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Abstract: This article presents a new approach for the analysis of electromagnetic scattering from a rectangular wire

mesh. In this sense, a basis function that considers the flow of a current from one cell to the next is proposed in light of

Floquet’s theorem. The proposed basis function enables the use of periodic method of moments in frequency-selective

surfaces composed of thin wires in the case of a system having a connection with neighboring cells, such as thin-wire grids.

The validity of the proposed solution approach is tested in 2 distinct cases (with and without a neighbor connection)

for scattered fields. It is found that the results of the numerical analyses conducted with the proposed approach are in

good agreement with the experimental data. Although the study presented herein focuses only on wire structures, the

idea can also easily be extended to surface basis functions.
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1. Introduction

The scattering from a frequency-selective surface (FSS) has been the subject of numerous studies [1–13]. In

these studies, solutions of electromagnetic wave scattering from periodic arrays of patches or apertures were

performed by the variational approach [1], conjugate gradient method [7–10], spectral-iteration approach method

[4], method of moments (MoM) [2,5,6,11], and periodic method of moments (PMM) [12,13]. Most of these studies

solve the operator equations for the induced surface current density or the aperture field [1–9], which are related

by Babinet’s principle [3] for flat scatterers. This alleviates the need for modeling unknown currents or fields

that continue on to the neighboring cells, since one can choose the entity (current or field) that does not cross

the cell edges as the unknown. To determine the scattering characteristics from a wire mesh structure, the

‘equivalent radius’ concept, in which an equivalence between wires and strips, as described in [14], is used

to model the actual round wire as a flat strip, was employed [10,11]. Hence, the wire mesh problem has

been turned into a flat surface type problem, which can be formulated for the current density or the aperture

field as desired. Alternatively, Blackburn and Arnaut [13] used a PMM with thin-wire kernel for modeling

scattering from FSSs made up of wires. However, the approach followed in [13] did not consider FSSs with

wire connections between neighboring cells, such as wire mesh structures. In the case of FSSs that have wire

connections between neighboring cells, the current flowing from one cell to the next one (i.e. cross-cell currents)

needs to be described consistently. However, such a necessity has not been openly addressed in previous studies.

In [11], special attention was given to ensure the vector continuity of the current at wire junctions within a cell,
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and examples that should involve cross-cell currents are presented. However, no discussion on how the vector

continuity of cross-cell currents was explained, even in [11]. In this paper, a simple approach to handle cross-cell

currents is presented in light of Floquet’s theorem [15], by which the currents in adjacent cells are related to

each other by a phase factor, as shown in the next section. Hence, an example of a FSS composed of z directed

dipoles is shown in Figure 1, where the currents at points 1 and 2 in Figure 1a must have the same magnitude

with a phase shift. It is shown that this can be achieved using a single basis function across neighboring cells.
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Figure 1. a) Unit cell for configuration 1, b) unit cell for configuration 2, and c) definitions of the vectors used.

In the following sections, first, the concept of PMM formulation is outlined briefly and the incorporation

of the cross-cell currents is explained. Next, the measurement setup used for the validation measurements is

described. Finally, the effectiveness of the proposed approach is presented in the validation and numerical

results section.

2. Formulation

Let us consider a single-layer planar periodic surface of infinite extent that is periodic in the x − z plane

with periods denoted by Dx and Dz in the x and z directions, respectively. Within each unit cell, there

is an arbitrary shaped wire that lies entirely within the plane of the mesh. The mesh is illuminated by a

monochromatic plane wave, which is represented by Ei = Ei
0 exp(−jβR · s), with linear polarization and an

arbitrary direction of propagation denoted by the unit vector s = x̂sx + ŷsy + ẑsz. Here, R is an arbitrary

observation point in space and β = 2π/λ is the propagation constant in free space. PMM is used to determine

the currents on this wire structure, such that the tangential component of the electric field vanishes on the wire

surfaces [13].

The element currents are all related to each other by Floquet’s theorem [15]:

Iqm(l) = I00(l) exp(−jβqDxsx) exp(−jβmDzsz), (1)

where I00(l) represents the current over the reference element (0,0), while Iqm stands for the current flowing

in the unit cell with index (q,m) at point l along the wire. Since the element currents are periodic across unit

cells according to Floquet’s theorem, only a reference current element needs to be calculated. The total field

E can be obtained by superposition over all cells. The total scattered field on the transmission side (denoted

by ‘+’) and the reflection side (denoted by ‘t’) can be expressed using Poisson’s sum rule to transform the
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summation to the spectral domain as [12]:

E±(R) =

L∫
0

Z

2DxDz
I(l)×

∑
nx,nz

1

ry
exp {−jβ[R−R(l)] · r±} e±(l)dl. (2)

In Eq. (2), R(l) is a reference point on the reference element, Z is the free-space impedance, I(l) is the local

current in the wire, L is the wire length, r± is the direction of propagation, e±(l) = [p̂(l) × r±] × r± is the

polarization vector, and p̂(l) is the local unit vector in the direction of the wire axis. For interested readers,

detailed information related to the PMM can be found in [13].

For wire mesh FSSs, triangular basis functions are used for expanding the unknown currents [13]. The

usual triangular basis function, which is related to the consecutive nodes {ln−1, ln, ln+1} , is defined as:

Tn(l) =

{
1− (ln − l)/(ln − ln−1) ; ln−1 < l < ln
1− (l − ln)/(ln+1 − ln) ; ln < l < ln+1

. (3)

However, this basis function is not sufficient to describe the cross-cell currents. Therefore, we introduce the

cross-cell triangular basis function related to the nodes {ln−1, ln; ln+1, ln+2} , assuming that the nodes {ln, ln+1}
denote the same cross-cell point. Combining Eq. (3) with Eq. (1), the cross-cell basis can be expressed as:

Tn(l) =

{
1− (ln − l)/(ln − ln−1) ; ln−1 < l < ln
[1− (l − ln)/(ln+1 − ln)] e

−jβqDxsxe−jβmDzsz ; ln+1 < l < ln+2
, (4)

where (q,m) ∈ {−1, 0, 1} . If the basis function lies along the z direction, m ∈ {−1, 1} and q = 0; otherwise,

q ∈ {−1, 1} and m = 0.

Solving Eq. (2) using the PMM, the reflection coefficient can be found as:

Rc = 20 log

(
Es

Ei

)
, (5)

and the transmission coefficient can be found as:

Tc =
Et +Ei

Ei
. (6)

Here, Es = E− is the scattered field, Et = E+ is the transmitted field, and Ei stands for the incident field.

3. Validation and numerical results

The efficacy of using the suggested basis functions, which allow currents to flow between neighboring cells, will

be demonstrated in this section. The first example is chosen as an FSS composed of z directed dipoles that

form a simple structure. Next, scattering from a wire mesh is presented together with the measurement results

as the second example.

3.1. Dipole FSS

In the first example, a FSS composed of z directed dipoles, as seen in Figure 1, is used. Two discretization

configurations are used, as in Figures 1a and 1b and the vector definitions given in Figure 1c. Due to their
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simple geometry and ease of computation, dipole arrays are chosen to show that choosing the usual triangle

basis or the cross-cell basis functions does not affect the result. In the example studied here, Dx = Dz = 6

mm, the dipole length is 4 mm, and the radius is 50 µm. The dipole has 8 segments and each segment has a

length of 0.5 mm. In configuration 2 (Figure 1b), each dipole is well confined to a unit cell. On the other hand,

in configuration 1 (Figure 1a), the FSS unit cell is chosen so that the system allows a current flow between

the cells. Since both configurations describe the same FSS, it is expected to obtain the same results from their

solutions. Reflection coefficients are calculated for normal incidence and z polarized Ei using the PMM and

are compared for configurations 1 and 2 in Figure 2. The results are in perfect agreement.
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Figure 2. Reflection coefficient for configurations 1 and 2.

3.2. Wire-grid FSS

As a second example, a wire-grid FSS is considered. Each cell has wires in a cross arrangement and there are

wire connections between the cells. The unit cell structure is given in Figure 3. Here, Dx = Dz = 3.75 mm and

the discretization has a segment length of 0.375 mm. The wire diameter is 140 µm. The basis function given

in Eq. (3) is used to model the currents flowing from node 16 to node 17 and from node 6 to node 7 (see Figure

3). Using the PMM, reflection and transmission coefficients are calculated for normal incidence and for both

horizontal/horizontal (HH) and vertical/vertical (VV) polarizations. A wire mesh with the same properties is

constructed and the reflection and transmission coefficients are measured. The measurement setup is given in

Figure 4 [16]. The dimensions of the main chamber of the measurement system are 240 × 120 × 120 cm and

it includes 2 identical sections separated by a sliding window, which is made of aluminum and has an aperture

of 40 × 40 cm to insert the sample. Both parts of the chamber (including the doors) are electromagnetic

interference-isolated, and the inner walls are covered with microwave pyramid absorbers. When an aluminum

sheet is placed as the sample, the isolation between the 2 chambers is measured to be in excess of t40 dB

throughout the 2 to 18-GHz operation band. The transmit and receive antennas are Satimo-type SH-2000

dual-ridge horn antennas. The antennas can be rotated so that all 4 polarization-type measurements can be

carried out. The numerical results are compared with the measurements in Figure 5 for both the reflection and

the transmission coefficients. Figure 5 shows that the numerical results for the VV and HH polarizations are

the same as expected, since the dimensions of the grid are the same in both the x and z directions. For the

reflection coefficients, the difference between the numerical and experimental results is less than 0.1, which is
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determined to be the accuracy limit of the measurement system. The excessive errors, which have a saw-tooth

pattern, in the frequency range of 2–3 GHz, are known to emerge due to the measurement system itself. For

the transmission coefficients, the measurement system is more stable and the results of the measurement and

computations agree well in the whole frequency range of 2–18 GHz for both the VV and HH polarizations.

In Figure 6, the variation of the reflection and transmission coefficients as a function of the wire diameter is

studied. The reflectivity shows a direct proportion with the diameter and the transmittivity shows an inverse

proportion with the diameter.
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Figure 3. Unit cell of the wire-grid FSS. Figure 4. Measurement system.
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Figure 6. Reflection/transmission coefficients for differ-

ent wire diameters (PMM results).
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4. Conclusion

A new method to modify the basis functions in the PMM analysis of periodic structures that enable the

representation of the currents flowing from one cell to the next is introduced and validated. It is shown that

the introduced basis functions perform well based on numerical examples and comparisons with measurements.
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