

Quantitative criterion Mean value Standard deviation
PSNR 29.730 1.008
CII 1.146 0.019

Scientific papers define the proper values for the PSNR as 30 and above, indicating the noise being

removed successfully. This value depends also on the studied image. As shown in Table 1, the proposed method

reaches this value.

4.4. Extraction results

We determine the size of the multidirectional elements as 9 × 9 in order to not be sensitive to partial changes

and to have the ability of extracting the arterioles as well. Thus, we determine the angular accuracy as 11.25◦ .

Figures 5c and 5d show the extracted blood vessels with and without frills.

To remove the frills with the aid of the opening functor based on the geodesic conversions, we use a 5

× 5 simple square structuring element as the structure element. Considering 8 neighborhoods and the CCA,

we label the connected components of the image. Next, after dividing the image into blocks of 90 × 90 pixels,

we apply the adaptive filter with the aforesaid threshold for all of the blocks locally. The components whose

lengths are lower than the threshold T are recognized as noise and removed. Figure 6 shows some final results

of the blood vessel extraction in other images from the DRIVE database. The aforesaid assessment criteria in

Section 3.2 and the mean accuracy of the algorithm are calculated for all of the existing images in the database.

The results are given in Table 2. Table 2 shows the extraction results based on the TPR, FPR, and accuracy

parameters. As shown, the blood vessels are extracted from background at a high accuracy of 96.15%.
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Figure 6. Extracted blood vessels from: a) image 9 with TPR = 0.8591, FPR = 0.0126, accuracy = 0.9585; b) image

13 with TPR = 0.8620, FPR = 0.0121, accuracy = 0.9603; c) image 35 with TPR = 0.8642, FPR = 0.0139, accuracy =

0.9612.

Table 2. Blood vessel extraction results for all images.

Algorithm TPR FPR Average accuracy (%)
Our algorithm 0.8631 0.0164 96.15

4.5. Comparison with other algorithms

Table 3 compares the performance of the proposed algorithm and some earlier reported methods based on the

DRIVE database in extracting the blood vessels from the retinal images. The algorithm proposed by Mendonça

and Campilho [4] used mathematical morphology to benefit from a priori known vasculature shape features, such

as being piecewise linear and connected. By applying morphological operators, the vasculature was then filtered

from the background for the final segmentation. The assumption that vessels are elongated structures was the

basis for the supervised ridge-based vessel detection method presented by Staal et al. [13]. Ridges were extracted

from the image and used as primitives to form line elements. Each pixel was then assigned to its nearest line

element, the image thus being partitioned into patches. For every pixel, 27 features were first computed and

those obtaining the best class separability were finally selected. Feature vectors were classified using a k-nearest

neighbor classifier and sequential forward feature selection. Martinez-Perez et al. [14] proposed a method

based on multiscale feature extraction. The local maxima over the scales of the gradient magnitude and the

maximum principal curvature of the Hessian tensor were used in a multiple pass region growing procedure.

Growth progressively segmented the blood vessels, using both feature and spatial information. Maŕın et al.

[15] presented a supervised method for blood vessel detection in digital retinal images. This method uses a

neural network scheme for pixel classification and computes a 7-dimensional vector composed of gray level- and

moment invariant-based features for pixel representation.

Table 3. Comparison of blood vessel extraction algorithms for retinal images.

Method TPR FPR Average accuracy (%) Database Run time (s)
Mendonça and Campilho [4] 0.7344 0.0236 94.63 DRIVE —–
Staal et al. [13] 0.6780 0.0170 94.41 DRIVE —–
Martinez-Perez et al. [14] 0.7246 0.0345 93.44 DRIVE —–
Maŕın et al. [15] 0.7068 0.0305 94.52 DRIVE —–
Our algorithm 0.8631 0.0164 96.15 DRIVE 21
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In our algorithm, applying the preprocessing techniques effectively omits the high intensity variations,

and then the proposed morphology function introduced with multidirectional structure elements easily extracts

the blood vessels from the retinal images. Finally, using the CCA analysis, the created noise in the edge images

is effectively omitted.

Our experiments show that applying the curvelet transform in the preprocessing stage can increase the

system’s accuracy as well as stability in the accuracy of the algorithm.

5. Conclusion

Having considered the criteria for assessing the methods used for enhancing the contrast of the images and

extracting the blood vessels, it can be concluded that the proposed algorithm is a success in fulfilling the goals.

Since the preprocessing phase plays an important role in the final extraction results, applying the BotHat

morphology functor locally and histogram stretching on the retinal image will have a noticeable effect on both

having the retinal images with uniform illumination as well as improving the accuracy of the final edge image.

Considering the aforesaid attributes of the curvelet transform, it is seen that, on one hand, this developed

instrument serves successfully in enhancing the contrast of the images and, on the other hand, proper selection

of the corrective function and proper setting of parameters resulted in preventing the strengthening of the noise

while enhancing the contrast.

In the method of morphology with multidirectional structure elements, the structure elements act with

more power in recognizing the edge. Of course, there are some frills in the edge image due to the changes

in the illumination of the background. These frills are removed effectively by the geodesic conversion-based

morphology functors, CCA and local implementation of the adaptive filter on these components. According to

the definitions in Section 3.2, the accuracy of the algorithm is defined as shown below.

Acc = (TP + TN)/(TP + FN + TN + FP ) (15)

According to Table 2 and considering that the algorithm can extract the blood vessels from the retinal images

with a high accuracy of 96.15% in good time, it can be used as a fast and reliable method.
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