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Abstract: In this study, a simple approach for intelligent modeling of the Henry factor (α -alpha parameter, antiguiding

factor, phase-amplitude coupling factor) or the so-called linewidth enhancement factor, which is an actual analysis and

design parameter for semiconductor laser diodes and optical communication systems, is proposed based on the fuzzy logic

(FL) phenomenon. The proposed FL-based model easily computes the Henry factor in terms of different wavelengths

and injection current levels (i.e. the inputs of the model). The experimental data belong to a distributed feedback laser,

obtained from amplified spontaneous emission spectra, which is among the techniques required for the characterization

of semiconductor lasers. For the Henry factor, the suggested method’s approximation provides predictions within the

accuracy level of 95%–99.99%.
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1. Introduction

Distributed feedback (DFB) lasers are attractive light sources for a wide range of applications and play an

important role in long-haul high-bit-rate optical communication systems due to their low cost, small size, high

efficiency, reliability, and inherent temperature stability [1,2]. They offer stable single-mode operation, which

requires an accurate control of the spatial-hole-burning and narrow linewidth (i.e. low Henry factor) in order to

ensure high bandwidths [3]. The Henry factor [4] is a crucial design parameter for the high-speed modulation

of DFB lasers used in these systems. It describes many dynamical properties that are related to the interaction

of refractive index change and optical gain as functions of the charge carrier density in the active region. It is

also a required parameter for simulations of laser dynamics in terms of different application areas. The Henry

factor (α) is defined as the ratio of the partial derivatives, with respect to the carrier density (N), of the real

and imaginary parts of the refractive index, n = nr + jni .

α =
∂nr

∂N
∂ni

∂N

(1)

Because the carrier-induced changes are usually small compared to the refractive index, the expression above

can be shown to be equivalent to the ratio of the change in the real part of the complex susceptibility with

carrier density to the change in the imaginary part with carrier density, which can be also expressed as follows:
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α =
∂χr

∂N
∂χi

∂N

(2)

where χ = χr + jχi is the complex susceptibility.

The Henry factor is obtained after rigorous and lengthy mathematical calculations, which involve different

approximations, assumptions, and estimations that are pointed out in [5,6]. In addition to that, the measurement

of this factor is difficult since it significantly varies with the operating wavelength, carrier density, and other

factors. The detailed estimation methods for the Henry factor are also given in [7]. In terms of the measurement

side, there are several methods proposed in the literature [7,8].

Similar to the Henry factor, the other optical characteristic quantities like optical gain [9] and refractive

index change with injection current [10] show similar behavior in the theoretical and measurement sides. The

mathematical modeling of these quantities yields important and useful information about the whole system

performance at the design stage since the measurement setups are extremely expensive. In the literature, there

are many theoretical mathematical models proposed for laser diodes and optical-based systems [11–35]. In recent

years, there were also intelligent models proposed for optical gain [36–49], the Henry factor [50–53], refractive

index change with injection current [54], and all other characteristic quantities [41,55–61] for the purpose of

quick design and simulation of such systems.

With the inclusion of fuzzy logic (FL) methodology, time-consuming steps can be eliminated. In addition

to that, during the debugging and tuning cycle one can change the system by simply modifying rules instead

of redesigning the system. Moreover, since FL is rule-based, there is no need to be an expert in high- or low-

level programming languages; hence, the focus of the user may be directed toward the application instead of

programming. As a result, FL substantially reduces the overall development cycle [62–72].

As illustrated in Figure 1, in this study, for the first time to our knowledge, the Henry factor for a DFB

laser is modeled using the FL phenomenon with the use of amplified spontaneous emission spectra with respect

to different wavelength and injection current levels. The recommended approximation provides fast and reliable

predictions that can save engineers from tiresome and expensive experimental setups and rigorous calculations.

The FL approach provides the predictions of the Henry factor against the wavelength and the injection currents

within the accuracy level of 95%–99.99%. The experimental data used in this study were acquired from a DFB

laser diode [73].

2. Architecture of the FL-based intelligent model for the Henry factor of the DFB laser diode

Figure 1 shows the basic structure of the intelligent FL-based model for the Henry factor of the DFB laser

diode. The Henry factor of the FL-based intelligent model is a classical model and consists of fuzzification,

knowledge base, decision-making logic, and defuzzification units. The fuzzification unit is the definition of fuzzy

sets, and the determination of the degree of membership of crisp inputs, the injection current and wavelength,

in appropriate fuzzy sets. The fuzzy sets are represented by membership functions (MFs), which are triangular,

trapezoidal, and bell-shaped entities. The triangular MFs are the most convenient ones and are used in this

study as illustrated in Figure 2. The number of MFs and their initial-final values are determined using the

system knowledge and intuition.
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Figure 1. Henry factor of the proposed FL-based model.
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Figure 2. Membership function inputs (a, b) and output (c).

These are then processed in the fuzzy domain by the knowledge base unit, which is composed of a rule

base and data base, supplied by domain experts. The rule base subunit contains a number of fuzzy if-then rules

that describe the link between the inputs and the output. Table 1 shows the rule base of the proposed FL-based

intelligent model. The linguistic variables mf1 and mf13 are used in Table 1. They correspond to the smallest

and largest MFs, respectively. The data base subunit defines the MFs of the fuzzy sets used in the fuzzy rules.
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The decision-making logic unit applies the rule base to the fuzzy values coming from the fuzzification unit to

make decisions. Initially, the fuzzy values are presented to the rule base in order to determine the active rules.

Afterwards, this rule is employed in the max-min fuzzy method for the prediction the Henry factor of the DFB

laser diode [36,37,41].

Finally, the defuzzification unit translates back the fuzzy numbers into single real-world values. This

can be done in different ways, such as max-min defuzzification, centroid defuzzification, and so forth. In this

study, the most commonly used accurate technique, namely the centroid defuzzification technique (also known

as center of gravity or center of area defuzzification), has been used [74].

Table 1. Rule base for the Henry factor of the DFB laser diode.

Injection current (mA)
Wavelength (nm) Low Medium High
mf1 mf1 mf2 mf4
mf2 mf1 mf2 mf3
mf3 mf2 mf3 mf4
mf4 mf2 mf3 mf5
mf5 mf3 mf4 mf7
mf6 mf2 mf4 mf8
mf7 mf3 mf5 mf7
mf8 mf5 mf6 mf11
mf9 mf5 mf7 mf11
mf10 mf5 mf8 mf12
mf11 mf6 mf7 mf13
mf12 mf6 mf10 mf12
mf13 mf9 mf12 mf13

3. Evaluation of the results and discussion

The FL-based intelligent model consists of 2 input parameters, injection current and wavelength. The single

output parameter is the Henry factor, which affects several fundamental aspects of semiconductor lasers in

terms of different application areas. Figure 3 shows the results of the experimental, theoretical, and FL-based
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Figure 3. The comparison of the experimental, theoretical, and FL-based model results for the Henry factor prediction

for the DFB laser diode.
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intelligent model for different wavelengths and injection current levels for the computation of the Henry factor

of DFB laser diodes. In Figure 3, symbols are experimental, solid curves are theoretical, and dotted lines

are FL-based intelligent model results. As can be clearly observed, the FL-based results are very close to the

experimental results, which eliminates the drawbacks of the theoretical results [39].

The results of the FL-based intelligent model performance are shown in Table 2, where MSE is the mean

square error, RMSE is the root mean square error, and MAE represents the mean absolute error values. The

term r is the correlation coefficient, which is close to unity. The total error from all experimental results is

under 10% and, for the MSE, this error is around 1%, which is highly accurate. The performance results also

show that the FL-based model results agree with the experimental results, validating the model. It can also be

seen that the FL-based results are much better than the theoretical results and thus can be used reliably in the

design process.

Table 2. The FL model’s performance results.

Performance Experimental-FL Experimental-Theoretical
MSE 0.011345 0.13506203
RMSE 0.099514 0.36750787
MAE 0.089404 0.23942222
r 0.994444 0.930635

4. Conclusions

In this study, a FL-based approach has been successfully applied to the Henry factor of the DFB laser diode.

The results show that the FL-based model is capable of generalizing between input and output variables with

reasonably good predictions. The overall evaluation of the experimental results show that the FL-based approach

provides acceptable predictions within the range of 95% to 99.9% while evaluating the performance of optical

systems in the design phase. Since the Henry factor is a key parameter and has great importance, as it is one

of the main features that distinguish the behavior of semiconductor lasers with respect to other types of lasers

in the case of analysis and design, the simulation results provide highly reliable predictions that also increase

the system performance to be constructed at the design stage of the complete system. Thus, the suggested

methodology presents cheap and clear guidance to the system engineer from the outset, contributing towards

the reduction of the time spent on design and implementations involving DFB laser diode applications.
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[19] F.V. Çelebi, R. Yıldırım, “Distortion system theory of the two tone small signal input laser diode”, Journal of the

Faculty of Engineering and Architecture of Gazi University, Vol. 20, pp. 373–377, 2005.
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[50] F.V. Çelebi, “Modeling of the linewidth enhancement factors of the narrow and wide GaAs well semiconductor

lasers”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol. 21, pp. 161–166, 2006.

[51] F.V. Celebi, K. Danisman, “Neural estimator to determine alpha parameter in terms of quantum-well number”,

Optics and Laser Technology, Vol. 37, pp. 281–285, 2005.

[52] S. Sagiroglu, F.V. Celebi, K. Danisman, “Modelling of the linewidth enhancement factor with the use of radial basis

function network”, AEU - Archiv fur Elektronik und Ubertragungstechnik, Vol. 56, pp. 51–54, 2002.

[53] L. Wei, J. Xi, Y. Yu, “Linewidth enhancement factor measurement based on optical feedback self-mixing effect:

a genetic algorithm approach”, Journal of Optics A - Pure and Applied Optics, Vol. 11, Article Number 045505,

2009.

[54] F.V. Celebi, K. Danisman, “A different approach for the computation of refractive index change in quantum-well

diode lasers for different injection levels”, Proceedings of SPIE, Vol. 5662, pp. 384–388, 2004.

[55] S. Yigit, B. Tugrul, F.V. Celebi, “A complete CAD model for type-I quantum cascade lasers with the use of artificial

bee colony algorithm”, Journal of Artificial Intelligence, Vol. 5, pp. 76–84, 2012.

[56] S. Tankiz, F.V. Celebi, R. Yildirim, “Computer-aided design model for a quantum-cascade laser”, IET Circuits,

Devices and Systems, Vol. 5, pp. 143–147, 2011.

[57] F.V. Celebi, S. Tankiz, R. Yildirim, L. Gorkem, “Modeling quantum cascade lasers by multilayer perceptrons”,

International Conference on Application of Information and Communication Technologies, 2009.
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