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Abstract: The probabilistic neural network (PNN) is a special type of radial basis neural network used mainly for

classification problems. Due to the size of the network after training, this type of network is usually used for problems

with a small-sized training dataset. In this paper, a new training algorithm is presented for use with large training

databases. Application to the handwritten digit database shows that the reduced PNN performs better than the standard

PNN for all of the studied cases with a big gain in size and processing speed. This new type of neural network can be

used easily for problems with large training databases like biometrics and data mining applications. An extension of the

network is possible for new training samples and/or classes without retraining.

Key words: Classification, pattern recognition, reduced probabilistic neural network, handwritten digit recognition,

optimization

1. Introduction

The world of pattern recognition is changing so fast that old classification techniques need to be improved

regularly in order to suit the new training databases that are always growing in size. State-of-the-art techniques

usually prove efficient for small-sized benchmarking problems, but when it comes to applying these methods

to real-world problems, the size of the training set becomes a handicap for certain problems. In fact, in many

situations, a bigger size implies a serious decrease in performance.

The probabilistic neural network (PNN) is mainly used for classification problems. It has been used

extensively in recent years to solve different problems related to pattern recognition. Examples of areas where

the PNN was used successfully are email security enhancement [1], intrusion detection within computer networks

[2], water quality assessment [3], health and disease diagnosis [4,5], detection of resistivity for antibiotics [6],

biometrics applications [7–9], and many military applications [10,11].

Although the PNN is very popular in classification, it suffers from a major drawback. The size of the

network after training is equal to the size of the training dataset, which makes it impractical for use with

large-scale big databases. In fact, the problem is doubled since the performance of the system usually decreases

in terms of the classification accuracy and speed with a very big hidden layer.

Much work has been done to overcome certain drawbacks of the standard PNN for some specific situations.

In [12], a learning vector quantization algorithm was used to train a PNN in order to make the network’s size

smaller. Other examples of PNN variants are the fuzzy PNN [13] and the particle swarm optimization stochastic

algorithm for PNN parameter choices [14]. All of these approaches solve one part of the problem and make
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another problem. In fact, by modifying the training algorithm in certain ways, the network loses some of

its major advantages. For example, the rotated kernel PNN [15] has good generalization qualities, which are

claimed to compare to those of support vector machines (with a reduced number of classes), but the training is

very slow, even for small datasets, and the network does not support adding new classes and/or samples unless

the training is restarted.

In this work, a new training algorithm is proposed for reducing the size of the PNN and increasing

performance during classification as well, without modifying the general architecture of the network.

2. PNNs

2.1. Mathematical background

Like radial basis function (RBF) neural networks, PNNs use RBFs as activation functions in the second layer

(hidden layer) to make a local decision function centered on a subset (a sample) of the input space [16]. After

training, the global decision function is constructed by summing all of the local functions [17,18]. This is why

the PNN has an advantage over the multilayer network, which tries to find a global decision function after

training. The decision of a PNN is not affected by local minima if they exist.

For any classification problem, each observed vector of cluster data x (d-dimensional vector) is placed

in one of the predefined labeled classes Ci = 1, 2, . . . ,m, where m is the number of possible classes to which

x can belong. The dimension of the input vector xand the number of possible classes m have great impact on

the performance of the network, since a high number of input parameters affect the speed and accuracy of the

network. The Bayes pattern classifier implements the Bayes conditional probability rule, where the probability

P (Ci|x) of x belongs to class Ci . This probability is given by:

P (Ci |x ) =
P (x |Ci )P (Ci)

m∑
j=1

P (x |Cj )P (Cj)
, (1)

where P (Ci|x) is the conditional probability density function (PDF) of x given set Ci , and P (Cj) is

the probability of drawing data from class Cj .

The input vector x (candidate for classification) is classified as belonging to class Ci if:

P (Ci |x ) > P (Cj |x ); ∀ j = 1, 2, , m; j ̸= i. (2)

The main problem in Eq. (2) is that the prior probabilities P (x|Ci) (probability that sample x comes

from population Ci) are most of the time unknown for the system. To solve this problem, we can estimate these

probabilities from the training samples. The Parzen windowing technique for PDF estimation [17] may present

a good solution. Parzen proved that a class of PDF estimators asymptotically approaches the underlying parent

density, provided that it is smooth and continuous [19]. The Parzen estimator used here is:

fA (x) =
1

2πd/2 σd

1

m

m∑
i=1

exp

[
− (X −Xai)

t
(X −Xai)

2σ2

]
, (3)

where Xai is the ith pattern from class CA , d is the dimension of the space, and σ is a smoothing parameter.

From Eq. (3), we can see that the global decision function fA (x) is the sum of small Gaussian functions

centered on the training samples. This is similar to a multidimensional interpolation. PNNs use all of the
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training dataset to estimate PDFs P (x |Cj ) . These functions are then used to estimate the likelihood of the

input sample as belonging to a given class [19].

2.2. Architecture

A typical architecture of a standard PNN is given in Figure 1.

A PNN has 4 layers [19], as given below.
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Figure 1. General architecture of a PNN.

Input layer: The number of neurons in this layer is equal to the number of parameters (variables)

needed to describe the separable form input.

Pattern (hidden) layer: This layer organizes the learning set by representing each input vector by

a hidden neuron that records the parameters of this vector. The activation function used in this layer is the

following exponential function:

exp

(
−
(
wi

j −x
)t (

wi
j −x

)
2σ2

)
. (4)

The computation of the output of the hidden units is realized by the formula:

∅ij (x) =
1

(2π)
d/2 σd

exp

(
− 1

2σ2

(
x− xi

j

)t (
x− xi

j

))
, (5)

where x i
j is the j th training pattern vector from patterns in class Ci and d is the dimension of the input space.

Output layer: This is also called the summation layer. In this layer, the number of units equals the

number of the existing classes. Each unit is connected to all of the neurons in the pattern layer that represent

samples that belong to this class. The output of each neuron in this layer represents the probability for the

input vector X to belong to class Ci . Thus:

P (Ci |x ) =
1

(2π)
d/2 σd

1

Ni

Ni∑
j=1

exp

(
−
(
x− xi

j

)t (
x− xi

j

)
2σ2

)
. (6)
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Note that Ni is the number of training patterns from class Ci .

Sometimes another layer is added to normalize the input vectors if they are not already normalized [3].

In fact, as is the case for most multilayer networks, the input vector must be normalized to give adequate

separation in the hidden layer.

The classification decision for the input vector X is given in accordance with the Bayes decision rule

using:

C (x) = arg max
i=1, ,m

 1

(2π)
d/2 σd

1

Ni

Ni∑
j=1

exp

(
−
(
x− xi

j

)t (
x− xi

j

)
2σ2

) , (7)

where m is the number of classes presented in the training set [20].

During the training process, the radial hidden units are copied directly from the training set, one for each

training sample. Each hidden node models a Gaussian function centered on a training sample. In the summation

layer, there is an output unit for each class, which is connected to all of the hidden units belonging to the same

class, without connections to other neurons [4]. The outputs are proportional to the density functions of different

classes and normalized to form a sum equal to 1. This can be seen as a probabilistic output.

The pattern units (neurons in the hidden layer) use the following Gaussian activation function:

f(x) = e−(wi − xi)
t(wi − xi)/2σ2

, (8)

where wi are the weights, xi are the variables of the model, and σ is a smoothing parameter.

2.3. Training algorithm

The training of a PNN consists of simply copying the training samples to the hidden units in the second layer

of the network. This is done in one pass, which makes a PNN very fast to train. The number of hidden neurons

is equal to the number of samples. The algorithm used for training is then:

Begin

Initialization

j = 0;

n = number of samples;

Do

j ← j + 1;

Normalization: xjk ←
xjk√
d∑
i

x2
ji

;

Learning process: wjk ← xjk ;

If x ∈ wi , then aic ← 1;

Until j = n ;

End

3. Modified training algorithm

To get rid of the redundancies in the training sets, a new training algorithm is proposed. The algorithm should

not affect the architecture of the original PNN and the resulting network has to share the same advantages with

this latter one, with a reduced number of hidden units.
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In order to exclude neurons that are quite similar in their response (share the same activation area), a

standard training of the network is realized with the standard PNN training algorithm presented in Section 2.2.

Note here that, with this algorithm, we can add or remove hidden units (even for new classes) easily by adding

hidden neurons and their respective connections. After the creation of this network, another pass is necessary

to delete neurons of low importance (that have the same activation area as some others) in their classification.

This is done by deleting the neuron and observing the activation area when classifying the same sample that

represents this unit. In other words, we delete the hidden neuron and measure its importance for classification

of the same sample (each hidden neuron represents one training sample). If the new network can successfully

classify this sample, the new network is retained. In the other case (wrong classification or right classification

with low confidence), the network from step (k-1) is restored. The process is repeated for all of the samples in

the training set. To make sure the network can classify all of the samples in the training set, another pass is

necessary to add samples that are misclassified to the hidden layer of the PNN (see Figure 2). This last pass

is done only to keep the same advantages as the standard PNN. Another advantage of this new reduced PNN

(RPNN) network is that all of the boosting algorithms used for a standard PNN are applicable without major

modifications. As a result, the proposed training algorithm is much slower than the standard one.

The new algorithm is given below.

Training Set

PNN standard 

training algorithm  

Reclassify all 

training samples  

Remove 

unnecessary units  

Add units for 

misclassified samples  

Reduced PNN  

(RPNN)  

PNN  

Figure 2. The new training algorithm.

3.1. First step: construction of a standard PNN

Use the algorithm presented in Section 2.3 to construct a PNN. The hidden layer has as many neurons as there

are samples. The insertion or suppression of a hidden neuron consists of adding or removing a row in the matrix

of weights. Thus, it is relatively a fast operation.
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3.2. Second step: reduce the network size

In this step, a smaller equivalent network is generated.

Begin

Initialization

k = 0;

x = first training sample;

Do

k ← k + 1;

Delete the k th node from the hidden layer

Classify the k th sample in the new network (PNN*)

If the classification generates a good probability, then adopt the new network

Else return to the original PNN;

Until k = n ;

Return PNN = PNN* ;

End

3.3. Third step: verifying the classification

This step is necessary if we want a 100% classification rate for the training set.

Begin

Initialization

k = 0;

x = first training sample;

Do

k ← k + 1;

If classification (k th sample) ̸= target, then

Insert sample into hidden layer;

Until k = n ;

Return PNN*;

End

3.4. Testing algorithm

The testing algorithm for the RPNN is the same as a standard PNN testing algorithm. After a training process,

the probabilistic network can be used to classify input samples. Each neuron in the hidden layer calculates the

product zk = wt
k x and will output a nonlinear function of zk , φ (zk) = e

zk−1

σ2 , where σ is a smoothing

parameter defined by the user.

Each output neuron sums the contributions of all of the hidden neurons connected to the neuron

representing a given class. The testing algorithm is given as follows:

Begin

Initialization

k = 0;

x = test sample;
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Do

k ← k + 1; zk ← wt
kx

If akc = 1, then gc ← gc + e
zk−1

σ2 ;

Until k = n ;

Return class ← arg max
i

(gi(x)) ;

End

4. Database descriptions

Since the PNN is usually applied on small benchmarking datasets, handwritten digit recognition represents a

challenge for a standard PNN. There are only a few applications of this type of network for real-world big

databases [20]. Both the number of neurons in the input layer (dimensionality) and the number of samples

(available labeled data) can dramatically affect a neural network of any type [21].

In order to test the RPNN on a real-world big database, the new classifier was tested on the Mixed

National Institute of Standards and Technology (MNIST) database for handwritten digit recognition. This

database is well known in pattern recognition. It contains a large number of samples (60,000 samples for

training and 10,000 samples for testing). The samples are 20 × 20-pixel black and white images of handwritten

digits (see Figure 3). The different Arabic digits were written by 500 different writers and size-normalized. This

is a good database for people who want to try pattern recognition methods on real-world data while spending

minimal effort on the preprocessing and formatting of data.

Figure 3. Some samples from the MNIST database.

Table 1. Number of samples for each class for 60,000 training samples and 10,000 testing samples.

Class “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
Training 5922 6739 5957 6129 5840 5419 5918 6265 5851 5948
Testing 978 1133 1031 1010 980 891 957 1027 974 1007

Table 1 shows some statistics about the training and testing database. The number of samples in each

class is almost the same, which means that the database is more or less balanced. Digits 1 and 7 have more

training samples than the others because they have almost the same form and can lead to misclassifications.

The average is about 6000 images for training and 1000 images for testing each digit.
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We have also used the ‘skin segmentation dataset’ to confirm our results on an even bigger database.

This database is used to classify skin and nonskin images for the FERET and PAL Face databases. It contains

245,057 labeled samples, where 50,859 are face samples and 194,198 are not face samples. The training set

contains 183,750 examples and the remaining examples are used for testing.

5. Experimental results

Both the RPNN and the standard PNN are tested with different subsets of the training and testing samples to

observe the performance of the network as the number of training examples becomes bigger. The only parameter

that is fixed is the smoothing parameter, fixed to 0.9 after many tests with a small set of training samples.

Table 2 shows the experiments carried out in this paper. All of the samples in the test set are used for all

of the experiments. For each experiment, the number of training samples is changed to see its impact on the

performance of both the standard PNN and RPNN.

The performances of the standard PNN and RPNN are given in Tables 2 and 3, respectively. Table 4

represents the number of hidden units for the RPNN for all of the experiments.

Table 2. Performance of the standard PNN for the classification of 10,000 test examples.

Number of
% Correct % Incorrect

Time
training samples (h:min:s)
1000 85.00 15.00 00:31:50
10,000 82.00 18.00 05:30:50
20,000 80.30 19.70 11:50:13
30,000 78.70 21.30 18:48:03
40,000 93.90 6.10 25:30:16
50,000 78.65 21.35 33:17:51
60,000 80.30 19.70 40:59:40

Table 3. Performance of the RPNN for the classification of 10,000 test examples.

Number of
% Correct % Incorrect

Time (h:min:s)
training samples (h:min:s)
1000 85.69 14.30 00:08:35
10,000 94.71 5.29 00:49:52
20,000 96.19 3.81 01:03:57
30,000 96.67 3.33 01:10:49
40,000 96.89 3.11 01:27:39
50,000 97.12 2.88 01:37:09
60,000 96.94 3.06 01:52:27

Figure 4 represents the reduction ratio of the hidden units in the RPNN by the number of hidden units

in a standard PNN (in %).

Results for the second experiment on the face segmentation dataset are given in Table 5.
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Table 4. Number of neurons in the hidden layer.

Standard PNN RPNN
1000 251
10,000 1644
20,000 2106
30,000 2491
40,000 2812
50,000 3184
60,000 3464
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Figure 4. Size reduction ratio.

Table 5. Results for the skin segmentation database.

Standard PNN RPNN
No. of hidden neurons 183,750 406
% of correct classifications 100 99.9
Time to classify 1 example (s) 1200 0.7

6. Discussion

From Tables 2 and 3, we observe that the RPNN outperforms the standard PNN, both in classification accuracy

and processing speed. The RPNN classifies the testing samples (unseen before) well and hence has a good

generalization for the testing set. At the same time, the processing speed is greatly improved with the RPNN.

From Table 4, we notice that the number of neurons in the hidden layer is very small in the RPNN when

compared to the hidden units of a standard PNN, which are equal to the number of samples. In fact, this is

what justifies the improved processing speed in the RPNN over the other network.

The results in Table 5 show that the PNN and RPNN give quite similar classification performances. This

is because the database contains a lot of redundant samples. However, the size of the RPNN (406 neurons) is

far smaller than that of a standard PNN (183,750 neurons), which will simply copy all of the training set in the

hidden layer. As a result, the time for testing is very important for the PNN. This makes the standard training

algorithm totally inefficient in this case.

As the number of training samples becomes bigger, the number of required neurons in the hidden layer

of an RPNN goes down. This is because the RPNN avoids over-fitting by using only a small set of the training
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samples to represent each class. The rest of the training set is considered as noisy redundant samples. The

classification rate for the training set is 100%, which is similar to the standard PNN.

The drawback with the RPNN is that it needs more time to train since training is an evaluation of

the contribution of each neuron in the hidden layer. Training a standard PNN is simply copying the training

samples in the hidden layer, and this is done in one pass. This is why the standard PNN is only used for small

databases.

7. Conclusion

In this paper, a new training algorithm is proposed for PNNs. The proposed algorithm reduces the size of a

PNN while increasing accuracy and processing speed.

Experimental results show that the RPNN outperforms the standard PNN in terms of classification

accuracy and processing speed (for the test step) for all of the cases studied here. The new PNN has the same

advantages as a standard PNN. The architecture of the network is not changed and new classes and/or training

samples can be added without a retraining of the network. However, the training of an RPNN is very slow

compared to the training of a standard PNN.

This algorithm can be used for all cases where a standard PNN suffers from the size of the training

dataset and it is preferable for real-world large databases, where the gain in processing speed becomes very

important.
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