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Abstract: In this study, the Pima Indian Diabetes dataset was categorized with 8 different classifiers. The data

were taken from the University of California Irvine Machine Learning Repository’s web site. As a classifier, 6 different

neural networks [probabilistic neural network (PNN), learning vector quantization, feedforward networks, cascade-forward

networks, distributed time delay networks (DTDN), and time delay networks], the artificial immune system, and the

Gini algorithm from decision trees were used. The classifier’s performance ratios were studied separately as accuracy,

sensitivity, and specificity and the success rates of all of the classifiers are presented. Among these 8 classifiers, the best

accuracy and specificity values were achieved with the DTDN and the best sensitivity value was achieved with the PNN.

Key words: Diabetes diagnosis, artificial neural networks, decision tree, artificial immune system, classification, Pima

Indian

1. Introduction

Studies in the field of medical decision support systems have been established and, due to the high success rate

of these studies, interest in this field is increasing every day. These systems frequently use various artificial

intelligence techniques and data mining.

In medical decision support systems, there is a greater interest in the study of diseases that are common

throughout the world, and diabetes is one of them. Previous studies in this field are mentioned below.

Masharani and Karam stated that diabetes mellitus is a syndrome with disordered metabolism and

inappropriate hyperglycemia due to either a deficiency of insulin secretion or the combination of insulin resistance

and inadequate insulin secretion to compensate [1].

There are 2 main types of diabetes: type 1 and type 2. Diabetes is one of the most common chronic

diseases. According to the current data from the World Health Organization, 346 million people worldwide

have diabetes and 80% of those people live in low- or middle-income countries [2].

A study by Huang et al., based on data collected between 2000 and 2004 from Ulster Community and

Hospitals Trust (UCHT), aimed to the detect key determinants of type-2 diabetes using data mining techniques

[3].

In another study, Lekkas et al. addressed the diagnosis of Pima Indian diabetes using the evolving fuzzy

approach. An accuracy of 79.35% was achieved for this diagnosis [4].

In the literature, some other studies for the classification of data regarding Pima Indian diabetes were
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made. Polat et al. using a PCA-adaptive neuro-fuzzy inference system [5], Temurtas et al. using a multilayer

neural network (MLNN) [6], Kayaer and Yildirim using a general regression neural network (GRNN) [7], and

Meng et al. using the artificial immune recognition system (AIRS) [8] performed classification on these data

and achieved various percentage values. However, none of the above studies, except [5], mentioned sensitivity

and specificity values. Only the accuracy values were given.

Since Pima Indians are the most intense population with type-2 diabetes in the world, data from this

population is widely used in diabetic studies. This study and some of the studies mentioned above also used

Pima Indian diabetes data from the University of California Irvine (UCI) Machine Learning Repository’s web

site.

Classification was done on these data using the artificial immune system (AIS), Gini algorithm from

decision trees, and 6 different artificial neural network (ANN) algorithms, which are as follows: distributed time

delay networks (DTDNs), time delay networks (TDNs), probabilistic neural networks (PNNs), cascade-forward

networks (CFNs), feedforward networks (FFNs), and learning vector quantization (LVQ).

The performances of these 8 classifications were compared with each other. In addition to the implemen-

tation of different methods in this study, receiver operating characteristic (ROC) analysis was included, even

though it was not included in other studies.

2. Materials and methods

2.1. Dataset

The Pima Indians, Native Americans who live around Arizona, are the most intense type-2 diabetic population

in the world. Since it is a homogeneous group, the data taken from these people are the subject of intense

studies in diabetics [9].

Table 1 shows the properties of the data. Accordingly, 9 attributes (8 input and 1 output) were studied.

Output information or class values are indicated as 0: no diabetes and 1: diabetes [10].

Table 1. Pima Indian Diabetes dataset attributes.

Attribute no. Attribute
1 Number of times pregnant
2 Plasma glucose concentration
3 Diastolic blood pressure (mmHg)
4 Triceps skin-fold thickness (mm)
5 2-h serum insulin (mu U/mL)
6 Body mass index (kg/m2)
7 Diabetes pedigree function
8 Age
9 Class 0 or 1

2.2. AIS

The AIS emerged in the 1990s as a biologically based calculation method [11]. The system’s characteristics of

the learning algorithm were inspired from the ability to recognize and destroy germs in the human body [12].

Learning is implemented with the activity of lymphocytes, natural antibody production, preexisting immunity,

wallet selection, tolerance, and memory [13].

In our study, the AIS algorithm was implemented in C# and compiled using VisualStudio.Net 2010.
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The framework of our algorithm design is shown in Figure 1, which starts with creating the permanent

population of antibodies using the input data.

Classify the Test Data

Create a Permanent Population

Determine the A!inity 

Measurement

Generate Temporary Antibody

Make the Control of A!inity

Add the Temporary Antibodies 

to the Permanent Population

No

Yes 

Has the Population 

Changed Permanently? 

Figure 1. System diagram of positive cloning algorithm.

The AIS algorithm’s success depends on choosing the right parameter values used during the implemen-

tation of the steps. The parameters used in the AIS are listed below.

Affinity threshold value: The measurement for controlling the healthy production of the temporary

antibodies that were cloned. The affinity is chosen by selecting a value between 0 and 1. This is a numerical

value that was chosen as 0.5 for this study.

Rate of cloning: Refers to the maximum number of clones that can be derived through an antibody in

the cloning process. This is a numerical value that was chosen as 2 for this study.

Mutation rate: Represents the number of properties that will be mutated during the cloning process.

This numerical value was determined as 2 for this study.

Threshold value: The accepted similarity value that is used for the comparison of the test data, which is

desired to be classified with the antibody cells. This is a numerical value that was determined as 0.5 for this

study.

The AIS algorithm parameters that were used are shown in Table 2.

Table 2. Parameters used in the AIS algorithm.

Parameters Parameter value
Affinity threshold value 0.5
Rate of cloning 2
Mutation rate 2
Threshold value 0.5
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According to the complexity of the problem, these parameters can be changed. As a result of various

experiments, the best results were obtained from these parameter values. Therefore, the values in Table 2 were

used in this model.

By mutating the antibody population that was generated, temporary antibodies were created. Two

different antibodies of the same class were selected for the cloning process. In the process of mutation, a new

antibody is created by changing the characteristic of the first antibody to the same characteristic of the second

antibody. This process is shown in Table 3 with samples from the AIS input dataset. The newly created

antibody is called a temporary antibody. The explained logic is also used in genetic algorithms. Two different

antibodies of the same class are selected for the cloning process.

Table 3. Production of the temporary antibodies.

Features → 1 2 3 4 5 6 7 8
First antibody → 6 148 72 35 0 33.6 0.627 50

↓ ↓
Second antibody → 1 85 66 29 0 26.6 0.351 31
Temporary antibody → 1 148 66 29 0 33.6 0.351 31

The temporary antibodies produced were tested with the affinity measurement. Accordingly, the similar-

ities of the temporary antibody population with the permanent antibody population were calculated for each

antibody. This was done using the Euclidean distance, as shown in Eq. (1) [14]:

Euclid(x, y) =

√√√√ n∑
i=1

(xi − yi)
2
, (1)

where n is the number of features, x is the permanent antibody vector, and y is the temporary antibody vector.

With the similarity values obtained, Eq. (2) was used to determine the health condition of the antibody.

Affinity size = 1− Euclid(x, y) = 1−

√√√√ n∑
i=1

(xi − yi)
2

(2)

If the most closely resembled and the produced antibody class of the temporary antibody are the same, and

the affinity measure is above the threshold value, then it is accepted and included in the permanent population

of antibodies. In other cases, the temporary antibody is destroyed.

The permanent antibody production process is continued until the population is steady. When the

permanent antibody population is steady, the testing values are ready for classification.

In this case, the test data and the permanent antibody population are compared using Eq. (1).

Among the antibodies whose likelihood ratios are over the threshold, the antibody class with the highest

similarity ratio is determined as the class of the test data that is needed to be classified.

Principal component analysis (PCA)−based k-nearest neighbor (k-NN) analysis was used in this study.

As a result of this classification, the following was obtained: sensitivity 52.22%, accuracy 68.8%, and specificity

78.13%.

2.3. Decision tree

The increase of data held in electronic environments has caused the emergence of various questions, such as

how and where to use the data, how to interpret it, and how to access information. Data mining is a study area
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to find the answers to these questions, including techniques such as classification, clustering, and association

analysis. There are many methods used in the classification technique. Among these methods, the decision tree

is widely used. It is possible to create many decision trees with algorithms such as ID3, C4.5, Gini, and Twing

[15].

The Gini algorithm is based on the separation of the attribute values to the left and right of the form

of binary divisions. The obtained values are grouped into classes corresponding to the left and right divisions.

Each node in the calculations is carried out separately for the left and right divisions (Gini left , Giniright).

L i : On the left branch, i, the sample group(s) number

R i : i group in the right branch sample(s) number

k: The number of classes

T: Node samples

|T left| : Left branch sample(s) number

|Tright| : Right branch sample(s) number

To be calculated with the following definitions of relations:

Ginileft = 1 −
k∑

i=1

(
Li

|Tleft|

)2

Giniright = 1 −
k∑

i=1

(
Ri

|Tright|

)2

. (3)

The nature of the learning set for each j, the number of elements to be calculated, uses the following correlation:

Ginij =
1

n
(|Tleft| × Ginileft + |Tright| × Giniright) . (4)

In this study, we created a decision tree based on the Gini algorithm using the Rapidminer program [16].

In Figure 2, a decision tree is given, with which the rules were obtained. These rules are the nature of

the decision. The decision tree was created by using the Gini algorithm.

Expansion of abbreviations in Figure 2 is as follows:

a- Number of times pregnant

b- Plasma glucose concentration

c- Diastolic blood pressure (mmHg)

d- Triceps skin fold thickness (mm)

e- 2-h serum insulin (µU/mL)

f- Body mass index (weight in kg / (height in m)∧2)

g- Diabetes pedigree function

h- Age (years)

2.4. ANNs

ANNs have been improved with the objective of carrying out automatic computer operations, such as the

derivation of new information, similar to the learning features of the brain. However, this task is considerably

difficult with traditional programming methods. Thus, it is reasonable to say that ANNs are a type of adaptive

information processing in computer science that was improved for programming very difficult events [17].

An ANN consists of training and testing phases. The network learns the relationships among the data

being used in the training phase. In the testing phase, there are no conclusion data. The network gives the

decision using the learned information on the training phase.
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Figure 2. Decision tree for diabetes diagnosis.
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In our study, all of the ANN-based classifications were done using the MATLAB Neural Network Toolbox.

PNNs are feedforward networks built with 3 layers. When an input is presented, the first layer calculates

distances from the input vector to the training input vectors and produces a vector whose elements specify how

close the input is to a training input. The second layer accumulates these contributions for each class of inputs

to produce net output vector probabilities. They train quickly since the training is done in one pass of each

training vector, rather than several passes [18,19].

LVQ neural networks consist of competitive and linear layers. The first layer maps input vectors into

clusters. These are found by the network in the process of training. After this step, the network maps the

merged groups of the first-layer clusters into the classes defined by the target data [20,21].

In FFNs, inputs are directly associated with outputs. The information travels in only one direction, from

the input nodes through the hidden nodes (if any) and to the output nodes [22,23].

CFNs resemble FFNs. The difference in CFNs is that each layer’s neurons relate to all of the previous

layer’s neurons. CFNs contain a weight connection from the input to each layer and from each layer to the

successive layers [24,25].

DTDNs also resemble FFNs. The difference is that throughout DTDNs, each of the input and layer

weights has a tap delay line associated with it. As a result of this, the network has a finite dynamic response

to the time-series input data [26,27].

TDNs resemble FFNs, as well. The difference is that TDNs have a tapped delay line at the input weight,

in which the dynamics appear only at the input layer of a static multilayer feedforward network. This allows

the network to have a finite dynamic response to time-series input data [28,29].

2.5. ROC values

The results of each classifier were compared using ROC values. The ROC can be expressed as the fraction of

true positives out of false positives [30,31]. True positive (TP), true negative (TN), false positive (FP), and

false negative (FN) are the expressions used for the sensitivity, specificity, and accuracy parameters [31,32]. The

definitions of these abbreviations in this study are given in Table 4.

Table 4. ROC parameters.

Abbreviation Definition
TP The number of people that the program found to have diabetes among the people

diagnosed with diabetes by a specialist physician
TN The number of people that the program found to be healthy among the people

diagnosed as healthy by a specialist physician
FP The number of people that the program found to have diabetes among the people

diagnosed as healthy by a specialist physician
FN The number of people that the program found to be healthy among the people

diagnosed with diabetes by a specialist physician

Necessary parameter calculations for the ROC are given in Eqs. (5), (6), and (7) [31,32]:

Sensitivity =
TP

(TP + FN)
, (5)

Specificity =
TN

(TN + FP)
, (6)
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Accuracy =
(TP + TN)

(TP + TN+ FP + FN)
. (7)

3. Results

In this section, the results for 8 different classifiers are given one by one in Tables 5–12. After each of these

tables, the accuracy, sensitivity, and specificity values are given in the following paragraphs. These values were

obtained from the results that are shown in Tables 5–12. Finally, all of the results are shown together in Table

13 and its graphical display is given in Figure 3.

Table 5. Confusion matrix for the PNN.=

TP = 57 FP = 37 94
FN = 33 TN = 123 156

90 160 250

The classification results that were made with the PNN are given in Table 5. Accordingly, out of 90 data

points that the physician considered as positive, the PNN found that 57 were positive and 33 were negative.

Moreover, out of 160 data that the physician considered as negative, the PNN found that 123 were negative and

37 were positive. Therefore, the PNN gave values of 72% accuracy, 63.33% sensitivity, and 76.88% specificity.

Table 6. Confusion matrix for the LVQ.

TP = 49 FP = 25 74
FN = 41 TN = 135 176

90 160 250

The classification results that were made with the LVQ are given in Table 6. Accordingly, out of 90 data

that the physician considered as positive, the LVQ found that 49 were positive and 41 were negative. Moreover,

out of 160 data that the physician considered as negative, the LVQ found that 135 were negative and 25 were

positive. Therefore, the LVQ gave values of 73.6% accuracy, 54.44% sensitivity, and 84.38% specificity.

Table 7. Confusion matrix for the FFN.

TP = 49 FP = 37 86
FN = 41 TN = 123 164

90 160 250

The classification results that were made with the FFN are given in Table 7. Accordingly, out of 90 data

that the physician considered as positive, the FFN found that 49 were positive and 41 were negative. Moreover,

out of 160 data that the physician considered as negative, the FFN found that 123 were negative and 37 were

positive. Therefore, the FFN gave values of 68.8% accuracy, 54.44% sensitivity, and 76.88% specificity.

Table 8. Confusion matrix for the CFN.

TP = 56 FP = 46 102
FN = 34 TN = 114 148

90 160 250
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The classification results that were made with the CFN are given in Table 8. Accordingly, out of 90 data

that the physician considered as positive, the CFN found that 56 were positive and 34 were negative. Moreover,

out of 160 data that the physician considered as negative, the CFN found that 114 were negative and 46 were

positive. Therefore, the CFN gave values of 68% accuracy, 62.22% sensitivity, and 71.25% specificity.

Table 9. Confusion matrix for the DTDN.

TP = 48 FP = 18 66
FN = 42 TN = 142 184

90 160 250

The classification results that were made with the DTDN are given in Table 9. Accordingly, out of 90

data that the physician considered as positive, the DTDN found that 48 were positive and 42 were negative.

Moreover, out of 160 data that the physician considered as negative, the DTDN found that 142 were negative

and 18 were positive. Therefore, the DTDN gave values of 76% accuracy, 53.33% sensitivity, and 88.75%

specificity.

Table 10. Confusion matrix for the TDN.

TP = 37 FP = 30 67
FN = 53 TN = 130 183

90 160 250

The classification results that were made with the TDN are given in Table 10. Accordingly, out of 90

data that the physician considered as positive, the TDN found that 37 were positive and 53 were negative.

Moreover, out of 160 data that the physician considered as negative, the TDN found that 130 were negative and

30 were positive. Therefore, the TDN gave values of 66.8% accuracy, 41.11% sensitivity, and 81.25% specificity.

Table 11. Confusion matrix for the Gini algorithm.

TP = 38 FP = 34 72
FN = 47 TN = 119 166

85 153 238

The classification results that were made with a decision tree using the Gini algorithm are given in Table

11. Accordingly, out of 90 data that the physician considered as positive, the decision tree found that 38 were

positive and 47 were negative. Moreover, out of 160 data that the physician considered as negative, the decision

tree found that 11 were negative and 34 were positive. The decision tree was not able to categorize 12 of the

data, including 5 of the data that the physician had considered as positive and 7 of the data that the physician

had considered as negative. Therefore, the decision tree gave values of 65.97% accuracy, 44.71% sensitivity, and

77.78% specificity.

Table 12. Confusion matrix for the AIS.

TP = 47 FP = 35 82
FN = 43 TN = 125 168

90 160 250
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The classification results that were made with the AIS are given in Table 12. Accordingly, out of 90 data

that the physician considered as positive, the AIS found that 47 were positive and 43 were negative. Moreover,

out of 160 data that the physician considered as negative, the AIS found that 125 were negative and 35 were

positive. Therefore, the AIS gave values of 68.8% accuracy, 52.22% sensitivity, and 78.13% specificity.

The achievement values for all 8 classifiers are given in Table 13 and the same results are shown in the

graph in Figure 3.

Table 13. Comparison of results for the methods used. Best results are bolded.

Accuracy (%) Sensitivity (%) Specificity (%)
PNN 72.00 63.33 76.88
LVQ 73.60 54.44 84.38
FFN 68.80 54.44 76.88
CFN 68.00 62.22 71.25
DTDN 76.00 53.33 88.75
TDN 66.80 41.11 81.25
GINI 65.97 44.71 77.78
AIS 68.80 52.22 78.13
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Figure 3. Graphical results of the classification.

This study and several other studies conducted using the same database are compared in Table 14. This

table is examined in Section 4.

4. Conclusions

When this study was compared to other studies using the same database, it was seen that, in general, the

accuracy values were close to each other. In this study, the accuracy values lagged a little bit behind compared

to those in other studies. However, in the other studies shown in Table 14, sensitivity and specificity values

were not given. Examining the results obtained in this study, it can be seen that the sensitivity and specificity

values are also very important in order to evaluate the success of a classifier. In addition, different studies using

the same classifier were able to achieve different performance rates. For example, Temurtas et al. [6] used a

MLNN structure, which was trained by the LM algorithm, as Kayaer and Yildirim [7] used, but they achieved

different performance rates. Again, Temurtas et al. used a PNN, as in this study, but they achieved different

performance rates. These differences may result from the selected simulation sets and the network parameters

that were used in the study. In order to better evaluate the performance differences and to better understand
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the performances of the classifier, despite the use of the same algorithm, it would be beneficiary to give the

specificity and sensitivity values in addition to the accuracy values.

Table 14. Comparison results of the other studies.

Author (year) Method Accuracy Sensitivity Specificity

This study (2014)

PNN 72.00% 63.33% 76.88%
LVQ 73.60% 54.44% 84.38%
FFN 68.80% 54.44% 76.88%
CFN 68.00% 62.22% 71.25%
DTDN 76.00% 53.33% 88.75%
TDN 66.80% 41.11% 81.25%
Gini 65.97% 44.71% 77.78%
AIS 68.80% 52.22% 78.13%

Temurtas et al. (2009) [6]

MLNN with

Unspecified Unspecified

Levenberg-Marquardt
(LM) (10xFC) 79.62%
PNN (10xFC) 78.05%
MLNN with LM 82.37%
PNN 78.13%

Kayaer and Yıldırım (2003) [7]
GRNN 80.21%

Unspecified Unspecified
MLNN with LM 77.08%

Meng et al. (2005) [8] AIRS 67.40% Unspecified Unspecified

When all of the classifiers in this study were compared, the best accuracy value was achieved with the

DTDN, with a value of 76.00%; the best sensitivity value was achieved with the PNN, with a value of 63.33%;

and the best specificity value was achieved with the DTDN, with a value of 88.75%. The second-best accuracy

and specificity values after the DTDN were achieved with the LVQ network. The second-best performance for

the sensitivity value was provided by the CFN. Since the correct identification of the patients was associated

with sensitivity, practically, it was more convenient to use the PNN network, which indicated the best sensitivity

performance.
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