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Abstract: A neuro-fuzzy network approach is developed to model the nonlinear behavior of submicron metal-oxide

semiconductor field-effect transistors (MOSFETs). The proposed model is trained and implemented as a MOSFET in a

software environment. The training data are obtained through various simulations of a MOSFET Berkeley short channel

insulated-gate field-effect transistor model 3 (BSIM3) in HSPICE, and the trained model is utilized to simulate the

MOSFET device. The obtained result shows good and noticeable agreement between the numerical result of the original

model in HSPICE and the neuro-fuzzy approach in the device and subcircuit modeling.
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1. Introduction

With rapid changes in metal oxide semiconductor (MOS) transistors [1,2] in manufacturing technology, many

new models are implemented and introduced to simulate the new MOS field-effect transistor’s (MOSFET’s)

behavior, faster and more accurately, so that the modeling process serves an important role in the design cycle.

Therefore, it is essential for computer-aided design simulators to have a reliable model approach and

effective parameters to characterize the device’s nonlinear behavior.

MOSFET device models based on equivalent circuits are developed based on lumped element formulas,

whereas equivalent circuit approaches require more experience and they are very complicated.

Today, the Berkeley short channel insulated-gate field-effect transistor model (BSIM) has become an

industrial standard model for simulating MOSFET transistors [3]. Each model consists of several parameters

to be simulated in the simulator program in HSPICE.

Recently, artificial neural networks (ANNs) were introduced as a powerful tool for optimization and

modeling electronic devices and circuits [4,5]. ANNs can be developed even if the equivalent circuit and

equation of the device are unavailable [6]. In [6], for instance, training was done using only Vds and Vgs

for the modeling of a MOSFET DC current using a well-known multilayer perceptron (MLP) network with 15

hidden neurons and the mean squared error (MSE) of 2.3e–4 was achieved. However, other effective parameters

of the MOSFET model were neglected and those parameters dramatically decreased the network accuracy in

submicron simulations.
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In [7], a MOSFET was modeled by L, tox, tsi, Vds , and Vgs using a MLP neural network (NN) with 2

hidden layers, and an output error of less than 5% was obtained, but it could have been more accurate in drain

current modeling.

In [8], the presented approach contained the analytical modeling of a dual-gate MOSFET using a neuro-

fuzzy network (NFN) and the model capabilities were proven for electron density, subband energy, and Id vs.

Vds determination, but the authors did not use their implemented model for circuit analysis and it is not clear

whether the overall accuracy would be the same in a circuit analysis based on the model.

In this work, a BSIM3 MOSFET model with a Taiwan Semiconductor Manufacturing Company 0.18-µm

technology for W, and L 0.27 µm and 0.18 µm, is developed on a powerful NFN for MOSFET drain current

simulation.

The advantage of this work is to use the useful combination of the ANN structure for learning and flexible

mathematic capability (fuzzy logic), for the nonlinear behavior modeling of MOSFET devices, while keeping

the high accuracy of the model, and the implemented model is also used in the sample multidevice circuits in

HSPICE. Training data are obtained in HSPICE with the nominal parameters of the BSIM3 and the saved

data are imported into the MATLAB environment in order to train the NFN. The developed and tested NFN is

implemented in HSPICE [9] for device and circuit analysis. The used NFN is constructed as a fuzzy system with

a product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions.

The network has a fixed number of neurons (rules) and their parameters are tuned during the training phase.

2. Neuro-fuzzy architecture

When using MOSFET modeling as a black box, nonlinear complex equations of the device are not required

and MOSFET numerical parameter extraction can be omitted in difficult and time consuming situations [10].

The ANN structure consists of neurons, which contain an input, weight coefficient, and a nonlinear activation

function. The network is organized as input, output, and hidden layers [11].

The training process consists of running the program several times in order to minimize the MSE for the

known output instances.

In this work, a neuro-fuzzy classifier is chosen with singleton fuzzifier, center average defuzzifier, and

Gaussian membership functions. The whole fuzzy system can be represented as the following equation:

f(out)=

M∑
l=1

wl

n∏
i=1

exp

(
−
(

ini−tfi

sigi

)2)
M∑
l=1

n∏
i=1

exp

(
−
(

ini−tfi

sigi

)2) , (1)

where in i are input data, n is the number of training features, M is the number of fuzzy rules (neurons), and

tf , sig , and w are free parameters for the NFN training and should be optimized during the training phase

using the gradient descent method [12].

The training phase has the following stages:

Stage 1. The input data (ini) are passed through a Gaussian operator, as Eq. (2).

GMF (i)=exp

(
−
(
ini−tf i

sigi

)2
)

(2)
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Stage 2. The results of stage 1 for all of the individual inputs are calculated and multiplied by each other.

z=
n∏

i=1

exp

(
−
(
ini−tf i

sigi

)2
)

(3)

Stage 3. The center average defuzzification is evaluated to determine the developed output Z with the M fuzzy

rule, as Eq. (4).

f(out)=

M∑
l=1

wlzl

M∑
l=1

zl

=
b

a
(4)

It is assumed that:

b =
M∑
l=1

wlzl, a =
M∑
l=1

zl. (5, 6)

The free parameters should be updated using the gradient descent algorithm, as follows [12]:

Error=e=
1

2

[
f(out)−y(out)

]2
, (7)

and

w(q+1) = w(q) − α
∂e

∂w
, (8)

∂e

∂w
=
(
f(out)−y(out)

) ∂f(out)
∂a

∂a

∂w
. (9)

By substituting Eq. (9) into Eq. (8), Eq. (10) is obtained:

w(q+1)=w(q)−α

(
f(out)−y(out)

b

)
z, (10)

where α is the learning rate and is considered to be less than 1; f(out) is the estimated output, while y(out)

shows the desired output, which is given by the supervisor.

tf and sig are obtained as well (see Eqs. (11)–(15)):

tf (q+1) = tf (q) − α
∂e

∂tf
(11)

d=
∂e

∂tf
=
(
f(out)−y(out)

) ∂f(out)
∂z

∂z

∂tf
(12)

tf (q+1)=tf (q)−αd=tf (q)−2zα
f(out)−y(out)

b

(
w(q)−f(out)

)( in−tf (q)

sig2(q)

)
(13)

sig(q+1) = sig(q) − α
∂e

∂sig
(14)
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sig(q+1)=sig(q)−αd

(
in−tf (q)

sig(q)

)
(15)

These stages are summarized as 3 layers for a feedforward NN and are shown in Figure 1.
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Figure 1. Neuro-fuzzy network architecture.

Actually, the w parameters are the center of the THEN part of the fuzzy rules and the tf and sig

parameters are the center and width of the IF part of the rules on the Gaussian fuzzy sets, where IF THEN

fuzzy rules are membership functions for input/output pairs of the fuzzy system that not only are not fixed,

but also these membership functions must be optimized using the free parameters in the learning process.

In this work, the input voltages (Vds , Vgs) and 5 BSIM effective parameters comprise the training input

features and the drain current (Id) as the desired output.

To reduce the runtime for the training program, the most effective parameters in the MOSFET drain

current simulation in HSPICE are determined by changing them ±10%, and the 5 most effective ones that

changed the drain current significantly are selected [13].

These BSIM-selected parameters are: TOX (gate oxide thickness), A2 (second nonsaturation factor),

VSAT (saturation velocity of the carrier at T = TREF = TNOM), VTHO (threshold voltage of the long

channel device at Vbs = 0 and small Vds), and DROUT (length dependence coefficient of the DIBL correction

parameter in rout). The drain current (Id) is created in HSPICE, while the input voltages are swept between

2 desired values.

3. Model validation and implementation into HSPICE

In order to show the NN generalization capabilities, the MOSFET NFN model can be utilized to predict the

drain current in different conditions. In Figures 2a and 2b, the characteristics of the neuro-fuzzy approach and

HSPICE model are shown for comparison, where the input voltages (Vgs , Vds) are swept between 1 and 5 V.

As it is clearly noticeable, there is a good agreement between the NFN and original HSPICE models’ (I–V)

characteristics.

As mentioned previously, the proposed NFN model includes Vgs and Vds as input variables, whereas

the 5 BSIM parameters remain constant for each typical MOSFET technology. Therefore, the MOSFET drain

and gate currents based on the neuro-fuzzy approach could be considered as a voltage-controlled current source

(VCCS) and a null current source, respectively [1]. The NFN structure and negative-channel MOS (NMOS)

equivalent circuit of the proposed approach are shown in Figures 3a and 3b.
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Figure 2. a) NMOS (I-V) characteristic based on neuro-fuzzy. b) NMOS (I-V) characteristic using HSPICE.
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Figure 3. a) Neuro-fuzzy network structure. b) NMOS equivalent circuit using the proposed approach.

For MOSFET subcircuit simulation using this approach, it is necessary that the proposed NFN model

be implemented in HSPICE; therefore, the .SUBCKT option in HSPICE [14] is used and depicted in Table 1.

Table 1. HSPICE Command.

Command Parameter description
.subckt NFNMOS nd ng ns tox a2 vsat vtho drout

ig ng ns 0

gd nd ns

+cur=’
M∑
l=1

wl

n∏
i=1

exp

(
−
(

ini−tfi

sigi

)2)/ M∑
l=1

n∏
i=1

exp

(
−
(

ini−tfi

sigi

)2)
’

.ends NFNMOS

nd ng ns are drain,

gate and source nodes,

respectively. ig is

an independent current

sources and gd is a

VCCS.

Actually, NFN equations are used in VCCSs as a function of the input voltages (Vgs , Vds), while the

5 BSIM parameters are constant values (for a typical selected MOSFET). Indeed, the output current of the

VCCS is dependent on the input voltages as well as the 5 selected parameters.

The new MOS model can be used by:

Xn nd ng ns NFNMOS TOX = val A2 = val VSAT = val VTHO = val DROUT = val,

where Xn is subcircuit element name and NFNMOS is the reference name for the subcircuit model call.
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4. Results and subcircuit development

The database in this work consists of 6074 instances, whereas the input voltages are swept between 1 and 5 V,

with 1 V steps, and the data are split into train and test sets, each with 50% of the original randomly selected

data.

Specifically, MOSFET DC current modeling is done using the NFN with 15 optimized fuzzy rules, whereas

the learning rate is set at 0.1 and the training MSE of 8.7e–6 is obtained. Table 2 gives a comparison of the

MSE and output error among previous works, which present numerical values and the proposed approach. The

output error is obtained as follows:

% output error=

∣∣f(out)−y(out)∣∣
y(out)

.100 (16)

To show the ability of the proposed approach, a comparison of some frequently used subcircuit simulations

between the HSPICE model and implemented MOSFET model is given below.

Table 2. Comparison between the various approaches.

Approach Training MSE Output error
MLP (4 3 hidden neurons) (Djeffal et al., 2007) 0.004 Less than 5%
MLP (15 hidden neurons) (Hammouda et al., 2008) 2.3e–4 Presented graphically
ANFIS (24 membership functions, Sugeno) Less than 2%
(Hayati et al., 2010)
Proposed neuro-fuzzy approach 8.7e–6 Less than 0.61%
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Figure 4. a) NMOS cascode current mirror. b) Three-stage cascode current mirror response.

4.1. Three-stage cascode current mirror

A cascode current mirror is a common analog circuit and is frequently utilized as an analog subcircuit in

op-amps, differential pairs, etc. Hence, a cascode current mirror is selected for simulation using a neuro-fuzzy
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MOSFET model instead of the HSPICE one. Vdc and I in are swept from 1 to 5 V and 0 to 50 µA, respectively.

A 3-stage cascode current mirror based on the NFN is shown in Figure 4a and the results of the HSPICE (solid

line) and neuro-fuzzy approach (dashed line) are given in Figure 4b for comparison.

4.2. Inversion property of NMOS

To show the inversion property of the NMOS, 3-stage cascade NMOS transistors (Figure 5) are simulated,

whereas a capacitance of 20 pf is placed as the C load. The input node is biased with a 2.2-V voltage source,

seri with an AC source, while each drain node is connected with a 10-k-ohm resistor to the 5 V DC power

supply.

10k
10k 10k

5v

AC

2.2v

20pf

M1

M2
M3

Vout

Vin

Figure 5. Three-stage cascade MOSFET transistors.

Figure 6 shows the results for both the original model in HSPICE and the NFN model for an input pulse

signal of 0.5 V for a period of 20 ns.
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Figure 6. Result of the 3-stage cascade NMOS inverter for the input pulse signal.

The response for the HSPICE (dashed line) and the neuro-fuzzy approach (solid line) for a sinusoidal

signal input of 0.5 V peak-to-peak and frequency of 50 MHz is given in Figure 7 as well.
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Figure 7. Three-stage cascode NMOS inverter simulation result for the sinusoidal signal: a) the whole signal and b)

zoomed view.

5. Conclusions

A dynamic (I-V) characteristic and accurately drain current modeling of a BSIM3 MOSFET is presented using

a NFN approach.

In this approach, the drain current is approximately obtained by an acceptable output error, better than

that in previous works, without using the conventional BSIM models and their parameters; they are normally

obtained by trial and error in model structures, which is a very time consuming and complicated process.

To show the accuracy of the proposed model, the results of some subcircuit simulations are presented,

which show an excellent agreement between the approaches used compared to HSPICE. The new MOSFET NFN

model is implemented in HSPICE using a VCCS and an independent current source structure for subcircuit

simulation.

As it is shown, the presented model could be used as a subcircuit as well and it may find some applications

for the modeling of new devices where mathematical equations and their parameters are not yet determined.
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