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c⃝ TÜBİTAK

doi:10.3906/elk-1208-51

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

An efficient approach to the local optimization of finite electromagnetic band-gap

structures

David DUQUE∗, Vito LANCELLOTTI, Bastiaan Pieter DE HON, Antonius TIJHUIS
Faculty of Electrical Engineering, Technical University of Eindhoven, Eindhoven, the Netherlands

Received: 14.08.2012 • Accepted: 21.11.2012 • Published Online: 21.03.2014 • Printed: 18.04.2014

Abstract: We propose a methodology based on linear embedding via Green’s operators (LEGO) and the eigencurrent

expansion method (EEM) to efficiently deal with and locally optimize 2-D electrically large electromagnetic band-gap

(EBG) structures. In LEGO terminology, the composite EBG structure is broken up (diakopted) into constitutive

elements called “bricks” that we characterize through scattering operators by invoking Love’s equivalence principle,

while, at the same time, the electromagnetic interaction among the bricks is captured by transfer operators. The

resulting electromagnetic problem is then succinctly formulated through an integral equation involving the total inverse

scattering operator S−1 of the structure. To perform local optimization, the formulation of the problem allows for

variations of the electromagnetic properties and the shape of a set of objects in the EBG structure with respect to those

of the others, thereby allowing us to tune a compact designated domain within a large one. Finally, the method of

moments and the EEM are applied to achieve a considerable reduction in memory use for the overall problem.

Key words: Computational electromagnetics, method of moments, linear embedding via Green’s operators, eigencurrent

expansion method, integral equations

1. Introduction

Let us consider a periodic array of objects with electromagnetic contrast; if the spatial period over which

this contrast varies is comparable with the wavelength of the incident electromagnetic field, then intricate

scattered fields and electromagnetic band-gaps (i.e. forbidden frequency bands where no electromagnetic wave

can propagate within the structure) may occur. Such arrays of objects in 2-D and 3-D are called electromagnetic

band-gap (EBG) structures.

EBG structures have over the past decades gained considerable attention in the physics and engineering

communities because of their potential to control the propagation of electromagnetic waves by exciting localized

electromagnetic (EM) modes within a band-gap upon introducing “defects” in the EBG structure. This property

is exploited now in many applications such as antenna structures, waveguides, filters, planar reflectors, infrared

wavelengths, integrated circuits, and high- and low-Q resonators [1]. Numerous approaches have been used

recurrently to analyze EBG structures. For the sake of brevity, we briefly describe them while referring the

reader to the corresponding literature. The plane-wave expansion method [2] has been used extensively for the

analysis of fully periodic EBG structures. Several transfer-matrix methods have also been developed [3] [4].

These methods are more flexible than the plane-wave method, in that periodicity is no longer required in one

direction. Nevertheless, transfer-matrix methods are not inherently stable [5]. The finite difference time domain
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(FDTD) method [6] is commonly used to simulate and to compute band-gap diagrams for photonic crystal (PhC)

and 2-D metal photonic band-gap cavities [7]. The inherent problem is that for a sufficiently fine grid, the FDTD

may become computationally demanding when the electric size of the problem increases. More recently, the

transmission line method (TLM) has been used to compute far-field radiation of antennas embedded in 1-D

EBG of multilayer slabs [8]. Using the reciprocity theorem [9], the TLM transforms the far-field problem into

the evaluation of the field in the 1-D EBG structure due to an incident plane wave and solves it using a cascaded

transmission line circuit derived from the multilayer structure. The scattering matrix method (originated from

that of cascading networks in circuit theory) has been used to analyze periodic structures composed of multiple

layers of frequency-selective surfaces [10]. The method considerably reduces the computing time as compared

to conventional methods, which calculate the overall scattering from the structure. This cascading approach

is well suited for design optimization, because it is possible to evaluate the effect of any change in one layer

without repeating the whole computing process. The diffraction grating method, for example, has been used to

design and characterize 2-D EBG structures [1]. In this method one considers the 2-D EBG material as a stack

of periodic grids of rods (i.e. as a stack of 1-D diffraction gratings) and then a rigorous full-wave diffraction

theory is used to solve the problem. What is more, to alleviate the need for 3-D calculations in the analysis of

slab-based 2-D EBG structures, several 2-D modeling approaches have also been developed and proposed [11]

[12] [13]. In these methods, a dimensionality reduction (from 3-D to 2-D) of the problem is often performed.

Thus, the location of band gaps and other spectral features are well predicted. There are several other methods

to analyze, characterize, and optimize 2-D EBG structures, which we mention for the sake of brevity. Among

them we have the effective medium theory [14], the eigenvector expansion method [15], the finite element method

(FEM) [16], and the array scanning method [17].

We can note that in most of the methods mentioned above, the field calculation is performed either

directly for the entire structure or for well-defined parts of the EBG (i.e. an EBG layer, an EBG implant) that

are subsequently combined. For structures with a predominantly periodic conformation, the latter approach has

2 obvious advantages: the intermediate problems are computationally much smaller than the complete problem,

and the intermediate results can be reused as building blocks for a variety of composite structures. The method

that we will propose below is akin to the ideas briefly outlined above, in the sense that our method is a multiple-

step method based on a scattering formalism, whose purpose is to reinforce and expand the available list of

numerical tools for analyzing large 2-D EBG structures.

In contrast to the methods discussed above, we propose linear embedding via Green’s operators (LEGO)

combined with the eigencurrent expansion method (EEM). The LEGO approach is a domain decomposition

method that uses field diakoptics [18] by invoking either Love’s equivalence principle [9] [19] or Schelkunoff’s

equivalence principle [20] to tackle an electromagnetic problem. As a matter of fact, in LEGO a composite

structure is broken up (diakopted) into individual bricks, each containing an object or set of objects forming the

EBG structure. Each brick is then characterized by its scattering operator and the electromagnetic interaction

among the bricks is captured by transfer operators. Hence, LEGO shares the very same idea of first solving a

small problem before a larger one by tearing apart the structure into pieces with methods such as the nested

equivalence principle algorithm [21] and the equivalence principle algorithm [22]. The idea of isolating a body

with different electromagnetic properties from the surroundings within a designated domain as a “target” for

optimization was already applied in [5] in a former 2-D implementation of LEGO. Nevertheless, in [5], the

contribution of the large fixed part of the 2-D EBG structure was obtained by computing its total scattering

operator through a cascade of successive embedding steps where 2 elemental scattering operators are combined
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to form a new scattering operator commonly twice as big; moreover, the variable under optimization is tuned

through a sweep, rather than defining a formal cost function. This approach clearly has 2 disadvantages. First,

the size of the elemental scattering operators doubles at each iteration step, and hence an application of the

embedding procedure to a large problem would soon cause a rapid drain of the memory resources of most

computers, consequently limiting the electric size of the structure that can be modeled. Second, no guarantee

of finding the optimal point for the variable under optimization can be given when using a sweep.

To get around these hurdles, we combine the EEM with LEGO. Briefly speaking, the idea behind the

EEM is to use a set of basis functions that allows for an efficient representation of the pertinent operator

eigenfunctions. These ad hoc functions, as we will show, are locally entire domain functions that effectively

allow us to compress the original problem, thus enabling us to handle relatively large structures. Certainly, a

2-D implementation of the LEGO-EEM approach constitutes not only a substantial improvement over [5] but

also finds its value in a wide range of practical applications. For example, most of the electromagnetic problems

derived from 2-D EBG structures are essentially 2-D in nature; thereby, such implementation inherently brings

several advantages. Among them, we can mention the possibility of analyzing structures bigger than what

can be dealt with in a 3-D implementation. We do need fewer unknowns per brick, and thereby saving of

computer memory and faster characterization of 2-D EBG structures can be achieved. Integral operators are

less complicated in a 2-D than in a 3-D case. Finally, many structures, such as those encountered in optics,

often allow for a hybrid 2-D/3-D analysis, which is the natural extension of the 2-D case [23].

We have presented the early implications of our computational scheme at conferences. In particular,

in [24] we built upon the efficient and robust strategy presented in the current manuscript for optimizing

electromagnetic band-gap applications by considering a PhC-based drop filter. In [23] we explored the possibility

of extending the method into a mixed 2-D/3-D modeling scheme. We have reserved this manuscript for providing

the solid foundation and systematic mathematical underpinning and the level of details required to support and

reproduce the results laid out in these conference contributions and for future work. In this paper, we extend the

total inverse scattering operator introduced in [25] for the worthy instance of 2 general interacting structures,

one of them having varying parameters that we identify as the target to be optimized. Based on this extended

scattering operator, we develop an efficient strategy for the local optimization of 2-D EBG structures.

The paper is organized as follows. In Section 2, we briefly introduce the LEGO approach and we formulate

the optimization problem of a 2-D EBG structure using LEGO. In Section 3, we present the EEM and we combine

it with LEGO in order for it to be used for design optimization, which is the distinctive idea of this work. In

Section 4, we present a numerical example to show how to effectively optimize a 2-D EBG polarization splitter

using LEGO-EEM. In Section 5, conclusions are given.

2. The formulation

We consider a 2-D EBG structure comprising NB + NT elements, which are immersed in a homogeneous

background medium as shown in Figure 1. Here, NB is the number of elements whose shape and properties

are supposed not to change. We call these elements as a whole the “fixed” part of the structure. NT is the

number of elements whose composition and shape has to be optimized, and we refer to them as the “target”. A

time-harmonic dependence (exp(jωt)) is assumed throughout and suppressed. In LEGO, we start solving the

problem by “tearing apart” the structure into constituent elements, as also done in [26] and [27] for antenna

problems. We then embed each element in a bounded domain Dk, k = 1, · · · , NB+NT , as also shown in Figure

1, and we refer to Dk as LEGO bricks. We characterize electromagnetically each brick Dk independently of one
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another and of the external sources by means of scattering operators Skk [5] [25] [28], which in the formalism of

Love’s equivalence principle [19] [9] maps equivalent incident currents qik =
[
J i

k,M
i
k

]T
on ∂D−

k into equivalent

scattered currents qsk = [J s
k,M

s
k]

T
on ∂D+

k , and to capture the multiple scattering taking place in the structure,

we use the dimensionless transfer operator Tkn between any 2 bricks Dk and Dn [5], [25], [28], as depicted in

Figure 1.

Figure 1. Optimization with LEGO: A large 2-D EBG structure is divided into small subdomains that are characterized

by the scattering operator Skk . The multiple scattering taking place in the structure is captured by transfer operators

Tkn . A part of the structure with possible varying parameters is identified as the target in the optimization.

2.1. An integral equation for optimization

We formulate the problem in terms of an equation to be solved for qsk rather than build numerically the total

scattering operator of the structure through a cascade of subsequent embedding steps, as was done in [5]. To

this end, we may relate qsk with the total incident equivalent current qik,tot as follows:

q
s(F)
k = S(F)

kk q
i(F)
k,tot, k = 1, . . . , NB,

= S(F)
kk

q
i(F)
k +

NB∑
n=1
n ̸=k

q
i(F)
k(n) +

NT∑
m=1

q
i(F)
k(m)

 ,
(1)

q
s(T)
l = S(T)

ll q
i(T)
l,tot, l = 1, . . . , NT,

= S(T)
ll

q
i(T)
l +

NB∑
n=1

q
i(T)
l(n) +

NT∑
m=1
m ̸=l

q
i(T)
l(m)

 ,
(2)

where the superscript F(T) denotes whether the brick k ( l ) is in the fixed (target) part of the 2-D EBG. We

see in Eqs. (1) and (2) that q
i(F)
k,tot (q

i(T)
l,tot ) is the sum of 3 contributions.

549



DUQUE et al./Turk J Elec Eng & Comp Sci

1. q
i(F)
k and q

i(T)
l are the equivalent currents on ∂D−(F)

k and ∂D−(T)
l radiating the impressed incident field

inside D(F)
k and D(T)

l .

2.
∑NB

n=1
n̸=k

q
i(F)
k(n) and

∑NT
m=1
m ̸=l

q
i(T)
l(m) are the additional equivalent incident currents on ∂D−(F)

k and ∂D−(T)
l due

to the multiple scattering that takes place in the fixed structure and the target.

3.
∑NT

m=1 q
i(F)
k(m) and

∑NB

n=1 q
i(T)
l(n) are additional equivalent incident currents on ∂D−(F)

k and ∂D−(T)
l due to

the interaction between the fixed structure and the target.

The additional equivalent incident currents q
i(F)
k(n) , q

i(T)
l(n) , q

i(F)
k(m) , and q

i(T)
l(m) in Eqs. (1) and (2) may be expressed

in terms of the equivalent scattered currents q
s(F)
n and q

s(T)
m by means of the pertinent set of transfer operators

T (FF)
kn , T (TF)

ln , T (FT)
km , and T (TT)

lm . Thus, we may write Eqs. (1) and (2) as:

S−1(F)
kk q

s(F)
k = q

i(F)
k +

NB∑
n=1
n ̸=k

T (FF)
kn qs(F)n +

NT∑
m=1

T (FT)
km qs(T)

m , (3)

S−1(T)
ll q

s(T)
l = q

i(T)
l +

NB∑
n=1

T (TF)
ln qs(F)n +

NT∑
m=1
m ̸=l

T (TT)
lm qs(T)

m . (4)

We complete the formulation by solving the NB + NT BIEs stated in Eqs. (3) and (4). To do so, we

define the global transfer operators T (FT) and T (TF) between the fixed structure and the target such that(
T (FT)

)
km

= T (FT)
km and

(
T (TF)

)
ln

= T (TF)
ln , and we use the definition of the inverse scattering operator for

a single structure [25]. With these definitions, Eqs. (3) and (4) can be written succinctly as:

S−1(F)qs(F) − T (FT)qs(T) = qi(F),

S−1(T)qs(T) − T (TF)qs(F) = qi(T), (5)

with (
S−1(F,T)

)
kp

=

{
S−1(F,T)
kk k = p,

−T (FF,TT)
kp k ̸= p,

(6)

qs,i(F) =


q
s,i(F)
1
...

q
s,i(F)
NB

 , qs,i(T) =


q
s,i(T)
1
...

q
s,i(T)
NT

 . (7)

The system in Eq. (5), together with the definitions in Eqs. (6) and (7), constitute the EM formulation

of the problem depicted in Figure 1. Moreover, the system matrix may be interpreted as an extension of the

inverse scattering operator introduced in [25] for the notable instance when 2 generic structures interact, and

it can be easily generalized for an arbitrary number of structures. Note that in the case of an optimization, the

corresponding terms associated to the target are the only ones to be recomputed.
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3. The eigencurrent expansion method

The system in Eq. (5) is a closed-form expression that fully describes the electromagnetic interaction between 2

arbitrary structures. Nonetheless, we observe that if we were to try to solve Eq. (5) directly using the standard

MoM, in general we would fail unless we were dealing with a moderate-size electromagnetic problem. This is

because the resulting system matrix may soon become too large to be stored and solved. Hence, in order to

solve Eq. (5) efficiently we apply the EEM as described in [25]. Nevertheless, since we still have to fit the EEM

to the system in Eq. (5), we provide a short overview of it.

3.1. Overview

The idea behind the EEM is to expand qs(F,T) and qi(F,T) in Eq. (7) using a set E of functions that allows

for an efficient representation of the true eigenfunctions, say {s(k)m }, m ∈ N , of the system operator in Eq. (5).

We dub these functions eigencurrents because, in light of Eq. (5), there is a mapping from currents to currents.

To figure out what the set E should be, we neglect for the moment the multiple scattering taking place in the

structure of Figure 1. This implies 2 things: 1) the transfer operators in Eq. (6) vanish, and 2) the global

transfer operators in Eq. (5) also vanish. In this ideal case, the eigencurrents {e(k)m } of diag
{
S−1(F),S−1(T)

}
in Eq. (5) are formed by a mere juxtaposition of the eigencurrents {u(k)

m } of S−1
kk , ∀k = 1, . . . , NB + NT .

Symbolically, this reads as

e(k)m =
[
0, · · · ,u(k)

m , · · · ,0
]T

, m ∈ N, (8)

where u
(k)
m is the mth eigenfunction of Skk . In addition, we observe that e

(k)
m is zero over all ∂Dn, n ̸= k ,

except on ∂Dk where it coincides with u
(k)
m . Thereby, e

(k)
m will approximate a true eigenfunction s

(k)
m insofar

as the mutual coupling between any 2 bricks can be neglected. Following this idea, we may then expect the

higher order eigenfunctions e
(k)
m –those with the smaller eigenvalues of Skk –to be good approximations of the

corresponding s
(k)
m since the corresponding fields do not radiate and decay rapidly outside the brick under

consideration. Hence, we dub these uncoupled eigencurrents; conversely, we may also expect the lower order

eigenfunctions e
(k)
m to depart considerably from the corresponding s

(k)
m , so we dub them coupled eigencurrents,

and we adopt e
(k)
m to form the set E , naming them eigencurrents.

3.2. The algorithm

In general, we do not know the closed form of the eigenfunctions in the set E . Thus, we achieve the solution

of Eq. (5) numerically. To start, the currents q
s,i(F,T)
k on ∂D±(F,T)

k are expanded using a set Bk of 2Nf basis

functions. The subsequent application of the MoM in Galerkin’s form shall then yield the algebraic counterpart

of Eq. (5): 
[
S(F)

]−1

−
[
T (FT)

]
−
[
T (TF)

] [
S(T)

]−1

[[
qs(F)

][
qs(T)

]] =

[[
qi(F)

][
qi(T)

]] . (9)

However, the system in Eq. (9) is not explicitly built, since it does not represent an advantage from solving

the same problem using a BIE directly posed on the scatterer surfaces. Instead, we carry out the spectral
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decomposition of
[
S
(F,T)
kk

]
: [

S
(F,T)
kk

]
=

[
V

(F,T)
kk

] [
Λ
(F,T)
kk

] [
V

(F,T)
kk

]−1

, (10)

where the diagonal matrix
[
Λ
(F,T)
kk

]
contains the eigenvalues λ

(F,T)
lk , l = 1, 2, . . . , 2Nf , arranged with their

magnitudes in descending order. The sorting is also reflected in the columns of
[
V

(F,T)
kk

]
. The spectral

decomposition may appear time consuming at first sight, but actually that is not necessarily the case, since it

has to be done only once for bricks enclosing identical objects. Next, we proceed to form the set U(F)
∪
U(T)

using {v(F,T)
lk } , i.e. the columns in

[
V

(F,T)
kk

]
, to span the spaces for

[
qi(F,T)

]
and

[
qs(F,T)

]
. Hence, the set

U(F)
∪
U(T) is the algebraic counterpart of E . To reflect the spanning, we rephrase the system in Eq. (9) in

this new basis, namely 
[
Š

(F)
]−1

−
[
Ť

(FT)
]

−
[
Ť

(TF)
] [

Š
(T)

]−1

[[
q̌s(F)

][
q̌s(T)

]] =

[[
q̌i(F)

][
q̌i(T)

]] , (11)

where [
Š

(F)
]−1

kq
=

([
G(F)

]−1 [
S(F)

]−1 [
G(F)

])
kq

=


[
Λ
(F)
kk

]−1

k = q

−
[
Ť

(FF)
kq

]
k ̸= q

,

(12)

[
Š

(T)
]−1

kq
=

([
G(T)

]−1 [
S(T)

]−1 [
G(T)

])
kq

=


[
Š
(T)
kk

]−1

k = q

−
[
Ť

(TT)
kq

]
k ̸= q

,

(13)

[
Ť

(FT)
]
=

[
G(F)

]−1 [
T (FT)

] [
G(T)

]
, (14)[

Ť
(TF)

]
=

[
G(T)

]−1 [
T (TF)

] [
G(F)

]
, (15)[

q̌s,i(F)
]
=

[
G(F)

]−1 [
qs,i(F)

]
, (16)[

q̌s,i(T)
]
=

[
G(T)

]−1 [
qs,i(T)

]
, (17)

with
[
G(F)

]
= diag{

[
V

(F)
kk

]
} and

[
G(T)

]
= diag{

[
V

(T)
kk

]
} as Gram matrices [29] for the corresponding vector

basis. The system of Eq. (11) together with Eqs. (12) through (17) represent the system of Eq. (9) when

the eigencurrents in U(F)
∪

U(T) are used as basis and test functions. We note that even when the shape and

electromagnetic properties of the target are allowed to vary, the eigencurrent basis in U(F)
∪
U(T) is held fixed;
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thereby the entries in the main diagonal of
[
Š

(T)
]−1

in Eq. (13) are in general
[
Š
(T)
kk

]−1

and not
[
Λ
(T)
kk

]−1

as in Eq. (12) for
[
Š

(F)
]−1

. The main advantage of Eq. (11) over Eq. (9) is that its entries are not equally

meaningful. Thus, we may further reduce the order of the system matrix without compromising the accuracy

of the results, as we will show in the next section.

3.3. The order reduction technique

The system in Eq. (11) is much better than Eq. (9) for inversion because we can significantly reduce its size. To

this end, we may define a permutation matrix [P ] ( [P ]
−1

= [P ]
T
) [29], which through a unitary transformation

swaps rows and columns in Eq. (11) as described in [25]. Additionally, based on the coupled-uncoupled concept

and the Gershgoring theorem [30], we may further simplify the resulting system matrix. Symbolically, this reads
as

[P ]


[
Š

(F)
]−1

−
[
Ť

(FT)
]

−
[
Ť

(TF)
] [

Š
(T)

]−1

[P ]
T
=

[[
Šcc

]−1 [
Šcu

]−1[
Šuc

]−1 [
Šuu

]−1

]
≈

[[
Šcc

]−1
[0]

[0]
[
Šuu

]−1

]
, (18)

with

[
Šcc

]−1
=


[
Š

(F)
cc

]−1

−
[
Ť

(FT)
cc

]
−
[
Ť

(TF)
cc

] [
Š

(T)
cc

]−1

 ,
[
Šuu

]−1
=


[
Λ(F)

uu

]−1

[0]

[0]
[
Š

(T)
uu

]−1

 , (19)

where
[
Šcc

]−1
is the coupled counterpart of the matrix system in Eq. (11). This matrix explicitly states

that the coupled eigencurrents play the predominant role in accounting for the multiple scattering taking place

among the bricks inside the fixed structure and the target, and between them. Furthermore,
[
Λ(F)

uu

]−1

is a

diagonal matrix that contains all the eigenvalues corresponding to all uncoupled eigencurrents in U(F) , and[
Š

(T)
uu

]−1

is a block diagonal matrix that contains the uncoupled entries of each
[
Š
(T)
kk

]−1

. At this point, we

have transformed our problem into the following:

• The formal solution of a system whose matrix given by the leftmost in Eq. (19) has a size far smaller,

since only Nc(NT +NB) with Nc ≪ 2Nf eigencurrents instead of the original 2Nf (NB +NT) are likely

to be coupled.

• The direct solution of a system whose matrix given by the rightmost in Eq. (19) is block diagonal.

Only at the end –when both systems have been solved– do we revert to the original basis by taking into account

all the eigencurrents. Thereby, the expansion coefficients of
[
qs(F,T)

]
in the original basis

∪
Bk may be written

with the help of Eq. (19) as

[[
qs(F)

][
qs(T)

]] ≈ [G] [P ]
T

[[
Šcc

]
[0]

[0]
[
Šuu

]] [P ] [G]
−1

[[
qi(F)

][
qi(T)

]] , (20)
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which is the sought solution of Eq. (9). Furthermore, by also applying the described procedure to both right-

hand sides in Eqs. (3) and (4), we obtain the total equivalent incident currents
[
q
i(F,T)
tot

]
as

[qi(F)
tot

][
q
i(T)
tot

]≈[G] [P ]
T

[
[Λcc]

−1[
Šcc

]
[0][

Ť uc

] [
Šcc

]
[I]

]
[P ] [G]

−1

[[
qi(F)

][
qi(T)

]] , (21)

where [I] is the identity matrix, [Λcc]
−1

is the coupled counterpart of
[
Šuu

]−1
, i.e. diag{

[
Λ(F)

cc

]−1

,
[
Š

(T)
cc

]−1

} ,

[G] = diag{
[
G(F)

]
,
[
G(T)

]
} , and

[
Ť uc

]
is a transfer matrix from the coupled to the uncoupled eigencurrents in

the set U(F)
∪
U(T) . Further manipulation of the matrices in Eq. (19) provides the sought set of equations for

optimization purposes:

[[
Š

(T)
cc

]−1

−
[
Š

(T/F)
cc

]] [
q̌s(T)
c

]
=

[
q̌i(T)
c

]
+
[
q̌i(T/F)
c

]
, (22)

[
Š

(T)
uu

]−1 [
q̌s(T)
u

]
=

[
q̌i(T)
u

]
, (23)

with

[
Š

(T/F)
cc

]
=

[
Ť

(TF)
cc

] [
Š

(F)
cc

] [
Ť

(FT)
cc

]
, (24)[

q̌i(T/F)
c

]
=

[
Ť

(TF)
cc

] [
Š

(F)
cc

] [
q̌i(F)
c

]
, (25)

where
[
Š

(T/F)
cc

]
is the scattering operator of the fixed part as seen from the target in the coupled basis and[

q̌
i(T/F)
c

]
is the additional incident current impinging on the target due to the presence of the fixed part. The

system of Eqs. (22) and (23) is a size-reduced system that efficiently encompasses electromagnetically the

presence of the fixed part in the vicinity of the target and they explicitly state that in order to optimize a

compact designated domain (i.e. the target structure) inside a large fixed structure, we must only recompute[
Š
(T)
kk

]
when a parameter changes in the target, and this is a welcome effect of the diakoptic nature of LEGO.

We additionally observe that the matrices
[
Š

(T/F)
cc

]
and

[
q̌
i(T/F)
c

]
in Eq. (22) as stated in Eqs. (24)

and (25) require the formal inversion of
[
Š

(F)
cc

]−1

, which can be numerically unstable. This observation is

corroborated by the fact that the amplitude range of the entries in
[
Š

(F)
cc

]−1

coming from any 2 coupled

eigencurrents in U(F) may span several orders of magnitude as the amplitudes of the corresponding eigenvalues.

Therefore, a scaling procedure is decisive to compute
[
Š

(F)
cc

]
accurately and consequently obtain the solution

of Eq. (22).
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3.4. Well-balanced matrix system for optimization

We start by observing that
[
Š

(F)
cc

]−1

=
[
Λ(F)

cc

]−1

−
[
Ť

(FF)
cc

]
where

[
Λ(F)

cc

]−1

is a diagonal matrix that contains

the inverse of all coupled eigenvalues in U(F) and
[
Ť

(FF)
cc

]
contains the transfer matrices among the bricks in

the fixed structure in the coupled eigencurrent basis of U(F) . By extracting
[
Λ(F)

cc

]−1

as a factor, we may write

[
Š

(F)
cc

]
=

(
[I]−

[
Λ(F)

cc

] [
Ť

(FF)
cc

])−1 [
Λ(F)

cc

]
. (26)

The matrix
[
E(F)

cc

]
≡

(
[I]−

[
Λ(F)

cc

] [
Ť

(FF)
cc

])
is more suitable for “inversion” since

[
Λ(F)

cc

]
acts as a row-scaling

diagonal matrix over the entries of
[
Ť

(FF)
cc

]
; moreover,

[
Λ(F)

cc

]
at the rightmost of (26) will do the same scaling

to any other matrix when it is left multiplied by Eq. (26). Upon multiplication of Eq. (22) by diag{
[
Š
(T)
kk,cc

]
}

(i.e. a block diagonal matrix formed with the coupled entries of each
[
Š
(T)
kk

]
), we get the sought well-balanced

system matrix: [[
Ŝ

(T)

cc

]−1

−
[
Ŝ

(T/F)

cc

]] [
q̌s(T)
c

]
=

[
q̂i(T)
c

]
+
[
q̂i(T/F)
c

]
, (27)

with [
Ŝ

(T)

cc

]−1

=
(
[I]− diag{

[
Š
(T)
kk,cc

]
}
[
Ť

(TT)
cc

])
, (28)[

Ŝ
(T/F)

cc

]
=

[
T̂

(TF)

cc

] [
E(F)

cc

]−1 [
T̂

(FT)

cc

]
, (29)[

q̂i(T)
c

]
= diag{

[
Š
(T)
kk,cc

]
}
[
q̌i(T)
c

]
, (30)[

q̂i(T/F)
c

]
=

[
T̂

(TF)

cc

] [
E(F)

cc

]−1 [
Λ(F)

cc

] [
q̌i(F)
c

]
, (31)[

T̂
(TF)

cc

]
= diag{

[
Š
(T)
kk,cc

]
}
[
Ť

(TF)
cc

]
, (32)[

T̂
(FT)

cc

]
=

[
Λ(F)

cc

] [
Ť

(FT)
cc

]
. (33)

3.5. Numerical features of LEGO and the EEM

The LEGO approach endowed with the EEM expansion method has remarkable numerical features that are

worthwhile to mention. Specifically, we observe in Eqs. (19), (20), (21), (23), and (27) that:

1. When building
[
Š

(F)
cc

]−1

and
[
Š

(T)
cc

]−1

, the matrices
[
Ť

(FF)
kq

]
,
[
Ť

(TT)
kq

]
,
[
Ť

(FF)
qk

]
, and

[
Ť

(TT)
qk

]
are

computed, but we only retain the entries corresponding to coupled eigencurrents, whereas the rest is

disregarded. The same applies to the global transfer matrices
[
Ť

(FT)
cc

]
and

[
Ť

(TF)
cc

]
.

2. Since the eigencurrent basis U(F)
∪
U(T) is fixed, we may exploit the translational symmetry among the

bricks in the computation of the transfer matrices in order to reduce the computational cost since most

of the transfer matrices would coincide.
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3.
[
Šuu

]−1
in Eq. (19) is neither built nor inverted, since we compute the eigenvalues λ

(F)
lk of

[
Λ
(F)
kk

]
and[

Š
(T)
kk

]
directly.

4. The permutation matrix [P ] and the Gram matrix [G] are never built. In fact, to compute
[
q̌i,s
c,u

]
either

on the fixed structure or the target we do solve NB + NT systems of the form [Vkk]
[
q̌i,sk

]
=

[
qi,sk

]
and

detach each
[
q̌i,sk

]
in its coupled and uncoupled parts.

5. Finally, with regard to the optimization, the matrices
[
Ŝ

(T/F)

cc

]
,
[
q̂i(T/F)
c

]
,
[
q̂i(T)
c

]
, and

[
q̌
i(T)
u

]
are

computed only once for all possible varying parameters of the target. Just
[
Š
(T)
kk

]
has to be recomputed

to update
[
Ŝ

(T)

cc

]
and

[
Š

(T)
uu

]
.

4. Optimization of a 2-D EBG polarization splitter

Let us consider a numerical example with potentially interesting applications. In particular, let us employ the

LEGO-EEM to tune a 2-D EBG polarization splitter as described in Section 3. To design the EBG polarization

splitter, the basic EBG structure must exhibit a full band-gap over the operating frequency, i.e. there must be

an overlapping band-gap for both polarizations, namely TMz and TEz . We employ a triangular arrangement

of air holes with filling ratio r/a = 0.45 in a dielectric material with relative permittivity εr = 11.56. This

structure presents a full band-gap for normalized frequencies in the range of 0.41 ≤ f a
c ≤ 0.45 [31]. To separate

the polarizations, 3 defect waveguides with polarization-dependent modes are introduced in the basic photonic

crystal, forming a Y branch as shown in Figure 2. The defect waveguides are designed in such a way that

the output waveguides support only one polarization each, while the input waveguide supports both. The

propagating mode that the defect waveguides can support depends on the chosen defect radius. In particular,

for a defect radius r/a = 0.33, the input waveguide supports modes of both polarizations in the band-gap,

whereas one output waveguide with a defect radius of r/a = 0.24 supports only TEz modes in a frequency

range of 0.430 ≤ f c
a ≤ 0.434, and the other output waveguide with defect radius r/a = 0.19 supports only

TMz modes in the same frequency range.

For the EBG polarization splitter in Figure 2, we aim at tuning the target structure both in permittivity

εi and filling factor ri/a to minimize the polarization coupling between the TMz and TEz waveguides. The

polarization coupling is defined as

CTMz =
PTEz|TMz

PTMz|TMz
, CTEz =

PTMz|TEz

PTEz|TEz
, (34)

where PTEz|TMz

PTMz|TMz
( PTMz|TEz

PTEz|TEz
) is the ratio between the power that flows through the TEz (TMz ) waveguide

and the power that flows through the TMz (TEz ) waveguide when a TMz (TEz ) polarized mode is excited

in the input waveguide. These powers are monitored using 2 sensor cells as depicted in Figure 2. The sensor

cells can be easily incorporated into the target without additional computational cost as long as their content,

i.e. the material and cylinders inside them, are kept constant throughout the optimization. We define our

cost function using both polarization couplings, and we tune the target structure in Figure 2 by searching for
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Figure 2. 2-D EBG polarization splitter consisting of 3 defect waveguides with polarization-dependent modes. Each

cylinder has been embedded in as many hexagonal bricks. The target to be optimized is highlighted with red cylinders.

u⋆ =
(
r⋆1/a, . . . , r

⋆
NT

/a, ε⋆1, . . . , ε
⋆
NT

)
∈ R+ such that

CF(u⋆) = min
u

{CTMz + CTEz}. (35)

4.1. Numerical results

To proceed with the optimization, we set a = 1mm, f = 0.432 c
a = 129.6GHz, and an initial estimate of

uo = (0.5, 0.5, 0.5, 5, 5, 5). We confine the searching space such that ε0 ≤ εi ≤ 40ε0 and 0 ≤ ri
a ≤ 0.5.

The whole fixed structure is composed of NB = 186 hexagonal bricks and is discretized using 2NfNB = 24552

triangle basis functions. In a similar fashion, for the target structure we have NT = 3 for 2NfNT = 396 triangle

basis functions. We use No = 100 triangle basis functions over each cylinder contour to compute
[
S
(F,T)
kk

]
.

To compute
[
Š

(T/F)
cc

]
and

[
q̌
i(T/F)
c

]
—see Eqs. (24) and (25)— we retain Nc = 100 coupled eigencurrents

per brick for both the fixed and the target structure. Accordingly, the sizes of these matrices shrink down to

NcNT×NcNT = 300×300 as compared to 2NfNT×2NfNT = 396×396 for a gained compression of 43%. The

reason why the retained number of coupled eigencurrents per brick Nc = 100 is comparable to the number of

basis functions per brick 2Nf = 132 is that most of the circular cylinders in the polarization splitter have a high

filling factor, i.e. they are almost filling completely the hexagonal bricks. As a consequence, the spectrum of[
S
(F)
kk

]
for these cylinders broadens, thereby considerably increasing the lower bound for the number of coupled

eigencurrents that are to be retained. Finally, we choose to optimize our cost function in Eq. (35) using a

quasi-Newton algorithm, as implemented in the subroutine E04JYF of the Mark 21 NAG library. To this end,

we compute each polarization coupling exciting the structure with 2 different sources. Hence, we use a unitary

electric line source along z at input to excite a TMz mode, whereas the TEz mode is excited using a unitary

notional magnetic line source along z .
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Figure 3. (a) The cost function CF vs. the number of iterations. (b) and (c) The sensed power in the waveguides vs.

the number of iterations when a TMz -TEz polarized mode is excited in the input waveguide.

Figure 3(a) shows the CF versus the number of iterations during the optimization. Convergence was

reached after Ni = 416 iterations, for a cost function CF(u⋆) = 0.047 with u⋆ = (0.296, 0.200, 0.297, 9.36ε0, 1.1ε0,

9.65ε0). Figures 3(b) and 3(c) show the power flowing through the output waveguides for TMz and TEz exci-

tations in the input waveguide, respectively. Note that different scales in the vertical axis are used for the sensed

output power in both plots, for different sources are exciting the structure at each polarization, as we previously

mentioned. We observe therein that a minimization of the overall cost function does not imply evidently an

individual minimization of CTMz and CTEz . At u = u⋆ , we have CTMz
∣∣
u=u⋆ ≈ 1

56 and CTEz
∣∣
u=u⋆ ≈ 1

34 .

Figure 4 shows a snapshot of the field distribution in the 2-D EBG polarization splitter after optimization.

The fields have been computed through the total equivalent incident currents given by Eq. (21) and the relevant

dyadic Green’s functions of the bricks, exciting the splitter with the very sources during the optimization. Thus,

the Figure 4(a) shows the longitudinal electric field |Ez| , while Figure 4(b) shows the longitudinal magnetic field

|Hz| . Again, different scales are necessary in both snapshots. The continuity of the fields across the hexagonal

contours, where the equivalent incident currents are defined, is a good test for the validity of our approach.

The snapshot demonstrates the functionality of the polarization splitter. We also observe that the confinement
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Figure 4. (a) |Ez| in the 2-D EBG polarization splitter after optimization when a TMz polarized mode is excited in

the input waveguide. (b) |Hz| in the 2-D EBG polarization splitter after optimization when a TEz polarized mode is

excited in the input waveguide.

of the TEz guided mode is stronger than that of the TMz guided mode. Therefore, we may expect a TEz

band-gap broader than its TMz counterpart. One should bear in mind that there is strong mismatch at the

transition from any output waveguide into the background medium. Such mismatch reduces the performance

of the polarization splitter and consequently the optimization in general.

5. Conclusions

We have proposed an efficient method based on LEGO and the EEM for the numerical modeling and optimization

of 2-D EBG structures. The method uses Love’s equivalence principle to tear apart a composite structure into

bricks. The bricks may be of arbitrary shape, which adds flexibility in the assembling of separate regions. We

have formulated the optimization deriving a system of equations involving the total inverse scattering operators

of the interacting structures and global transfer operators among them. We then compressed the algebraic

system using the EEM, and finally a reduced matrix system involving the scattering operator of the fixed

structure as seen from the target was used to effectively optimize the latter. The approach reduces the memory

requirements by orders of magnitudes. A numerical test involving a 2-D EBG polarization splitter was carried

out, demonstrating that LEGO-EEM can perform much better than the standard MoM for a specific class of

EM problems, especially for configurations with many identical bricks/elements/cells. We have also seen that

LEGO-EEM lends itself to parallelization as most of the transfer matrices among the bricks can be computed

independently.
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