
Turk J Elec Eng & Comp Sci

(2014) 22: 990 – 1006

c⃝ TÜBİTAK

doi:10.3906/elk-1207-7

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A new edge-preserving algorithm based on the CIE- Lu’v’ color space for color

contrast enhancement

Mohammad ZOLFAGHARI1,∗, Mehran YAZDI2
1Faculty of Electrical and Computer Engineering, Zarghan Branch, Islamic Azad University, Zarghan, Iran

2Faculty of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

Received: 03.07.2012 • Accepted: 17.12.2012 • Published Online: 17.06.2014 • Printed: 16.07.2014

Abstract: Image segmentation and edge detection are the most important presteps in machine vision, and their

successfulness can affect the success of the next steps. In this paper, the performance of the Trahanias edge detector in

different color spaces, such as RGB, YCbCr, HSI, and CIE Lu’v’, is compared in order to find the best color space for image

segmentation and edge detection. We then offer an efficient edge-preserving algorithm for color contrast enhancement in

the CIE Lu’v’ space. The proposed algorithm can increase the color contrast, which causes a remarkable improvement in

image segmentation and edge detection in the CIE Lu’v’ color space. Moreover, it can efficiently reduce the number of

spurious edges that may be produced during the color contrast enhancement process. The results obtained by applying

the proposed algorithm, as compared with those by applying another recently introduced algorithm, demonstrate the

better performance of the proposed algorithm.

Key words: Edge detection, color space, color contrast enhancement, edge preserving, image saturation

1. Introduction

In an image segmentation process, an image is usually divided into smaller regions, where the pixels of each

region are similar in color, intensity, and so on. The points between 2 regions are called the edge. Thus, the

edge detection process can be used as a beneficial prestep in image segmentation. Different image segmentation

algorithms based on thresholding [1], splitting and merging [2], and data clustering techniques [3] have been

proposed and various edge detection algorithms such as the Canny, Sobel, and Trahanias [4] have been used,

but a common and perfect method does not yet exist and the methods are very sensitive to the types of images.

In addition to the choice of efficient algorithms for image segmentation and edge detection, the type

of useful color space in which the algorithms are applied is also important. The most important color spaces

normally used for image segmentation and edge detection are RGB, HSI, YCbCr, and CIE Lu’v’ [5]. Among

the mentioned color spaces, the CIE Lu’v’ color space is mostly used in order to increase the image contrast to

attain better image segmentation and edge detection. Although the aim of increasing the image contrast is to

have better image segmentation, creating spurious edges and missing true edges may occur in this process.

Various methods have been proposed for image contrast enhancement based on using filters, image

histograms, chromatic features [6,7], etc. Although these methods improve the image contrast, they are unable

to preserve all of the true edges.

Recently, Chung et al. [8] proposed a method of edge-preserving based on the CIE Lu’v’ color space.

∗Correspondence: zolfaghari20@yahoo.com

990

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

Although their method has opened a new direction in CIE Lu’v’ color space-based saturation, it contains some

deficiencies that can be improved.

In this paper, we first compare the results of applying the Trahanias edge detector on test images

represented in various color spaces in order to find the best color space for the segmentation and edge detection

processes. The reason for using the Trahanias edge detector is that it is significantly more efficient than other

edge detectors because of the advantages of using vector order statistics in the edge-detection process [4]. In the

next step, to improve the image segmentation results, we increase the contrast of the test images by saturating

them in the CIE Lu’v’ color space. To do that, we propose an efficient edge-preserving algorithm and compare

our algorithm with Chung et al.’s algorithm [8] to demonstrate the superiority of the proposed algorithm.

This paper is organized as follows: In Section 2, the CIE Lu’v’ color space and Trahanias edge detector are

introduced. Section 3 consists of 2 edge-preserving algorithms, Chung et al.’s [8] and our proposed algorithm.

The experimental results are presented in Section 4 and, finally, some conclusions are addressed in Section 5.

2. Preliminaries

In this section, 2 concepts are introduced that will be used in the next sections. These are the CIE Lu’v’ color

space and Trahanias edge detector.

2.1. The CIE Lu’v’ color space

Since color spaces like RGB, HSI, and YCbCr are well known, in this section only the CIE Lu’v’ color space is

discussed in detail. This color space can be obtained from the RGB color space using Eqs. (1) and (2) [8]:

 X
Y
Z

 =

 0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

 R
G
B

 , (1)

where R , G , and B are the red, green, and blue components of the RGB color space and X , Y , and Z are

the components of the CIE XYZ color space, respectively.

u′ =
4X

X + 15Y + 3Z
v′ =

9Y

X + 15Y + 3Z
L = Y (2)

L contains the brightness information. The u′v′ diagram, which includes the chromatic information, is

illustrated as a closed curve in Figure 1, where R′ = (u′
R′ = 0.4507, v′R′ = 0.5229), G′ = (u′

G′ = 0.1250,

v′G′ = 0.5625), and B′ = (uB′ = 0.1754,vB′ = 0.1579) are 3 points of a triangle and point W is defined as the

white point.

The points within the triangle are displayable by a cathode ray tube monitor. The points near W = (uw

= 0.1978, vw = 0.4683) are achromatic ones. Hence, pixels for the image saturating process should be within

the triangle and adequately far from W .

991

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

W

G'

R'

B'

v'

0.1 0.2 0.3 0.4 0.5 0.6 0.7
u'

0.6

0.5

0.4

0.3

0.2

0.1

Figure 1. The u ′ v ′ chromatic diagram.

2.2. Trahanias edge detector

One of the effective edge detectors is the Trahanias detector and we used it in our work for comparing the

results. However, other edge detectors can also be used for this purpose, such as those proposed in [9,10].

To apply the Trahanias edge detector, the following steps should be applied on all of the pixels of an

image [4,11]:

Step 1. A 3 × 3 window is selected to scan all of the image pixels. The selected window contains 9

pixels, where each of the pixels is represented by p .

Step 2. For each pixel within the window denoted by pk , k= 1, 2, 3, . . . , 9, we sum up the norm of

difference of each pixel with itself and with the other 8 pixels, which is defined as dk and computed by the

following equation:

dk =
9∑

m=1

∥pk − pm∥ k = 1, 2...,9, (3)

where ∥.∥ represents a vector norm and pm is another pixel within the window.

Step 3. The obtained values of d1 ,d2 ,d3 . . . ,d9 from Eq. (3) are arranged in ascending order. It is

supposed that the sorted distances are d(1) ,d(2) ,,d(7) , where d(1) corresponds to p(1) with a minimum

distance and d(7) corresponds to p(7) with a maximum distance.

Step 4. The minimum vector dispersion (MVD) is computed by applying the following equation:

MVD = min
i

∥∥∥∥∥∥p(10−i) −

n∑
j=1

p(j)

n

∥∥∥∥∥∥
 i = 1, 2, . . . , k; k, n < 9, (4)

where the values of k and n are selected empirically as 3 or 4, which was suggested in [4]. Note that

P (j)orP (i)in this equation represents the pixels whose values are sorted from lowest (j= 1) to highest (j=

9). If the MVD value is more than a specified threshold, then the central pixel of the window is an edge pixel;

otherwise, it is not an edge pixel. The MVD can improve the efficiency of this edge detector, even in noisy

images [4], and that is a reason why it is used in our work.

992

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

3. Edge-preserving algorithms

Edge-preserving algorithms can be useful to enhance the results of image segmentation and edge detection

algorithms. They would be more efficient if they were applied using a proper color space. Consequently, as a

first step, we should determine the more proper color space for edge detection and edge preserving.

Images are usually represented in the RGB color space, so it is necessary to transfer the RGB images to

a different color space. Transferring to the CIE Lu’v’ color space is done using the method explained in Section

2.1 and transferring to HSI and YCbCr is done using the methods introduced in [12,13].

In the next step, the Trahanias edge detector is used to detect the edges of an image in different color
spaces.

The CIE Lu’v’ color space can be chosen as an efficient color space in order to saturate the image. In

this space, image saturation causes the enhancement of the image segmentation; however, the true edges may

be missing and spurious edges may be created in the edge detecting process. A new method that can preserve

better edges is Chung et al.’s algorithm. Although this method preserves most of the true edges, it contains 2

deficiencies. First, we explain Chung et al.’s algorithm, and then we discuss its deficiencies.

3.1. Method of Chung et al.

This method contains 3 parts: image saturation, image desaturation, and a new edge-preserving algorithm

proposed by Chung et al. [8].

3.1.1. Image saturation

For increasing the image contrast in the CIE Lu’v’ color space, the image saturation can be used as shown in

Figure 2a. For a pixel like C , which is within the R’G’B’ triangle and has adequate distance from W , the

maximum amount of saturation can be obtained by moving pixel C = (u′
c, v

′
c, L) along line segment WC and

by finding the intersection point of the line segments of WC and R′B′ [14,15]. This intersection point is called

Cs = (u′
cs , v

′
cs , Lcs), which indicates the maximum amount of saturation for pixel C . Note that this procedure

does not affect the brightness of the pixel, so Lcs = L.

W

C

Cs

G'

R'

B'

G'

B'

R'
W

C

Cds

Cs

v'

u '

v '

u '

Figure 2. Saturation (a) and desaturation (b) steps.

3.1.2. Image desaturation

Maximizing the amount of saturation for the image pixels causes 2 problems: 1) missing the detection of true

edges and creating a number of spurious edges, and 2) increasing the intensity of colors, which means that the

image may become visually abnormal. Therefore, a desaturation process is needed. As can be seen in Figure

993

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

2b, other papers, such as [8], have determined the components of a desaturated pixel Cds = (u′
cds

, v′cds , Lcds)

using the central gravity law of color mixture, as defined by:

u′
Cds

=
u′
w

LW

v′
W

+ u′
Cs

L
v′
CS

LW

v′
W

+ L
v′
CS

v′Cds
=

LW + L
LW

v′
W

+ L
v′
CS

Lcds = LW + L, (5)

In this equation, LW is computed separately by LW = kL̄ , where L̄ is the mean of the color image luminance

and k is a factor to control the image luminance and saturation.

3.1.3. Chung et al.’s algorithm [8]

In [8], Chung et al. used the following steps to perform the procedure of edge preserving in the saturated color
space.

Step 1. First, the edges of the image in the CIE Lu’v’ color space are detected by the Trahanias edge

detector. There are 2 cases for each pixel like C : either pixel C is an edge pixel, which is denoted by E(C) =

1, or pixel C is not an edge pixel, which is denoted by E(C) = 0.

Step 2. Using the saturating process, each pixel in the CIE Lu’v’ color space is saturated and denoted

by Cs , and then each saturated pixel is desaturated by Eq. (5) and is denoted by Cds .

Step 3. A 3 × 3 window (see Figure 3) is selected for scanning all of the desaturated image rows

horizontally from the previous step. In this window, the symbol p means that the edge preservation procedure

is done on these pixels, the symbol c shows that the edge preservation procedure is applied on the central pixel

of the window, and the symbol u denotes that the procedure will be done on these pixels.

p p p p

p c u

u u u

Figure 3. The 3 × 3 window for scanning the image rows.

In each step of moving the window, the case of the central pixel should be determined by the edge

detector. Four cases can occur due to moving each pixel in the original image in the CIE Lu’v’ space, like

pixel C toward another pixel like Cds in the desaturated image obtained from step 2: 1) E(C)= 1 and after

transferring pixel C to pixel Cds , E(Cds) = 1. In other words, if pixel C is an edge in the original image and

by transferring it to pixel Ces it is still an edge, no error will occur. 2) E(C) = 0 and after transferring, we

can write E(Cds)= 0. Consequently, no error occurs in cases 1 and 2. In cases 3 and 4, the value of E(C)is

not equal to E(Cds). Cases 3 and 4 are noted as error cases.

Color point Ces is defined as a point between points C and Cs to have a saturated pixel but without

error. Indeed, if transferring pixel C to pixel Cds leads to an error, pixel Cds must be moved to another

optimum saturated pixel like pixel Ces , which removes the error. Finding pixel Ces means we have a saturated

pixel with no error.

Step 4. According to the previous step, in cases 1 or 2, we can assume that Ces = Cds ; otherwise, for

finding color point Ces , the binary alternative search algorithm in the next step should be used.

994

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

Step 5. If E(C) = 1 and pixel C is transferred to pixel Cds , where E(Cds) = 0, it causes the error.

According to Figure 4, it is noted that distance d is empirically equal to
4|CsCds|

5 . For removing the error, first,

pixel Cds should be transferred to pixel Ct(1) , where E(Ct(1)) = 1 and
∣∣CdsCt(1)

∣∣ = d . In this case, the error

is removed. In the next phase, in order to reach the nearby point Cds , pixel Ct(1) should be transferred to

pixel Ct(2) , where
∣∣Ct(1)Ct(2)

∣∣ = d/2. If E(Ct(2)) = 1, then pixel Ct(2) is transferred to pixel Ct(3) and Ces

= Ct(3) ; otherwise, it is transferred to pixel Ct′(2) and Ces = Ct′(2) . In this step, the aim is to find pixel Ces ,

which should be as close as possible to Cds .

 W C Ct(1) Ct' (2) Ct(2) Ct(3) Cds Cs

L2 L1

d d

d/2
d/4

d/4

d/2
d/4

d/4

Figure 4. Binary alternative search in Chung et al.’s algorithm [8] for edge preservation.

The same procedure is applied on the pixel on the right side of color point Cds and on the closest pixel

to pixel Cds to find Ces . If the above procedure cannot find the edge pixel for the central pixel of the window,

then Ces = Cds is chosen. However, this procedure can be also done for the nonedge pixels that become edge

pixels by the saturation step.

3.2. Proposed edge-preserving algorithm

This section presents our proposed algorithm, but before that, the deficiencies in the previous method of edge

preserving are discussed briefly.

First, according to Section 3.1.3 and Figure 4, in the case of the error, distances L1 and L2 are not

considered in the binary alternative search. If color points Ct(3) , Ct(2) , and Ct′(2) cannot remove the error,

pixel Ces may be found within these 2 distances (i.e.L1 and L2), which are not considered by the algorithm.

As a result, we must choose Ces = Cds , which means that the error still exists. In fact, it is possible that the

point being searched for removing the error is between color points C and Cds or between color points Cds

and Cs . Second, Eq. (5), which is used for desaturating, does not depend on color point C = (u′
c, v

′
c, L). This

causes some pixels to be transferred from a color point like Cs to a color point like Cs , between W and C . As

shown in Figure 5, in this way, it is not possible to search on the left side.

d/4

d/2

d

 W Cds C Cs

Figure 5. Example of a case where a saturated pixel is moved between W and C instead of being placed between C

and Cs .

995

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

In our proposed algorithm, for desaturating the image, according to Figure 6, the origin of the coordinate

system is transferred to point W , and then color point C = (u′
c, v

′
c, L) is transferred to color point Cds =

(u′
cds

, v′cds , Lcds). In the desaturating process, Lcds = L and components u′
cds

and v′cds are computed by Eqs.

(6) through (8): √
(u′

Cds
− u′

C)
2 + (v′Cds

− v′C)
2 = d1, (6)

v′cds = mu′
cds

, (7)

d1 = nd 0 < n < 1, (8)

where d1 is the rate of saturation of pixel C , d is the distance between C and Cs , n is the factor that controls

the rate of desaturating, m is the slope of the line segment WC , and Lcds = L . In addition, d−d1 is considered

as the rate of desaturation of pixel Cs .

d1

v'

u'

Cs

Cds

C

d

W

Figure 6. Origin coordinate system transferring for desaturating an image.

The advantage of the above method for desaturating the image is that we are absolutely sure that all of

the image pixels move toward color point Cs at a rate of d1 . Using this method, the desaturated pixels like

Cds are not placed between W and C , so the second problem described above is solved. According to Figure

7, the first problem is also solved because, in our proposed algorithm, pixel Ces is searched for between color

points C and Cds and also between color points Cds and Cs .

D2 D1

 W C Ces(L) Cds Ces(R) Cs

Figure 7. Direct search for edge preservation in our proposed algorithm.

The proposed algorithm can be described in the following steps:

Step 1 . After transferring the original image to the CIE Lu’v’ color space, edge detection is done on the

image.

Step 2. The image is saturated as in Section 3.1.1 and is desaturated by Eqs. (6) through (6).

996

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

Step 3. This step is done like the third step in Section 3.1.3.

Step 4. Let us define the central pixel of the window as C . If E(C) = 1, it is transferred to Cds , where

E(Cds) = 1. In another case, if E(C) = 0, pixel C is transferred to Cds , where E(Cds) = 0 . For both cases,

no error is produced and Ces = Cds . However, if we have an error, we should go to the next step for finding

color point Ces .

Step 5. As shown in Figure 7, color point Cds should be moved from both sides to find color point Ces .

If |CCds| = D1 and |CsCds| = D2 , distances D1and D2 are divided into 10 equal intervals experimentally,

and then point Cds is moved toward the right side until finding a point like Ces(R) between Cs and Cds , which

removes the error, or reaching point Cs . The same procedure is done on the left side to find a point like Ces(L)

between Cds and C , which removes the error, or to reach point C .

Four cases can occur in our searching algorithm: 1) If we reach color point C by searching the left side

and Cs by searching the right side, then Ces = Cds , because we could not find a pixel to remove the error; 2)

if we reach color points C and Cs(R), then Ces = Ces(R) , because Ces(R) could remove the error; 3) if we reach

points Cs and Ces(L) , then Ces = Ces(L) ; otherwise, 4) point Ces is chosen between Ces(L) and Ces(R) , which

is the nearest point to color point Cds and is selected as pixel Ces .

Step 6. All of the previous steps are repeated, but in step 3, the window as shown in Figure 8 is used

and this window is moved on the image vertically. It causes a remarkable improvement in the edge preserving

of our algorithm.

p

p

p

p

u

u

u

u

c

Figure 8. The 3× 3 window for scanning the image columns.

The flow chart in Figure 9 illustrates the various steps of the edge-preserving algorithm. In this flow

chart, it is supposed that a pixel is an edge in the original image in the CIE Lu’v’ color space (E(C) =1) and

then becomes a nonedge pixel by the saturation step (E(Cds) = 0). The edge-preserving algorithm is applied

to find pixel Ces .

4. Experimental results

We performed 2 experiments. In the first part, the best color space, which is useful for the edge-detection

process, is determined, and in the second part, the results of edge-preserving algorithms (that of Chung et al.

[8] and the proposed algorithm) in saturated CIE Lu’v’ color space are compared. For comparing the results in

both parts, 6 test images are used, which are shown in Figure 10. Test image Lena is shown in Figure 10a. In

Figures 10b–10d test images Peppers, House, and Jelly Beans and in Figures 10e and 10f test images Baboon

and Tree are shown, respectively.

In the first part, the test images are transferred into 4 color spaces, according to Sections 2.1 and 3, and

then the Trahanias edge detector is used to detect the edges. In Figure 11, the edges of test image Lena in 4

color spaces are shown. Figures 11a and 11b show the edges in the RGB and HSI spaces, respectively. The

997

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

results of the edge detection process in the YCbCr and CIE Lu’v’ color spaces are illustrated in Figures 11c

and 11d, respectively.

�

�

Transformation to the CIE Lu'v'�color space

Saturation Step

A pixel in the RGB color space

Desaturation step by transferring the origin of

coordinate system and choosing appropriate value

for n

The pixel C

The pixel Cs

Edge detection E(C) = 1

NO NO

Yes

Ces is found

E(Cds)

=1

Edge detection

Error Error

Ces = Cds

Edge-preserving algorithm by

binary alternative search

Edge-preserving algorithm by

direct search

Desaturation step by the method of central gravity

law of color mixture and choosing appropriate

value for k

The pixel Cds The pixel Cds

Figure 9. The edge-preserving algorithm when a pixel is an edge and will become a nonedge pixel with the saturation

step; the dashed lines show our modifications with respect to the previous method.

The results show that the best edge detection process is done in the CIE Lu’v’ color space, followed by

the YCbCr color space. The worst results belong to the RGB color space. The edges in the HSI color space

are detected accurately in some parts of the image, but in another parts, it produces very bad results, so the

edge detection in the HSI color space is not reliable. Other test images also confirm this conclusion. Figures

12a–12d show the edges in the RGB, HSI, YCbCr, and CIE Lu’v’ color spaces, respectively. The edges of test

image Baboon in these 4 color spaces are illustrated in Figures 13a–13d and the results of applying the edge

detector to test image House can be seen in Figures 14a–14d. In addition, Figures 15a–15d show a comparison

998

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

between the edges of test image Jelly Beans in the RGB, HSI, YCbCr, and CIE Lu’v’ color spaces, respectively.

Finally, another test image, named Tree (see Figures 16a–16d), also confirms the conclusion mentioned.

 (a) (b) (c)

 (d) (e) (f)

Figure 10. Test images used to evaluate the algorithms: a) Lena, b) Peppers, c) Jelly Beans, d) House, e) Baboon, and

f) Tree.

(a) (b)

 (d)

(c)

Figure 11. Edges of test image Lena in different color spaces: a) edges in the RGB color space, b) edges in the HSI

color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

999

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

(c) (d)

(a) (b)

Figure 12. Edges of test image Peppers in different color spaces: a) edges in the RGB color space, b) edges in the HSI

color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

(c) (d)

(a) (b)

Figure 13. Edges of test image Baboon in different color spaces: a) edges in the RGB color space, b) edges in the HSI

color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

1000

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

(c) (d)

(a) (b)

Figure 14. Edges of test image House in different color spaces: a) edges in the RGB color space, b) edges in the HSI

color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

(c) (d)

(a) (b)

Figure 15. Edges of test image Jelly Beans in different color spaces: a) edges in the RGB color space, b) edges in the

HSI color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

1001

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

(c) (d)

(a) (b)

Figure 16. Edges of test image Tree in different color spaces: a) edges in the RGB color space, b) edges in the HSI

color space, c) edges in the YCbCr color space, and d) edges in the CIE Lu’v’ color space.

In the second part, the results of our proposed algorithm are compared with those of Chung et al.’s

algorithm. The values of k in Eq. (5) and n in Eq. (8) are selected empirically so that the saturation means

for each pixel of the image, which is done by 2 desaturated algorithms, become equal. We do this to fairly

compare the 2 algorithms. The saturation mean of each image pixel is defined as ms and after applying the

edge-preserving algorithm it is named meff , which is computed by Eqs. (9) and (10):

ms =
1

p

p∑
j=1

∣∣CJCdsJ

∣∣, (9)

meff =
1

p

p∑
j=1

∣∣CJCesJ

∣∣, (10)

where p is the total number of pixels,
∣∣CJCdsJ

∣∣ is the distance between C and Cds , and
∣∣CJCesJ

∣∣ is the distance
between C and Ces for pixel j.

For assessing the results, we computed the difference (Es) between the number of saturated image edges

and the edges of the original image in the CIE Lu’v’ color space, the difference (Eds) between the number of

desaturated image edges and edges of the original image in the CIE Lu’v’ color space, and the difference (Eeff)

between the number of image edges preserved in the algorithm and the edges of the original image. Es , Eds ,

and Eeff represent binary error images. Figure 17a shows test image Lena and Figure 17b shows this image

in the CIE Lu’v’ color space. The results of applying the Trahanias edge detector on Figure 17b are shown in

Figure 17c. Next, the image is saturated and the Trahanias edge detector is applied on it. Figure 17d shows Es

1002

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

when the missing edges and spurious edges (or errors) are produced by the saturating process. The saturated

image is then desaturated using the Eq. (6) with k = 0.3 and ms = 0.0576. The computed Eds is illustrated as

an error image in Figure 17e. By applying the previous edge-preserving algorithm, the value of meff becomes

0.0541. The error image Eeff is also obtained and is shown in Figure 17f.

 (a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Obtained results for test image Lena; a) original image, b) original image in the CIE Lu’v’ color space, c)

edges of original image, d) image of Es , e) Eds by Chung et al.’s algorithm in the desaturation process, f) Eeff by

Chung et al.’s algorithm in the edge-preserving process, g) Eds by the proposed desaturation method, and h) Eeff by

our proposed preservation algorithm.

By selecting n = 0.4 and using Eqs. (6) through (8), the saturated image is desaturated and ms = 0.0576

is obtained. For this case, Eds is shown in Figure 17g. We then apply the proposed edge-preserving algorithm

on test image Lena with meff = 0.0568. The error image Eeff for the proposed algorithm is illustrated in

Figure 17h.

The comparison of Figures 17f and 17h shows that the proposed algorithm preserves the edges much

better than the previous algorithm; however, in both methods, the amount of saturation for each pixel is the

same (ms = 0.0576) before the edge-preserving process.

We also compare the algorithms using 3 other test images with few details, i.e. Jelly Beans, Peppers, and

House (see Figure 18). We first saturate these images and then determine the differences between the edges of

the original images and those of the saturated images, without using any edge-preserving algorithms (Es). The

obtained results are shown in Figures 18a–18c.

Next, we desaturate the mentioned test images using Chung et al.’s algorithm and our proposed method,

and then apply both algorithms to preserve the edges. The error images (Eeff) using Chung et al.’s algorithm

are illustrated in Figures 18d–18f. Figures 18g–18i also show the error images (Eeff) when our proposed

algorithm is applied. As can be clearly seen, the performance of our algorithm in preserving the true edges and

in avoiding the superficial edges is superior to the other algorithms.

In addition, 2 other images with more details, i.e. Tree and Baboon (see Figure 19), are used to make

more comparisons. Figures 19a and 19b show the image of Es without applying any edge-preserving algorithm.

1003

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

The error images (Eeff) are shown in Figures 19c and 19d by applying Chung et al.’s algorithm. These images

are compared with Figures 19e and 19f when our edge-preserving algorithm is applied. For these detailed

images, our algorithm performs much better in comparison with the other algorithms.

 (a) (d) (g)

 (b) (e) (h)

 (c) (f) (i)

Figure 18. Obtained results for test images Jelly Beans, Peppers, and House: a), b), and c) the edge errors without

using an edge-preserving algorithm (Es) for Jelly Beans, Peppers, and House, respectively; d), e), and f) Eeff using

Chung et al.’s algorithm for Jelly Beans, Peppers, and House with k = 0.7, k = 0.25, and k = 0.6, respectively; and

g), h), and i) Eeff using our proposed algorithm for Jelly Beans, Peppers, and House with n = 0.2, n = 0.3, and n =

0.5, respectively.

To quantitatively evaluate the results, we use the rate of improvement in edge preservation, R , which

can be computed by Eq. (11).

R =
Es − Eeff

Es
× 100 (11)

In the Table, the performance of the algorithms on the mention images is assessed statistically. As can be seen,

the proposed algorithm produces a significantly better rate of improvement in the edge preserving of the 6 test

images. Some conclusions can be extracted from the obtained results: 1) When we increase n from 0.2 to 0.8

in our algorithm, it leads to an augmentation in the amount of image saturation (ms), while k in Chung et

al.’s algorithm follows a diverse pattern. 2) We can see that for the saturated images, we can obtain the same

edge improvement rate by choosing appropriate values for k and n . Hence, an image can be desaturated by 2

1004

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

methods by the same rate. However, after applying the edge-preserving algorithms, meff in our algorithm is

higher than meff in the previous algorithm. 3) The value of Eds shows that the transferring origin coordinate

system is better than applying the central gravity law of color mixture for desaturating an image. 4) Although

our algorithm saturates more images, the value of Eeff shows that the edge preservation in our algorithm is

still better than that in the previous algorithm.

(e)(c)(a)

 (b) (d) (f)

Figure 19. Obtained results for test images Tree and Baboon: a) and b) the edge errors without using an edge-preserving

algorithm (Es) for Tree and Baboon, respectively; c) and d) Eeff using Chung et al.’s algorithm for Tree and Baboon

with k = 0.25 and k = 0.1, respectively; and e) and f) Eeff using our proposed algorithm for Tree and Baboon with

n = 0.65 and n = 0.8, respectively.

Table. The results of applying the algorithms on the test images.

Image Algorithm ms Es Eds Eeff meff R (%)

Jelly Beans
Chung et al.’s algorithm, K = 0.7 0.0159 1225 647 370 0.0134 69.79
Our proposed algorithm, n = 0.2 0.0159 1225 424 139 0.0160 88.65

Peppers
Chung et al.’s algorithm, k = 0.25 0.0182 2443 1799 1202 0.0181 50.79
Our proposed algorithm, n = 0.3 0.0182 2443 1032 421 0.0221 82.76

Lena
Chung et al.’s algorithm, k = 0.3 0.0576 2960 2746 1865 0.0541 36.99
Our proposed algorithm, n = 0.4 0.0576 2960 1193 591 0.0568 80.03

House
Chung et al.’s algorithm, k = 0.6 0.0638 4900 3283 2890 0.0611 41.02
Our proposed algorithm, n = 0.5 0.0638 4900 931 900 0.0637 81.63

Tree
Chung et al.’s algorithm, k = 0.25 0.0799 5630 4991 4175 0.0759 25.84
Our proposed algorithm, n = 0.65 0.0799 5630 3981 2297 0.0775 59.20

Baboon
Chung et al.’s algorithm, k = 0.1 0.0807 7131 6493 5917 0.0769 16.82
Our proposed algorithm, n = 0.8 0.0807 7131 6257 4313 0.0775 39.51

5. Conclusion

In this paper, we introduced 4 color spaces and then showed that the best color space for the edge detection

process is the CIE Lu’v’ color space. In addition, this color space has a property that helps to better saturate

the image for producing better segmentation and edge detection in practical cases, because pixels that are in

1005

ZOLFAGHARI and YAZDI/Turk J Elec Eng & Comp Sci

the same region become more similar chromatically. On the other hand, image saturation causes the creation

of spurious edges and the loss of true edges, so the edge-preserving algorithm is needed. To do that, first, the

image is saturated in the CIE Lu’v’ color space and then desaturated by transferring the origin of the coordinate

system, so that fewer true edges are missing and fewer spurious edges are added in the results. Hence, we can

saturate a color image more and better edge preserving can be achieved. The experimental results on well-known

test images demonstrate the superiority of our proposed algorithm compared with the previous one.

Acknowledgments

The authors would like to thank the Department of Electrical and Computer Engineering at Islamic Azad

University, Zarghan Branch, Iran, for the help provided for this work to be implemented.

References

[1] T.W. Ridler, S. Calvard, “Picture thresholding using an iterative selection method”, IEEE Transactions on Systems,

Man and Cybernetics, Vol. 8, pp. 630–632, 1978.

[2] A. Mehnert, P. Jackway, “An improved seeded region growing algorithm”, Pattern Recognition Letters, Vol. 18,

pp. 1065–1071, 1997.

[3] Z. Wu, R. Leahy, “An optimal graph theoretic approach to data clustering: theory and its application to image

segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, pp. 1101–1113, 1993.

[4] P.E. Trahanias, A.N. Venetsanopoulos, “Color edge detection using order statistics”, IEEE Transactions on Image

Processing, Vol. 2, pp. 259–264, 1993.

[5] J. Schanda, Colorimetry Understanding the CIE System ,New York, Wiley Interscience, 2007.

[6] S.J. Sangwine, R.E.N. Horne, The Color Image Processing Handbook, London, UK, Chapman and Hall, 1998.

[7] L. Lucchese, S.K. Mitra, “Filtering color images in the xyY color space”, Proceedings of the International Conference

of Image Processing, pp. 500–503, 2000.

[8] K.L. Chung, Y.W. Liu, W.M. Yan, “Efficient edge preserving algorithm for color contrast enhancement with

application to color image segmentation”, Journal of Visual Communication and Image Representation, Vol. 17,

pp. 299–310, 2008.

[9] J. Scharcanski, A.N. Venetsanopoulos, “Edge detection of color images using directional operators”, IEEE Trans-

actions on Circuits and Systems for Video Technology, Vol. 7, pp.397–401, 1997.

[10] C. Theoharatos, G. Economou, S. Fotopoulos, “Color edge detection using the minimal spanning tree”, Pattern

Recognition, Vol. 38, pp. 603–60, 2005.

[11] V. Barnett, “The ordering of multivariate data”, Journal of The Royal Statistical Society, Vol. 139, pp. 318–343,

1976.

[12] A. Sharma, Understanding Color Management , New York, Thomson Delmar Learning, 2003.

[13] R. Jackson, L. MacDonald, K. Freeman, Computer Generated Colour, New York, Wiley, 1994.

[14] L. Lucchese, S.K. Mitra, J. Mukherjee, “A new algorithm based on saturation and desaturation in the xy chro-

maticity diagram for enhancement and rendition of color images”, Proceedings of the International Conference of

Image Processing, Vol. 2, pp. 1077–1080, 2000.

[15] S.C. Pei, Y.C. Zeng, C.H. Chang, “Virtual restoration of ancient Chinese paintings using color contrast enhancement

and lacuna texture synthesis”, IEEE Transactions on Image Processing, Vol. 13, pp. 416–429, 2004.

1006

