
Turk J Elec Eng & Comp Sci

(2014) 22: 620 – 636

c⃝ TÜBİTAK
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Abstract:An induction motor is the most commonly used motor in industry today. Motor circuit parameters are essential

for designing, evaluating performance, and controlling the applications of the motor. However, it is difficult to measure

the electric parameters, e.g., resistance and reactance, of induction motors accurately. Therefore, researchers have noted

the parameter estimation of induction motors as an essential optimization problem. The artificial bee colony (ABC)

algorithm is an efficient element of bioinspired optimization algorithms and has been successfully applied in numerous

engineering applications. However, the ABC algorithm suffers from slow convergence and poor exploitation. Additionally,

there are bleak chances of getting a fitter food source for scout bees using the the standard ABC algorithm scheme.

Therefore, different solutions have already been proposed to avoid the flaws of the ABC algorithm. Nevertheless, the

proposed solutions are either computationally intensive or prone to local optima traps or they require additional control

variables to tune. Moreover, there is no systematic way to tune the additional control variables for yielding the optimal

performance of the algorithms. Therefore, this research work proposes a novel variant of the ABC algorithm, which

capitalizes on multiple global-best food sources rather than a single global-best food source. In addition, this research

work proposes a novel scheme for enhancing the performance of the ABC algorithm’s scout bee. Two modifications

for the performance enhancement of the ABC algorithm are proposed in this research work. The proposed algorithm

is compared with various recently proposed variants of the ABC algorithm and various other available methods for

estimating induction motor parameters. The performance of the proposed algorithm is also assessed using the chaotic

map initialization technique. The results prove that the proposed algorithm is able to achieve the best convergence

among all of the compared algorithms.

Key words: Induction motor, parameter estimation, variant artificial bee colony, evolutionary algorithm, metaheuristic

algorithms, computational intelligence

1. Introduction

Electrical energy is a multipurpose energy carrier and, hence, is primarily associated with society and economic

development [1,2]. Electric motors consume almost 70% of the total electrical energy consumed by the industrial

sector [3,4]. Therefore, the energy usage assessment of motors is an essential issue in industry for implementing

energy-saving strategies. Induction motors are the most widely used motors in industries because of their

lower maintenance requirement, lower space requirement, and easy controlling [1,5–7]. Moreover, most of the

auxiliaries of thermal power plants are driven by induction motors. To ensure the successful restart of the

plants, it is important to investigate the feasibility of the auxiliary motor start-ups [6,8]. Therefore, the exact
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information of the motor circuit parameters is essential for the design, performance evaluation, and control

applications of the motor.

Lindenmeyer et al. classified the methods proposed for induction motor parameter estimation into various

classes and also gave the merits and demerits of the classes [8]. The classification is presented below.

1. The first-class methods calculate the parameters from the motor construction data. These methods require

a huge dataset comprising the motor geometry and the material parameters. This is the most accurate

method. However, it is the most costly method and the required data are not usually available in industry.

2. The second-class methods estimate the parameters from the steady-state motor models. These methods

use iterative solution techniques for estimating the parameters. These are the most commonly used

methods, as the required data are easily available in industry.

3. The third-class methods estimate the parameters based on the stand-still frequency response. As the

stand still tests are not common in industry, the methods are not often used. Furthermore, these methods

are expensive and require more time.

4. The fourth-class methods apply time-domain measurements for the parameter estimation. All of the

parameters cannot be measured; therefore, the motor models are simplified and, as a result, the parameters

are measured by sacrificing accuracy. Moreover, the method is costly and the required data are not

commonly available.

This classification reveals that the most commonly used and most economical methods for estimating the motor

parameters are the iterative methods. Bioinspired optimization algorithms also belong to the family of iterative

techniques. These optimization algorithms resulted in far superior performances as compared to the conventional

linear and nonlinear iterative methods [9]. Moreover, the authors in [10] rigorously compared the bioinspired

optimization algorithms with a few conventional iterative methods for induction motor parameter estimation.

Their work finally concluded that bioinspired optimization algorithms are far superior to conventional iterative

methods. Hence, researchers have employed the optimization algorithms to determine the induction motors

parameters [6,11] because the algorithms have an inherent capability to find either the optimal solution or very

near optimal solutions of the problem at hand [2,12].

The artificial bee colony (ABC) is a member of the swarm intelligence-based bioinspired optimization

algorithm family [13]. The ABC algorithm imitates the foraging phenomenon of honeybees for evolving optimal

solutions of problems [14]. The primary goal of honeybees during foraging is to optimize the time spent on energy

foraging and the foraged energy. The bee swarm distributes tasks among different honeybee colony members

to accomplish a task efficiently [13–15]. The ABC algorithm performs better on a number of benchmark

functions than many other optimization algorithms, such as particle swarm optimization (PSO) or differential

evolution (DE) [14–16]. Moreover, the ABC algorithm was already successfully applied in numerous engineering

applications [2,17–21].

Nevertheless, the ABC algorithm converges slowly and has a tendency towards local optima traps [22–25].

To overcome these pitfalls, researchers have proposed different solutions. To the best of our knowledge, the

variants in [22–30] are among the most rigorously tested variants of the ABC algorithm. The ABC variant

proposed in [26] was computationally intensive. The variants proposed in [22,23,27,28] were outperformed by

that in [25] on various benchmark functions. Research results reveal that the variant proposed in [29] yielded an
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inferior response on a number of benchmark functions as compared to the standard ABC algorithm. The variant

proposed in [25] had more exploration capability than exploitation and hence converged slowly [9]. Additionally,

the variants proposed in [24,30] generate solutions only around the global best possible solution (GBPS), and

therefore they were prone to local optima trappings [9]. Overall, the existing variants are either computationally

intensive or could not avoid the flaws of the ABC optimization algorithm. The pitfalls of the existing variants

guide us towards the proposed algorithm. The proposed variant is compared with the various existing variants

of the ABC algorithm on 2 test cases for estimating induction motor parameters. The performance of the

proposed algorithm is also assessed using the chaotic map initialization technique.

This paper is organized into 7 sections. The problem of induction motor parameter estimation is

formulated in Section 2. Section 3 discusses the standard ABC algorithm and the proposed algorithm is

presented in Section 4. Section 5 presents the experimental setup. The results are discussed in Section 6 and

the performance of the proposed optimization algorithm with various other methods is compared. Finally, the

conclusion is presented in Section 7.

2. Problem formulation

An induction motor is a highly nonlinear system and the electric variables of the rotor are not measurable

[3,6,11]. Additionally, the skin effect and magnetic saturation complicate the modeling process of the machine

even more. Therefore, the electromagnetic parameters of an induction motor are difficult to measure. Due to

this, the parameters are commonly measured by indirect methods. The inputs are the voltage, speed, starting

torque, full-load torque, and maximum torque, whereas the measured parameters are the rotor and stator

resistance, reactance, and magnetizing reactance. The parameters can be determined using the approximate or

exact model of an induction motor, discussed below.

2.1. Problem formulation based on approximate model of induction motor

The approximate model of the induction motor neglects the magnetizing reactance and rotor reactance; hence,

it sacrifices accuracy a little. The objective function is given in Eq. (1) and was used in [11]:

min(F ) = f2
1 + f2

2 + f2
3 , (1)

where

f1 =
KtR2

s
[
(R1 +

R2

s )2 +X2
1

] − TFL(mf),

f2 =
KtR2

(R1 +R2)2 +X2
1

− TSTR(mf),

f3 =
Kt

2
[
R1 +

√
R2

1 +X2
1

] − TMAX(mf),

Kt =
3V 2

ph

ωs
.

TFL represents the full-load torque; TSTR is the starting torque; TMAX is the maximum torque; R is the

resistance; subscripts 1 and 2 symbolize the stator and rotor, respectively; X corresponds to the reactance; s
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stands for the motor slip; mf is the manufacturer’s data; ωs is the synchronous speed; and Vph symbolizes the

phase voltage.

Minimization of the objective function is subjected to a few conditions, i.e. the values of the calculated

parameters must lie within certain ranges. Moreover, the deviation between the estimated and manufacturer’s

values of the torque types must also be within an appropriately small range. Therefore, the objective function

is multiobjective.

2.2. Problem formulation based on exact model of induction motor

The exact model of an induction motor has comparatively higher accuracy. The model considers the magnetizing

and rotor reactances, along with the parameters conceived in the approximate model. The objective function

is given in Eq. (2) and was used in [11]:

min(F ) = f2
1 + f2

2 + f2
3 + f2

4 , (2)

where

f1 =
KtR2

s
[
(Rth + R2

s )2 +X2
] − TFL(mf),

f2 =
KtR2

(Rth +R2)2 +X2
− TSTR(mf),

f3 =
Kt

2
[
Rth +

√
R2

th +X2
] − TMAX ,

f4 = cos

(
tan−1

(
X

Rth + R2

s

))
− PF (mf),

Vth =
VphXm

X1 +Xm
, Rth =

R1Xm

X1 +Xm
, Xth =

X1Xm

X1 +Xm
,

and

X = X2 +Xth,Kt =
3V 2

th

ωs
.

TFL represents the full-load torque; TSTR is the starting torque; TMAX stands for the maximum torque;

PF stands for the power factor; s stands for the motor slip; R is the resistance; X corresponds to the

reactance; subscripts 1, 2, and m symbolize the stator, rotor, and magnetizing, respectively; mf stands for the

manufacturer’s data; ωs is the synchronous speed; and V th symbolizes Thévenin voltage.

Minimization of the exact model objective function has to meet a few conditions, i.e. the values of

the calculated parameters must lie within certain ranges. Moreover, the deviation between the estimated and

manufacturer’s values of the torque and power factor must also be within a certain range.

3. ABC optimization algorithm

Bees in the ABC algorithm are divided into 3 different classes, i.e. employed bees (EBs), onlooker bees (OBs),

and scout bees (SBs) [14]. The standard ABC optimization algorithm carries an equal number of EBs and OBs,

and generally only 1 SB is used [15]. The EB searches for food sources around the hive. Each food source
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represents a possible solution of the problem and the hive symbolizes the search space. Once food sources are

assigned to each EB, then the bees explore the neighborhood of the assigned food source using the following

mutation equation [14,15]:

zij = yij + ϕij(yij − ykj), (3)

where y ij symbolizes the j th dimension of the ith food source, ykj represents the j th dimension of the k th

food source, z ij corresponds to the candidate solution of the j th dimension of theith food source, i and k are

mutually exclusive food sources, j ∈ [1,2,. . . . D], D is the dimension of search space, j and k are randomly

chosen numbers, and φ is a random number within [–1, 1].

The fitness of the modified food source, also called the candidate food source, is calculated using the

following equation [13,22,29]:

fiti =

{ 1
1+fi

, fi ≥ 0,

1 + abs(fi), fi < 0,
, (4)

where fi represents the objective function value of the ith food source and fit i is the corresponding fitness value

after the transformation.

Afterwards, the fitness values of the candidate possible solution and the old possible solution are com-

pared. The food source that has the higher fitness value is retained [25,28]. This is called greedy selection. The

OBs wait in the dancing area of the hive for receiving information about the explored food sources from the

EBs [15,23]. The OBs probably select food sources that have a higher nectar amount [14,15]. The probability

of a food source having a higher fitness value is calculated using the following equation [13,24,25]:

pi =
fiti

NS∑
j=i

fitj

, (5)

where NS stands for the maximum number of food sources and i is the selected food source.

If any food source is explored for the maximum number of times without success, then it is abandoned

[25]. Next, the SB flies around the hive to replace the abandoned food source with a completely new food

source. A control variable ‘limit’ controls the maximum number of food source explorations [14,15]. The SB

flies around the hive to pick a random food source. Hence, the SB induces a search-space exploring capability in

the ABC algorithm by replacing a well-tried and unsuccessful food source with a completely new food source.

The SB uses the following equation to pick a new food source [26]:

yij = ymin
j + rand(0, 1)(ymax

j − ymin
j ), (6)

where ymin is the lower limit of the search space, ymax represents the upper limit of the search space, rand is

a random number within [0, 1], and j is the j th index of the food source.

The pseudocode of the standard ABC algorithm is given below.

1. START

2. Initialization of the control variables

3. Random initialization of the food sources

4. CYCLE = 1
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5. REPEAT while a preset number of generations is reached

6. Explore the neighborhood of the food sources by EBs using Eq. (3)

7. Calculate the fitness of the explored food source using Eq. (4)

8. Apply greedy selection

9. Select food sources for OBs to explore using Eq. (5)

10. Explore the neighborhood of the selected food sources by OBs using Eq. (3)

11. Calculate the fitness of the explored food source using Eq. (4)

12. Apply greedy selection

13. Memorize the best food source found so far

14. IF an abandoned food source exists

15. Assign a food source to the SB using Eq. (6)

16. INCREASE cycle counter

17. TERMINATE if the cycle is equal to the maximum number of cycles

18. END

4. Proposed enhanced ABC algorithm

A literature review reveals that the induction of the GBPS’s influence in the mutation equation [Eq. (3)] of

the standard ABC algorithm increases the convergence rate of the algorithm. However, it has a tendency for

premature convergence due to local minima traps. The local optima trapping tendency is tackled by introducing

additional control variables, but there is no systematic way to decide upon the optimal values of the variables.

This research work proposes an enhanced ABC (EABC) algorithm.

4.1. Proposal of a novel mutation equation

The proposed algorithm capitalizes on multiple GBPSs rather than a single GBPS. The reliance on the single

GBPS accumulates the swarm at one location of the search space. Nevertheless, the application of the multiple

GBPSs averts the accumulation of the swarm at any single location of the search space. Thus, the algorithm

capitalizes on GBPSs for an accelerating convergence rate. Simultaneously, the algorithm has the ability to avert

local optima traps, as it explores around the multiple best-found locations of the search space. The mutation

equation of the proposed algorithm is given below:

zij = yij + φij (yij − ybest/second−best/.../ n, j), (7)

where yij symbolizes the j th dimension of the ith food source; ybest/second−best/.../n,j is the j th index of one

of the food sources having a higher fitness value; zij corresponds to the candidate solution of the j th dimension

of the ith food source; j ∈ [1,2,. . . . D], D is the dimension of the search space; and φ is a random number

within [–1, 1].
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The EABC algorithm divides the whole population of possible solutions into different groups. It then

assigns one of the selected GBPSs for enhancing the fitness of the possible solutions present in a selected group,

regardless of the GBPS’s presence in the group.

Now, the question is: The division of food sources should be into how many groups to be enough for

obtaining the optimal performance of the proposed algorithm? The authors’ experiences suggest that a higher

number of groups would yield a better performance of the proposed algorithm. Each group capitalizes on one of

the selected GBPSs; therefore, more search-space locations will be explored simultaneously using more groups.

However, it is also important that the bee swarm must be divided in such a way that each group contains a

good number of bees. Hence, the number of GBPSs is limited by the population size of the swarm, i.e. number

of bees. Generally, the population size is limited either by the dimension of the problem or by the search space

capacity.

4.2. Convergence enhancement of the proposed algorithm

DE is a simple yet effective evolutionary algorithm. One among the various variants of DE capitalizes on the

following mutation equation;

DE/rand/1 : Zi = Yr1 + F (Yr2 − Yr3), (8)

where Z i corresponds to the candidate solution of a possible solution; i ğ [1,2,. . . . D], D is the dimension of

the search space; Yr1 and Yr2 represent mutually different random integer indices selected from a population

of possible solutions; and F is a positive real number of generally less than 1.00.

DE and the ABC algorithm generate solutions on the basis of the vector difference and, hence, the

mutation equations of one algorithm are applicable to the other. However, Eq. (8) is good at exploration but

poor at exploitation. Moreover, a properly balanced mutation equation in terms of exploration and exploitation

is immensely important. Therefore, this research work proposes the replacement of the third term of Eq. (8)

with the global-best food source. The modified form of the mutation equation is given below:

zij = ymj + φij (yij − ybest j), (9)

where ymj symbolizes the j th dimension of the mth food source; ybest, j represents the j th dimension of the

global-best food source; z ij corresponds to the candidate solution of the j th dimension of the ith food source;

m and i are mutually exclusive food sources; j ğ [1,2,. . . . D], D is the dimension of the search space; and φ is

a random number within [–1, 1].

However, the application of Eq. (9) is subjected to 2 conditions: if Eq. (7) fails to produce a better

solution than the existing solution and if the randomly generated number is less than Selection (S). Selection

(S) is a user-defined control variable. A higher value of S will yield better convergence.

4.3. Enhancement of the SB stage

In the standard ABC algorithm and in its various variants, the SB is assigned a randomly initialized food source

using Eq. (6). Hence, there are very bleak chances of getting a food source with a better fitness value. This

research work proposes a novel scheme for assigning a food source to the SB. The scheme capitalizes on the

GBPS for assigning a food source to the SB. The following is the equation to assign a food source to the SB:

znj = (ybest, j)βnj , (10)
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where znj is the j th dimension magnitude of the newly assigned food source, x best ; j is the j th dimension

magnitude of the global-best food source; and βnj is a random number within [0.90 1.10].

The limits of β are chosen so that the dimension magnitudes of the new food source may not go out

of the chosen boundaries of the function and the global-best food source may not be distorted considerably;

otherwise, the global-best food source may lose quality. The pseudocode of the standard ABC algorithm is

given below.

1. START

2. Initialization of the control variables

3. Random initialization of the food sources

4. Divide the food sources into a user-defined number of groups

5. CYCLE = 1

6. REPEAT while a preset number of generations is reached

7. Explore the neighborhood of the food sources by EBs using Eq. (7)

8. Calculate the fitness of the explored food source using Eq. (4)

9. IF (fitness of the explored food source > fitness of the existing food source)

10. Update the food source

11. ELSE explore the neighborhood of the food sources by EBs using Eq. (9)

12. Apply greedy selection

13. Select food sources for OBs to explore using Eq. (5)

14. Explore the neighborhood of the selected food sources by OBs using Eq. (7)

15. Calculate the fitness of the explored food source using Eq. (4)

16. IF (fitness of the explored food source > fitness of the existing food source)

17. Update the food source

18. ELSE explore the neighborhood of the food sources by OBs using Eq. (9)

19. Apply greedy selection

20. Memorize the best food source found so far

21. IF an abandoned food source exists

22. Assign a food source to the SB using Eq. (10)

23. INCREASE cycle counter

24. TERMINATE if the cycle is equal to the maximum number of cycles

25. END
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5. Experimental setup

This research work considers the standard ABC, global-best-guided ABC (GABC) [22], improved ABC (IABC)

[25], modified ABC (MABC) [30], best-so-far ABC (BSFABC) [27], and modified ABC (ModABC) [29] al-

gorithms for evaluating the performance of the proposed EABC algorithm. The proposed algorithm is also

compared with the PSO algorithm, genetic algorithm (GA), and a conventional nonlinear iterative method [8].

Moreover, the performance of the proposed algorithm is also assessed using the chaotic map initialization tech-

nique. The EABC algorithm initialized using a chaotic map is named the chaotic EABC (CH-EABC) algorithm.

The performances of the algorithms are analyzed using 2 different motors. The specification data of the motors

are given in Table 1.

Table 1. Data of the motors used to analyze the performances of the optimization algorithms.

Specifications Motor 1 Motor 2
Capacity (HP) 5 40
Voltage (V) 3000 3000
Frequency (Hz) 50 50
No. of poles 4 4
Full-load slip 0.07 0.07
Starting torque (Nm) 15 260
Maximum torque (Nm) 42 370
Full-load torque (Nm) 25 190

The colony size is fixed at 30, the number of generations is limited to 50, and ‘limit ’ is set to 20. As

suggested in [22], the GABC algorithm is run on 3 values of the C-parameter, i.e. 0.5, 1.5, and 2.5, to analyze

the impact of C on the GABC algorithm’s performance. As directed in [25], the IABC algorithm is run on 3

different values of P-variable, i.e. 0.15, 0.25, and 0.35, for the performance analysis. The proposed algorithm is

divided into 5 groups and S is set to 0.50. In groups of less than 5, the proposed algorithm did not perform

the best among all of the algorithms for all of the test cases. Each algorithm is run 30 times on each objective

function to analyze the robustness and convergence of the optimization algorithms. Possible solutions for all of

the algorithms are initialized using Gaussian-generated random numbers, except for the CH-EABC algorithm.

A sinusoidal [χn+1 = sin(πχn)] chaotic map is considered for the CH-EABC algorithm’s initialization. The

chaotic map was also used in .[28].

The parameter estimation of an induction motor is a multiobjective problem. In this work, the multiob-

jective problem has been converted to a single-objective problem using the penalty technique. After obtaining

the estimated values of the torque, the difference between the estimated and the manufacturer’s values is calcu-

lated. As mentioned in Section 2, there are 3 different types of torque, i.e. starting torque, full-load torque, and

maximum torque. The final comparison of the compared algorithms is carried out on the basis of the sum of

absolute difference between the estimated and the manufacturer’s values. The performances of the algorithms

are analyzed on the basis of the least error, largest error, average error, and standard deviation among 30 final

values of error. The standard deviation among 30 outputs predicts variability, whereas an average value over

30 outputs prophesizes the convergence of an algorithm. The least value gives the best convergence, while the

largest value represents the worst convergence.
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6. Results and discussion

This section compares the performance of the proposed optimization algorithm with various other optimization

algorithms and the methods applied for the parameter estimation of the induction motor.

6.1. Comparison with variants of ABC optimization algorithm

Tables 2 and 3 show the results obtained by running the GABC algorithm using 3 different values of C . The

results clearly depict that there is no single optimal value of C for yielding the optimal performance of the

GABC algorithm. Moreover, there is no systematic way to calculate the optimal value of C . Hence, only on

the basis of trial and error is the optimal C value to be decided. The GABC algorithm producing the minimum

least value of error is considered for the performance comparison with the rest of the algorithms.

Table 2. Performance comparison of the GABC algorithm on the different values of C for motor 1.

Model (motor 1) Algorithms Largest Least Average St. deviation

Approximate model

GABC 0.5 12.2979 6.18599 8.5481 1.2193
GABC 1.5 10.1000 7.5342 8.7315 0.8149
GABC 2.5 10.4396 7.75949 8.5589 0.7928

Exact model

GABC 0.5 17.2429 6.1170 10.0793 3.3707
GABC 1.5 21.9223 6.39667 10.0939 3.4739
GABC 2.5 18.1222 5.9079 9.1555 2.5836

Table 3. Performance comparison of the GABC algorithm on the different C values for motor 2.

Model (motor 2) Algorithms Largest Least Average St. deviation

Approximate model

GABC 0.5 32.6699 2.1249 10.8135 6.5791
GABC 1.5 24.0137 0.8138 9.1223 6.1021
GABC 2.5 35.3529 2.7354 15.1881 10.7547

Exact model

GABC 0.5 33.7232 3.6348 18.3668 9.0155
GABC 1.5 33.1505 5.4103 18.8873 8.9211
GABC 2.5 94.6508 2.0094 24.2350 17.4698

Tables 4 and 5 show the results obtained by running the IABC algorithm at 3 different values of P . The

results given in Tables 4 and 5 reveal the strong dependency of the IABC algorithm on the P value. There is no

method that can be used to decide the optimal value of P , except trial and error. The IABC algorithm yielding

the minimum least value of error is taken for the performance comparison with the rest of the algorithms.

Table 4. Performance comparison of the IABC algorithm on the different values of P for motor 1.

Model (motor 1) Algorithms Largest Least Average St. deviation

Approximate model

IABC 0.15 11.7979 6.2574 8.5526 1.2196
IABC 0.25 10.0680 6.3810 8.3756 0.9182
IABC 0.35 10.2156 6.1109 8.6426 0.9181

Exact model

IABC 0.15 19.6349 6.3063 11.9035 3.9119
IABC 0.25 25.9837 6.0472 10.3644 4.0277
IABC 0.35 22.1956 6.2015 11.0079 3.9192
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Table 5. Performance comparison of the IABC algorithm on the different values of P for motor 2.

Model (motor 2) Algorithms Largest Least Average St. deviation

Approximate model

IABC 0.15 35.4138 5.5487 18.9372 10.4941
IABC 0.25 37.0796 4.9802 16.5791 8.3424
IABC 0.35 33.4255 2.9909 14.4684 9.4563

Exact model

IABC 0.15 37.1660 3.0891 17.6610 10.2937
IABC 0.25 38.2471 3.1542 20.5923 9.0574
IABC 0.35 46.3544 3.5544 19.7316 11.0145

Tables 6 and 7 give the output comparison of all of the ABC algorithm variants. The BSFABC algorithm

results in the worst convergence among all of the compared algorithms. This reveals the highly local nature of

the BSFABC algorithm. The standard ABC algorithm produces better convergence only in comparison to the

BSFABC algorithm. The proposed algorithm produces the least minimum value in all of the considered cases.

This shows the superiority of the proposed algorithm in finding the optimal solution in comparison to all of

the other algorithms. The proposed algorithm produces the least average value in comparison to the compared

algorithms in all of the cases. This clearly shows that the proposed algorithm possesses the best convergence

among the compared algorithms.

For motor 1, the results produced by the CH-EABC algorithm are better than those produced by the

EABC algorithm. However, the results produced by the CH-EABC algorithm are worse than those produced

by the EABC algorithm for motor 2. Hence, it can be concluded that the application of chaotic maps does

not necessarily enhance the performance of an algorithm. The CH-EABC algorithm might produce a better

response on any chaotic map other than a sinusoidal.

Table 6. Performance comparison of the algorithms for motor 1.

Model (motor 1) Algorithms Largest Least Average St. deviation

Approximate model

ABC 14.3899 6.3508 8.9274 1.7412
GABC 0.5 12.2979 6.1860 8.5481 1.2193
IABC 0.35 10.2156 6.1109 8.6426 0.9181
MABC 10.3548 6.1225 8.4452 1.0597
ModABC 18.1016 6.2670 8.8612 2.1904
BSFABC 25.7823 6.3810 10.7352 4.3427
EABC 9.0120 5.9816 7.0756 0.5085
CH-EABC 6.8327 5.9966 6.2963 0.1282

Exact model

ABC 16.8181 6.0348 9.9764 2.8355
GABC 0.5 17.2429 6.1170 10.0793 3.3707
IABC 0.25 25.9837 6.0472 10.3644 4.0277
MABC 17.8565 6.1690 9.7704 2.6455
ModABC 37.3012 7.0232 13.1735 5.9250
BSFABC 66.8101 6.2758 13.8546 10.7790
EABC 10.6793 6.0301 7.2270 1.3867
CH-EABC 12.2055 5.9650 6.9977 1.4477

The induction motor parameters yielding the least error value on the motor 1 dataset are shown in

Tables 8 and 9, where the estimated parameters and calculated percentage error of motor 1 are given using the

approximate and exact models. The results replicate the aforementioned discussion.
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Table 7. Performance comparison of the algorithms for motor 2.

Model (motor 2) Algorithms Largest Least Average St. deviation

Approximate model

ABC 92.6851 5.3122 23.1755 17.7932
GABC 1.5 24.0137 0.8138 9.1223 6.1021
IABC 0.35 33.4255 2.9909 14.4684 9.4563
MABC 31.9732 4.1975 15.1538 8.5779
ModABC 34.2653 6.2620 17.6784 9.4771
BSFABC 60.3106 13.3382 29.0371 11.4128
EABC 19.2781 0.2780 6.8780 5.5091
CH-EABC 22.4605 0.8172 11.0624 6.8240

Exact model

ABC 63.0924 7.2409 28.8224 13.1456
GABC 2.5 94.6508 2.0094 24.2350 17.4698
IABC 0.15 37.1660 3.0891 17.6610 10.2937
MABC 33.6194 4.0267 17.9831 10.3962
ModABC 55.3698 3.9132 25.2119 13.8454
BSFABC 84.8549 13.3887 45.4431 18.4830
EABC 15.7527 0.1557 7.8365 7.3006
CH-EABC 14.5529 0.5293 6.4054 4.9628

Table 8. Estimated parameters and percentage error using the approximate model of motor 1.

Algorithms
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error R1 (Ω) R2 (Ω) X1 (Ω)

Manufacturer 42 15 25 TMAX TSTR TFL

ABC 39.819 15.074 25.166 5.192 -0.495 -0.663 0.001 7.072 35.971
GABC 0.5 39.745 15.078 25.075 5.370 -0.518 -0.299 0.060 7.178 36.596
IABC 0.35 39.720 15.059 25.072 5.428 -0.396 -0.286 0.001 7.101 36.060
MABC 39.735 15.040 25.116 5.393 -0.263 -0.466 0.001 7.085 36.047
ModABC 39.691 15.102 24.978 5.498 -0.682 0.088 0.001 7.134 36.087
BSFABC 39.789 15.165 25.005 5.265 -1.097 -0.019 0.001 7.129 35.998
EABC 39.634 15.046 24.990 5.634 -0.308 0.040 0.001 7.126 36.139
CH-EABC 39.682 15.034 25.063 5.519 -0.226 -0.252 0.001 7.102 36.095

Table 9. Estimated parameters and percentage error using the exact model of motor 1.

Algorithms
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error R1 R2 X1 X2 Xm

Manufacturer 42 15 25 TMAX TSTR TFL (Ω) (Ω) (Ω) (Ω) (Ω)
ABC 39.683 15.068 25.017 5.518 0.450 0.067 0.001 6.37 20.00 13.38 350.00
GABC 0.5 39.716 15.073 25.048 5.437 0.487 0.193 0.001 6.48 16.72 16.89 350.00
IABC 0.25 39.698 15.046 25.065 5.480 0.307 0.261 0.001 6.26 20.00 13.01 304.93
MABC 39.729 14.992 25.176 5.408 0.055 0.706 0.001 6.36 18.78 14.65 350.00
ModABC 39.700 14.917 25.248 5.477 0.555 0.992 0.001 6.35 18.27 15.22 350.00
BSFABC 39.795 15.056 25.163 5.251 0.374 0.651 0.001 6.36 18.95 14.41 349.07
EABC 39.706 15.013 25.120 5.461 0.089 0.480 0.001 6.34 18.35 14.93 322.54
CH-EABC 39.616 14.988 25.052 5.675 0.083 -0.207 0.001 5.93 19.80 12.09 209.05

The induction motor parameters yielding the least error values for the motor 2 dataset are shown in

Tables 10 and 11, where the estimated parameters and calculated percentage error of motor 2 are given using

the approximate and exact models. The results replicate aforementioned discussion.
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Table 10. Estimated parameters and percentage error using the approximate model of motor 2.

Algorithms
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error R1 (Ω) R2 (Ω) X1 (Ω)

Manufacturer 370 260 190 TMAX TSTR TFL

ABC 360.576 260.656 194.774 2.547 -0.252 -2.513 1.693 0.759 1.526
GABC 1.5 369.302 260.765 189.371 0.189 -0.294 0.331 1.424 0.824 1.999
IABC 0.35 361.081 260.793 189.477 2.411 -0.305 0.275 1.606 0.799 1.731
MABC 374.994 262.557 193.542 -1.350 -0.983 -1.864 1.391 0.805 1.991
ModABC 365.1242 251.5160 193.1943 1.3178 3.263 -1.681 1.443 0.7982 2.017
BSFABC 343.0155 264.3033 181.6591 7.2931 -1.655 4.390 1.968 0.7984 1.000
EABC 369.850 259.483 189.927 0.041 0.199 0.039 1.403 0.823 2.033
CH-EABC 368.945 261.010 190.272 0.285 -0.389 -0.143 1.449 0.816 1.956

Table 11. Estimated parameters and percentage error using the exact model of motor 2.

Algorithms
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error R1 R2 X1 X2 Xm

Manufacturer 370 260 190 TMAX TSTR TFL (Ω) (Ω) (Ω) (Ω) (Ω)
ABC 353.752 261.725 185.846 4.391 -0.664 2.186 1.732 0.803 0.10 1.44 400
GABC 2.5 372.785 259.467 188.002 -0.753 0.205 1.052 1.311 0.846 0.10 2.06 400
IABC 0.15 368.416 263.277 192.661 0.428 -1.260 -1.401 1.526 0.792 0.10 1.70 315
MABC 367.383 262.135 194.746 0.707 -0.821 -2.498 1.563 0.776 0.17 1.56 400
ModABC 373.518 259.820 184.503 -0.951 0.069 2.893 1.241 0.867 0.88 1.37 200
BSFABC 358.528 266.194 174.979 3.101 -2.382 7.906 1.508 0.892 1.84 0.12 400
EABC 370.075 260.013 189.752 -0.020 -0.005 0.131 1.403 0.824 0.10 1.93 400
CH-EABC 369.601 260.091 190.734 0.108 -0.035 -0.386 1.429 0.815 0.10 1.89 400

6.2. Comparison with the PSO and GA algorithms

The performance of the proposed optimization algorithm is compared with those of the PSO and GA for the

parameter estimation. PSO is a prominent element of the swarm intelligence-based optimization algorithms,

whereas GA is an efficient element of the evolutionary optimization algorithms [11]. The results of the PSO

and GA for the parameter estimation of the induction motor were taken from [11]. The data of the induction

motor and parameter settings of the PSO and GA can also be seen in [11]. The PSO and GA are run for 200

generations, whereas the proposed EABC algorithm is run for 100 generations, for the same population size.

As the authors in [11] only reported the best results among 30 runs, the comparison is also carried out only on

the basis of the best results.

The results reported in Tables 12 and 13 state that the proposed optimization algorithm (EABC) results

in the most optimal results among the compared optimization algorithms, even though the proposed algorithm

is run for half (100) of the total number of generations (200) that the PSO and GA are run for. This proves that

the proposed optimization algorithm is the most balanced optimization algorithm in terms of the exploration

and the exploitation capabilities.

6.3. Comparison with the artificial immune algorithm

The performance of the proposed optimization algorithm is compared with that of the artificial immune (AI)

optimization algorithm. The AI algorithm is one of various recently proposed efficient optimization algorithms.

The results of the AI algorithm for the parameter estimation of an induction motor were taken from [6]. The
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data of the induction motor and the parameter settings of the AI algorithm can also be seen in [6]. The

AI algorithm is run for 50 iterations. The proposed algorithm is also run for the same number of iterations.

The authors in [6] only reported the best results among 20 runs. Therefore, the performance of the proposed

algorithm is compared with the AI algorithm on the basis of the best results among 20 runs.

Table 12. Comparative results of the PSO, GA, and EABC optimization algorithms for motor 1.

Algorithms

Approximate model Exact model
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

Manufacturer 42 15 25 TMAX TSTR TFL 42 15 25 TMAX TSTR TFL

PSO 39.5 14.99 22.41 5.95 0.60 10.36 40.97 17.6 22.11 2.45 17.36 11.56
GA 37.8 17.88 21.04 10.06 19.2 15.86 35.98 16.73 20.09 14.33 11.53 19.64
EABC 39.66 15.03 25.03 5.58 0.22 0.13 39.75 15.04 25.14 5.35 0.26 0.56

Table 13. Comparative results of the PSO, GA, and EABC optimization algorithms on motor 2.

Algorithms

Approximate model Exact model
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

Manufacturer 370 260 190 TMAX TSTR TFL 370 260 190 TMAX TSTR TFL

PSO 321 205.8 175 13.22 20.85 7.77 381.63 255.55 222.78 3.14 1.7 17.25
GA 315 150 166.79 14.86 42.31 12.21 355.48 285.7 200.99 3.92 0.5 5.78
EABC 370.5 260.68 188.80 0.13 0.26 0.63 369.79 260.19 190.22 0.06 0.07 0.11

The results of the AI and EABC algorithms are tabulated in Tables 14 and 15 for motors 1 and motor

2, respectively. The reported results show that the proposed EABC algorithm outperforms the AI optimization

algorithm for the parameter estimation of an induction motor. The proposed algorithm outperforms the AI

algorithm on both motors’ datasets.

Table 14. Comparative results of the PSO, GA, and EABC optimization algorithms for motor 1.

Algorithms

Approximate model Exact model
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

Manufacturer 42 15 25 TMAX TSTR TFL 42 15 25 TMAX TSTR TFL

AI 38.44 15.44 20.36 8.00 2.9 18 41.8 16.03 27.44 0.4 7.0 9.7
EABC 39.634 15.046 24.99 5.63 -0.31 0.04 39.71 15.01 25.1 5.46 0.089 0.48

Table 15. Comparative results of the PSO, GA, and EABC optimization algorithms on motor 2.

Algorithms

Approximate Model Exact Model
TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

TMAX
(Nm)

TSTR
(Nm)

TFL
(Nm) Percentage error

Manufacturer 370 260 190 TMAX TSTR TFL 370 260 190 TMAX TSTR TFL

AI 376 272.36 170.44 1.6 4.8 10.5 377.9 255.93 178.56 2 0.16 6
EABC 369.85 259.48 189.93 0.04 0.20 0.04 370.08 260.0 189.8 0.02 0.005 0.13

6.4. Comparison with the conventional method

As clearly mentioned in Section 1, the iterative methods are the most commonly used and the most economical

methods among the various available induction motor parameter estimation methods. Therefore, in this research

work, the performance of the proposed optimization algorithm is compared with an enhanced nonlinear iterative

method for induction motor parameter estimation. The enhanced nonlinear iterative method (SOLNP) was

proposed in [8]. The induction motor data can also be seen in [8], although the authors did not mention the
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number of iterations for which the SOLNP was run. However, the proposed EABC algorithm is run for 50

iterations.

Table 16 presents the best results of the proposed algorithm and the SOLNP algorithm for comparison,

and the induction motor parameters in per-unit (pu) values are presented. Table 16 suggests that the proposed

algorithm results in a lower percentage of error than the SOLNP. Hence, the results clearly establish the

superiority of the proposed optimization algorithm for the parameter estimation of an induction motor.

Table 16. Comparative results of the SOLNP and the proposed optimization algorithms.

Algorithm R1 X1 R2 X2 Xm

Magnitude (pu)
SOLNP 0.02411 0.76779 0.27389 0.070127 3.2316
EABC 0.02412 0.76739 0.26544 0.066411 3.1405

Percent error
SOLNP 0.0005 0.0006 0.0271 0.0415 0.0293
EABC 0.0005 0.0001 0.0046 0.0136 0.0003

7. Conclusion

This research work has proposed an efficient variant of the ABC algorithm, the EABC. The proposed algorithm

was extensively compared with the standard ABC algorithm, its variants, and other commonly used methods

for estimating the parameters of an induction motor. The comparative analysis proved that the proposed

algorithm has the best convergence (shown by the least average error) and also possesses the best capability to

find the most optimal induction motor parameters (shown by the minimum least error) compared to the other

algorithms, as it is able to capitalize on multiple so-far best-found locations of the search space. Furthermore,

the comparative analysis revealed that the initialization of the food sources using chaotic maps may enhance the

searching ability of the optimization algorithms. Nevertheless, the performance enhancement of the bioinspired

optimization algorithms through the chaotic map initialization technique is subject to the chosen chaotic map.
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[4] H. Çalış, A. Çakır, E. Dandıl, “Artificial immunity based induction motor bearing fault diagnosis”, Turkish Journal

of Electrical Engineering & Computer Sciences, Vol. 21, pp. 1–25, 2012.

[5] V. Prakash, S. Baskar, S. Sivakumar, S.K. Krishna, “A novel efficiency improvement measure in three-phase

induction motors, its conservation potential and economic analysis”, Energy for Sustainable Development, Vol.

12, pp. 78–87, 2008.

634

http://dx.doi.org/10.1016/j.rser.2011.05.003
http://dx.doi.org/10.1016/j.rser.2011.05.003
http://dx.doi.org/10.1016/j.measurement.2010.12.008
http://dx.doi.org/10.1016/j.measurement.2010.12.008
http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-1/elk-21-1-1-1101-996.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-1/elk-21-1-1-1101-996.pdf
http://dx.doi.org/10.1016/S0973-0826(08)60431-7
http://dx.doi.org/10.1016/S0973-0826(08)60431-7
http://dx.doi.org/10.1016/S0973-0826(08)60431-7


ABRO and MOHAMAD-SALEH/Turk J Elec Eng & Comp Sci

[6] V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, “Artificial immune system for parameter estimation of induction

motor”, Expert Systems with Applications, Vol. 37, pp. 6109–6115, 2010.
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