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Received: 04.10.2012 • Accepted: 09.12.2012 • Published Online: 17.06.2014 • Printed: 16.07.2014

Abstract:Hydrometeorological patterns can be defined as meaningful and nontrivial associations between hydrological

and meteorological parameters over a region. Discovering hydrometeorological patterns is important for many applica-

tions, including forecasting hydrometeorological hazards (floods and droughts), predicting the hydrological responses of

ungauged basins, and filling in missing hydrological or meteorological records. However, discovering these patterns is

challenging due to the special characteristics of hydrological and meteorological data, and is computationally complex

due to the archival history of the datasets. Moreover, defining monotonic interest measures to quantify these patterns is

difficult. In this study, we propose a new monotonic interest measure, called the hydrometeorological prevalence index,

and a novel algorithm for mining hydrometeorological patterns (HMP-Miner) out of large hydrological and meteorolog-

ical datasets. Experimental evaluations using real datasets show that our proposed algorithm outperforms the näıve

alternative in discovering hydrometeorological patterns efficiently.

Key words: Data mining, hydrometeorological pattern, association rule mining, hydrological databases, meteorological

databases

1. Introduction

Data mining is the process of discovering previously unknown and potentially useful information from large

datasets. It offers semiautomatic or automatic techniques to analyze large and multidimensional datasets that

are difficult to interpret by analysts. Data mining mainly deals with the problems of clustering, classification,

anomaly detection, and association analysis [1,2]. The focus of this study is to develop association analysis

techniques to mine large and multidimensional hydrological and meteorological datasets efficiently.

Hydrometeorological patterns can be defined as meaningful and nontrivial associations between hydro-

logical and meteorological parameters over a region. They can also be interpreted as the patterns that represent

the cause-effect relationship between hydrological and meteorological parameters and are present at significant

number of locations (stations and grids) over a region. In this study, we focus on discovering hydrometeoro-

logical patterns that reveal the effect of meteorological parameters on hydrological parameters at a sufficient

number of stations over a region. This analysis will help us identify the spatial distribution of the rules (in

other words, generalize the rules) generated for individual stations.

In association analysis, the aim is to discover any rules of the form X → Y that seem to occur in data

with a frequency above a given threshold. Here, X and Y are events of a certain type, connected by the rule
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‘if X occurs, then Y occurs’. The rules can be extended into the form X1, X2 , . . . , X H → Y , which can be

interpreted as ‘if X1, X2 , . . . , X H all occur, then Y will occur’. An example hydrometeorological pattern can

be formed using precipitation and stream flow. Let X be precipitation of certain magnitude and Y be stream

flow of certain magnitude. An association between these 2 variables in the form X → Y can be read as ‘if

precipitation at certain magnitude occurs, then stream flow at certain magnitude occurs’. If the relationship

between X and Y is present at a significant number of locations over a region, then X → Y can be called a

hydrometeorological pattern.

Discovering hydrometeorological patterns is important for several applications that affect our everyday

life. For example, once defined, hydrometeorological patterns can be used to forecast natural hazards such

as floods and droughts and help develop emergency preparedness or early warning plans. Another use of

hydrometeorological patterns could be estimating hydrologic responses of ungauged basins, which is important

for determining water availability and developing sustainable water management practices. Filling in missing

hydrological or meteorological records could be another application.

However, it is challenging to mine hydrometeorological parameters due to the specific characteristics of

hydrological and meteorological datasets and computational issues [3,4]. First, the hydrological and meteoro-

logical data are geographical data and include spatial and temporal correlations. Second, they have nonlinear

dependencies, a long memory in time, and teleconnections in space. Third, the linkages between the hydrologi-

cal and meteorological parameters are based on complex physical processes that are difficult to model. Fourth,

discovering patterns from large hydrometeorological datasets is computationally expensive due to the archival

history of the datasets. Fifth, developing monotonic interest measures to quantify hydrometeorological patterns

is challenging. The aim of this study is to develop computationally efficient techniques for discovering the

hydrometeorological patterns between hydrological (i.e. stream flow) and meteorological (i.e. precipitation, air

temperature, wind speed, and relative humidity) parameters out of large datasets.

This study defines hydrometeorological patterns, proposes a new composite interest measure to quantify

these patterns, and a novel and computationally efficient hydrometeorological pattern mining algorithm (HMP-

Miner) to mine large hydrological and meteorological datasets.

The rest of this paper is organized as follows. Section 2 presents related works and Section 3 provides the

basic concepts related to hydrometeorological pattern mining and presents the problem of hydrometeorological

pattern mining. Section 4 discusses the näıve approach and the proposed HMP-Miner algorithm. Section 5

presents the experimental evaluation. Section 6 presents the evaluation of the results and the final section

presents conclusions and future works.

2. Related works

Many studies are available in the literature related to data mining methods, including association analysis

[2,5,6].

Association rule mining has been used in a broad range of application domains including health [7],

medicine [8], and business [9,10]. The use of data mining, particularly association analysis, in environmental

research, however, is very limited. Tadesse et al. determined association rules between climatic and oceanic

variables to analyze drought in Nebraska [11,12]. Lin et al. used association analysis for discovering the

relationships between surface precipitation and sea surface temperatures [13]. Tan et al. used association

analysis to find interesting spatiotemporal patterns in earth science data [14]. Dhanya and Nagesh Kumar

[15] and Nagesh Kumar et al. [16] analyzed rainfall data to discover association rules for droughts and floods
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in India. Shu et al. studied fuzzy association rules in climatological datasets [17]. Dadaser-Celik et al. [18]

investigated the associations between stream flow and climatic variables at 3 locations at the Kızılırmak River

Basin in Turkey. However, these studies that examined the associations in environmental data focused on the

analysis of patterns at individual stations. This prevents understanding of ‘spatial relationships of rules’ or

‘spatial pattern’ over certain regions [11].

In contrast, in this study, we focus on determining hydrometeorological patterns over multiple stations

by defining a new interest measure and developing a new algorithm to explore spatial relationships between

hydrological and meteorological variables computationally.

3. Basic concepts and problem definition

This section introduces basic concepts related to this study. First, definitions related to the association analysis

are given. Second, the proposed hydrometeorological prevalence index is discussed. Finally, a formal definition

of the ‘hydrometeorological pattern mining problem’ is presented.

3.1. Basic concepts

For completeness, first we present the definitions related to the classical association rule mining. Next, we define

2 interest measures, the station prevalence index and hydrometeorological prevalence index, for quantifying

hydrometeorological patterns that are present at a significant number of locations (stations and grids) over a

region.

Definition 1 An association rule is defined as follows: Let I = {i1, i2 , . . . , in } be a set of n binary attributes

called items. Let D = {t1, t2 ,. . . , tm} be a set of records called the database. Each record in D has a unique

record ID and contains a subset of the items in I . A rule is defined as an implication of the form X → Y ,

where X,Y ⊆ I and X∩ Y = Ø. The sets of items (for short itemsets) X and Y are called the antecedent

and consequent of the rule, respectively. A pattern P is defined as set of {X, Y} [20].

Definition 2 Given a pattern P and a dataset Di of a station Si , the support of pattern P in station Si is the

fraction of the number of records containing P to the total number of records of dataset Di of the station Si

[1,2,19]. Support of pattern P at station Si can be formulized as follows:

support (P, S i ) = (number of records containing P) / (number of all records of station S i) .

Definition 3 Pattern P is frequent (support prevalent) if its support is equal to or greater than a user-defined

support threshold, min support.

Definition 4 Given a pattern P and a dataset D = {D1, D2 ,. . . , Dn } , the station prevalence of the pattern

P is the fraction of stations in which the pattern P exists to the total number of stations S in the dataset (in

the region) D .

station prev(P, D)= (number of stations S i containing P) / (total number of stations S)

Definition 5 Given a pattern P and a dataset D , a hydrometeorological pattern can be defined as a subset

of itemsets of hydrological and meteorological parameters, in which at least 1 meteorological and 1 hydrological

parameter occur in the antecedent and/or consequent part of the rule.
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The focus of this paper is to reveal the effect of meteorological parameters on hydrological parameters.

Hence, in this study, the antecedent part of the hydrometeorological rule contains meteorological parameters and

the consequent part of the rule contains hydrological parameters (such as ‘if precipitation at certain magnitude

occurs, then stream flow at certain magnitude occurs’).

Definition 6 Given a pattern P , stations S = {S1, S2 ,. . . , Sn } and a dataset D = {D1, D2 ,. . . , Dn } belonging

to the stations, the hydrometeorological prevalence index of pattern P is the composition of support and station

prevalence measures formulized as below:

station prevSi∈S (support(P, S i) ≥ min support ).

The hydrometeorological prevalence index only counts the stations in which pattern P satisfies the

min support threshold.

Definition 7 Given a pattern P , the support and station prevalence threshold values of min support and

min station, respectively, the pattern P is hydrometeorological prevalent, if it satisfies the user-defined support

and station prevalence thresholds.

station prevSi∈S (support(P i, Si) ≥ min support) ≥ min station

Definition 8 Given a rule X → Y (where P = {X, Y} ), the confidence of rule X → Y determines how

frequently the parameters in Y appear in the records that contain X parameters and is formulized as follows

[1,2,19]:

confidence (X → Y) = support (X ∪ Y) / support (X)

Confidence is used to find probability P (Y |X). In our case, Y is a hydrological parameter and X is a

set of meteorological parameters.

Definition 9 A rule is called meaningful if its confidence value satisfies the minimum confidence threshold

min conf.

3.2. Problem definition

Given:

• Hydrometeorological database, D.

• Minimum support threshold, min support.

• Minimum station prevalence threshold, min station.

• Minimum confidence threshold min conf.

Output:

• Hydrometeorological patterns (rules) that satisfy the min support, min station, and min conf thresholds .

Objective:

• Minimization of the computational cost.
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Constraints:

• Find correct and complete hydrometeorological rules with given parameters.

• Consequent part of the rule should include hydrological parameter.

4. Hydrometeorological pattern mining

In this study, the aim is to find the associations between hydrological and meteorological parameters. In other

words, we would like to discover rules that explain the effect of meteorological parameters on hydrological

parameters over a region that includes more than one station. That is, the antecedent part of the rule will

contain meteorological parameters and the consequent part will contain a hydrological parameter.

To mine hydrometeorological patterns, we propose 2 algorithms, the näıve approach and HMP-Miner

(Figures 1a and 1b).
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Figure 1. a) Näıve approach. b) HMP-Miner.

4.1. Näıve approach

The näıve approach (Figure 1a) is an extended version of the Apriori algorithm [19] to handle multiple stations

to mine hydrometeorological patterns. It first discovers all size-frequent patterns for each station in a region

and applies a postprocessing step to prune nonprevalent hydrometeorological patterns that do not occur at a

sufficient number of stations. After pruning the nonprevalent hydrometeorological patterns, meaningful ones are

discovered using the minimum confidence threshold min conf. The limitation of this algorithm is the generation

of the nonprevalent hydrometeorological candidates before the postpruning stage. However, if a size k pattern

is not hydrometeorologically prevalent at a sufficient number of stations, that pattern should not be used to

generate size k + 1 candidates. The unnecessary generation of nonprevalent patterns increases the complexity

of the algorithm.

Algorithm 1 gives the pseudocode of the näıve approach.
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Algorithm 1. Pseudocode of the naïve approach  

Inputs: 

   min_suppor t: Minimum support threshold  

   min_station: Minimum station prevalence index threshold 

   min_conf: Minimum confidence threshold 

   D : Hydro meteorological dataset  

Output: Frequent and meaningful hydrometeorological patterns that satisfy the thresholds of min_support, 

min_station, and min_conf. 

Variables: 

   NS: number of stations 

   Ck: set of size k candidates  

   Lk: set of support-prevalent size k patterns 

   TP: set of candidate hydrometeorological pattern 

   HM: set of hydrometeorological pattern 

   HM_patterns: set of meaningful hydrometeorological patterns 

Algorithm: 

1. initialization; k = 0, L0 = D 

2. for (s = 1 to NS) { 

3.   while (not empty Lk) { 

4.    If k = 0 then 

5.     Ck + 1(s) = get_singletons (D(s)) 

6.    else 

7.     Ck + 1(s) = generate_candidates (Lk(s)) 

8.    Ck + 1(s) = calculate_supports (Ck + 1(s), D(s)) 

9.    Lk + 1(s) = prune_support_non_prevalent (Ck + 1(s), min_support) 

10.    k = k + 1 

11.   } 

12. } 

13. TP = calculate_station_support (L) 

14. HM = prune_station_non_prevalent (TP, min_station) 

15. HM_patterns = discover_meaningful_patterns (HM, min_conf) 

16. return HM_patterns 
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In between Steps 2 and 12, the näıve approach generates hydrometeorological patterns for each station;

in Steps 13 and 14, prevalent hydrometeorological patterns are discovered; and in Step 15, hydrometeorological

rules are generated. The functions used in the algorithm are explained below.

Getting singletons (Step 5): This function takes the dataset of a station s as input and outputs size 1

(singletons) candidates of that station. Size 1 candidates are the features that exist in that station s .

Generating candidates (Step 7): In this step, size k + 1 candidate patterns are generated using prevalent

size k patterns Lk . The for loop between Steps 2 and 12 is run for each station to generate support-prevalent

hydrometeorological patterns.

Calculating supports of patterns (Step 8): This function calculates the support values of candidate

patterns C . The inputs of the function are candidate patterns and the dataset of station s . The output of the

function is the support values of the candidate patterns.

Pruning support nonprevalent candidates (Step 9): Patterns that do not satisfy the minimum support

threshold, min support, are pruned by these functions.

Calculating station supports of patterns (Step 13): In this step, the station support values of each

hydrometeorological pattern are calculated.

Pruning station nonprevalent patterns (Step 14): In this step, the patterns that do not satisfy the

min station threshold are pruned.

Discovering meaningful patterns (Step 15): In this step, meaningful hydrometeorological patterns that

satisfy the minimum confidence threshold min conf are discovered. This function first generates rules for each

time slot. In this study, the rules of interest are those that contain a hydrological parameter in the consequent

part of the rule. After the rule generation, the ones that are not satisfying the minimum confidence threshold

min conf are pruned. Next, the station prevalences of the rules are rechecked to see if they still satisfy the

min station threshold after pruning based on the minimum confidence threshold. If the rules do not satisfy the

min station threshold, these hydrometeorological rules are pruned.

Finally, frequent and meaningful patterns are returned by the algorithm.

The limitation of the näıve approach is the unnecessary generation of station nonprevalent hydrometeo-

rological patterns before the postprocessing step.

4.2. HMP-Miner algorithm

To overcome this limitation of the näıve approach, we propose HMP-Miner (Algorithm 2) by applying station

nonprevalent pruning after each size k generation in all stations. In contrast to the näıve approach, HMP-Miner

does not wait until the postprocessing step to discover patterns.

The strategy of HMP-Miner is to apply station prevalence pruning as early as possible. The algorithm first

generates size k frequent patterns for all stations and then eliminates size k station nonprevalent hydrometeo-

rological patterns by applying station prevalence pruning. The size k prevalent hydrometeorological-prevalent

patterns are then used to generate candidate size k + 1 patterns for all stations. This process is applied until

all size-prevalent hydrometeorological patterns are discovered. With this algorithm, we discard the generation

of unnecessary station nonprevalent hydrometeorological candidates that increase the cost of the mining hy-

drometeorological patterns. The pseudocode of HMP-Miner is given in Algorithm 2. The explanations of the

functions of the algorithm are as given in Section 4.1.
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Algorithm 2. The pseudocode of HMP-Miner  

Inputs: 

   min_support: Minimum support threshold 

   min_station: Hydrometeorological prevalence index threshold 

   min_conf: Minimum confidence threshold 

   D:  Hydro meteorological dataset 

Output: Frequent and meaningful hydrometeorological patterns that satisfy the thresholds of min_support, 

min_station, and min_conf 

Variables: 

   NS: number of stations 

   Ck: set of size k candidates  

   Lk: set of support-prevalent size k patterns 

   TPk: set of candidate size k hydrometeorological pattern 

   HMk: set of size k hydrometeorological pattern 

   HM_patterns: set of meaningful hydrometeorological patterns 

Algorithm: 

1. initialization; k = 0, TP0 = D 

2. while (not empty TPk) { 

3.   for (s = 1 to NS) { 

4.    If k = 0 then 

5.     Ck + 1(s) = get_singletons (D(s)) 

6.    else 

7.     Ck + 1(s) = generate_candidates (TPk(s)) 

8.    Ck + 1(s) = calculate_supports (Ck + 1(s), D(s)) 

9.    Lk + 1(s) = prune_support_non_prevalent (Ck + 1(s), min_support)  

10.   }   

11.   TPk + 1 = calculate_station_support (Lk + 1) 

12.   HMk + 1 = prune station_non_prevalent (TPk + 1, min_station) 

13.   k = k + 1 

14. } 

15. HM_patterns = discover_meaningful_patterns (HM, min_conf) 

16. return HM_patterns 
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4.3. Execution trace of HMP-Miner

This section presents an execution trace of HMP-Miner. An example dataset is given in Table 1. The dataset

includes 6 months of monthly average (monthly total for precipitation) values of hydrological and meteorological

parameters for 5 stations. The parameter values are discretized as low (L), medium (M), and high (H). Table 1

presents the real and discretized values of the parameters for 5 stations. Details of the dataset preparation are

given in Section 5.2.

Table 1. Original and discretized (labeled) parameter values of the example dataset.

Months Station #1203 Station #1221 Station #1222 Station #1224 Station #1226

Wind Speed

1 1.41 – M 1.70 – M 3.73 – M 1.91 – L 1.83 – M

2 1.47 – M 1.61 – L 5.56 – H 3.08 – H 2.53 – H

3 1.74 – H 1.65 – M 2.51 – L 2.47 – M 2.01 – M

4 1.64 – H 1.99 – H 3.24 – M 3.01 – H 1.69 – L

5 0.88 – L 1.62 – L 2.96 – L 1.95 – L 1.69 – L

6 1.33 – M 1.73 – M 3.24 – M 2.61 – M 1.85 – M

Humidity

1 86.55 – H 73.11 – H 78.89 – L 83.72 – H 84.17 – H

2 82.99 – H 77.05 – H 79.29 – L 74.43 – H 78.12 – H

3 66.58 – L 63.20 – L 78.75 – L 56.59 – L 68.19 – M

4 66.68 – L 62.35 – L 80.77 – M 59.84 – L 61.94 – L

5 76.04 – M 71.27 – M 84.22 – H 72.34 – M 72.24 – M

6 71.84 – M 71.64 – M 84.78 – H 59.68 – L 60.41 – L

Precipitation

1 1.49 – L 3.02 – M 3.60 – H 1.00 – L 3.61 – H

2 1.88 – L 3.78 – H 3.67 – H 0.77 – L 1.15 – L

3 3.18 – H 2.40 – M 2.79 – M 0.98 – L 1.56 – L

4 1.84 – L 0.73 – L 1.31 – L 1.78 – M 2.43 – M

5 3.54 – H 4.64 – M 1.78 – L 4.94 – H 5.49 – H

6 2.29 – M 3.74 – H 2.73 – M 3.61 – H 2.38 – M

Temperature

1 –0.99 – L 6.04 – L 6.34 – L –2.01 – L –2.58 – L

2 –0.17 – L 4.81 – L 5.76 – L 0.14 – L –0.49 – L

3 7.45 – M 11.74 – M 10.70 – M 7.40 – M 6.18 – M

4 11.52 – M 15.03 – M 14.02 – M 12.15 – M 11.70 – M

5 13.78 – H 17.65 – H 17.18 – H 13.75 – H 12.91 – H

6 17.83 – H 21.54 – H 21.61 – H 18.67 – H 17.90 – H

Stream Flow

1 5.78 – L 118.00 – L 22.00 – L 7.41 – L 4.67 – L

2 7.25 – L 191.00 – H 35.40 – M 7.71 – L 6.31 – L

3 12.10 – H 147.00 – M 48.20 – H 12.40 – H 14.50 – M

4 10.10 – M 134.00 – L 43.30 – H 7.88 – M 16.50 – M

5 11.90 – H 194.00 – H 38.40 – M 11.70 – H 46.30 – H

6 8.83 – M 132.00 – L 19.50 – L 6.90 – L 12.20 – M

In Tables 2–7, the execution trace of the HMP-Miner algorithm is given. WSpeed denotes wind speed,

Hum denotes humidity, Pre denotes precipitation, Temp denotes air temperature, and SFlow denotes stream

flow. Moreover, L, M, and H are used for low, medium, and high, respectively, for characterizing the magnitude

of the parameters. If the support prevalence, station prevalence, and minimum confidence thresholds are 0.3,

0.4, and 0.3, respectively, HMP-Miner generates the rules listed in Table 7.
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Table 2. Generation of size 1 patterns (for min support = 0.3 and min station = 0.4).

Pattern
Support values of the patterns in each of stations Station
#1203 #1221 #1222 #1224 #1226 Prevalence

{WSpeed-L} 1/6 – Pruned 2/6 2/6 2/6 2/6 4/5

{WSpeed-M} 3/6 3/6 3/6 2/6 3/6 5/5

{WSpeed-H} 2/6 1/6 – Pruned 1/6 – Pruned 2/6 1/6 – Pruned 2/5

{Hum-L} 2/6 2/6 3/6 3/6 2/6 5/5

{Hum-M} 2/6 2/6 1/6 – Pruned 1/6 – Pruned 2/6 3/5

{Hum-H} 2/6 2/6 2/6 2/6 2/6 5/5

{Pre-L} 3/6 1/6 – Pruned 2/6 3/6 2/6 4/5

{Pre-M} 1/6 - Pruned 3/6 2/6 1/6 – Pruned 2/6 3/5

{Pre-H} 2/6 2/6 2/6 2/6 2/6 5/5

{Temp-L} 2/6 2/6 2/6 2/6 2/6 5/5

{Temp-M} 2/6 2/6 2/6 2/6 2/6 5/5

{Temp-H} 2/6 2/6 2/6 2/6 2/6 5/5

{SFlow-L} 2/6 3/6 2/6 3/6 2/6 5/5

{SFlow-M} 2/6 1/6 – Pruned 2/6 1/6 – Pruned 3/6 3/5

{SFlow-H} 2/6 2/6 2/6 2/6 1/6 – Pruned 4/5

Table 3. Candidate size 2 patterns (for min support = 0.3 and min station = 0.4).

Pattern
Support values of the patterns in each of stations Station
#1203 #1221 #1222 #1224 #1226 Prevalence

{WSpeed-L, SFlow-L} - 0 – Pruned 0 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned
{WSpeed-L, SFlow-M} - - 1/6 – Pruned - 1/6 – Pruned 0 – Pruned
{WSpeed-L, SFlow-H} - 2/6 1/6 – Pruned 1/6 – Pruned - 1/5 – Pruned
{WSpeed-M, SFlow-L} 2/6 2/6 2/6 1/6 – Pruned 1/6 – Pruned 3/5
{WSpeed-M, SFlow-M} 1/6 – Pruned - 0 – Pruned - 2/6 1/5 – Pruned
{WSpeed-M, SFlow-H} 0 – Pruned 0 – Pruned 1/6 – Pruned 1/6 – Pruned - 0 – Pruned
{WSpeed-H, SFlow-L} 0 – Pruned - - 1/6 – Pruned - 0 – Pruned
{WSpeed-H, SFlow-M} 1/6 – Pruned - - - - 0 – Pruned
{WSpeed-H, SFlow-H} 1/6 – Pruned - - 0 – Pruned - 0 – Pruned
{Hum-L, SFlow-L} 0 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned 0 – Pruned 0 – Pruned
{Hum-L, SFlow-M} 1/6 – Pruned - 1/6 – Pruned - 2/6 1/5 – Pruned
{Hum-L, SFlow-H} 1/6 – Pruned 0 – Pruned 1/6 – Pruned 1/6 – Pruned - 0 – Pruned
{Hum-M, SFlow-L} 0 – Pruned 1/6 – Pruned - - 0 – Pruned 0 – Pruned
{Hum-M, SFlow-M} 1/6 – Pruned - - - 1/6 – Pruned 0 – Pruned
{Hum-M, SFlow-H} 1/6 – Pruned 1/6 – Pruned - - - 0 – Pruned
{Hum-H, SFlow-L} 2/6 1/6 – Pruned 1/6 – Pruned 2/6 2/6 3/5
{Hum-H, SFlow-M} 0 – Pruned - 1/6 – Pruned - 0 – Pruned 0 – Pruned
{Hum-H, SFlow-H} 0 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned - 0 – Pruned
{Pre-L, SFlow-L} 2/6 - 0 – Pruned 2/6 1/6 – Pruned 2/5
{Pre-L, SFlow-M} 1/6 – Pruned - 1/6 – Pruned - 1/6 – Pruned 0 – Pruned
{Pre-L, SFlow-H} 0 – Pruned - 1/6 – Pruned 1/6 – Pruned - 0 – Pruned
{Pre-M, SFlow-L} - 1/6 1/6 - 0 0 – Pruned
{Pre-M, SFlow-M} - - 0 - 2/6 1/5 – Pruned
{Pre-M, SFlow-H} - 1/6 – Pruned 1/6 – Pruned - - 0 – Pruned
{Pre-H, SFlow-L} 0 – Pruned 1/6 – Pruned 1/6 – Pruned 1/6 – Pruned 1/6 – Pruned 0 – Pruned
{Pre-H, SFlow-M} 0 – Pruned - 1/6 – Pruned - 0 – Pruned 0 – Pruned
{Pre-H, SFlow-H} 2/6 1/6 – Pruned 0 – Pruned 1/6 – Pruned - 1/5 – Pruned
{Temp-L, SFlow-L} 2/6 1/6 – Pruned 1/6 – Pruned 2/6 2/6 3/5
{Temp-L, SFlow-M} 0 – Pruned - 1/6 – Pruned - 0 – Pruned 0 – Pruned
{Temp-L, SFlow-H} 0 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned - 0 – Pruned
{Temp-M, SFlow-L} 0 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned 2/6 1/5 – Pruned
{Temp-M, SFlow-M} 1/6 – Pruned - 0 – Pruned - 0 – Pruned 0 – Pruned
{Temp-M, SFlow-H} 1/6 – Pruned 0 – Pruned 2/6 1/6 – Pruned - 1/5 – Pruned
{Temp-H, SFlow-L} 0 – Pruned 1/6 – Pruned 1/6 – Pruned 1/6 – Pruned 0 – Pruned 0 – Pruned
{Temp-H, SFlow-M} 1/6 – Pruned - 1/6 – Pruned - 1/6 – Pruned 0 – Pruned
{Temp-H, SFlow-H} 1/6 – Pruned 1/6 – Pruned 0 – Pruned 1/6 – Pruned - 0 – Pruned
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Table 4. Prevalent size 3 patterns (for min support = 0.3 and min station = 0.4).

Pattern
Support values of the pattern in each of stations Station
#1203 #1221 #1222 #1224 #1226 Prevalence

{WSpeed-M, SFlow-L} 2/6 2/6 2/6 1/6 – Pruned 1/6 – Pruned 3/5

{Hum-H, SFlow-L} 2/6 1/6 – Pruned 1/6 – Pruned 2/6 2/6 3/5

{Pre-L, SFlow-L} 2/6 - 0 – Pruned 2/6 1/6 – Pruned 2/5

{Temp-L, SFlow-L} 2/6 1/6 – Pruned 1/6 – Pruned 2/6 2/6 3/5

Table 5. Candidate size 3 patterns (for min support = 0.3 and min station = 0.4).

Pattern
Support values of the patterns in each station Station
#1203 #1221 #1222 #1224 #1226 Prevalence

{Hum-H, Pre-L, SFlow-L} 2/6 - - 2/6 - 2/5
{Hum-H, Temp-L, SFlow-L} 2/6 - - 2/6 2/6 3/5
{Pre-L, Temp-L, SFlow-L} 2/6 - - 2/6 - 2/5

Table 6. Candidate size 5 patterns (for min support = 0.3 and min station = 0.4).

Pattern
Support values of the patterns in each of stations Station
#1203 #1221 #1222 #1224 #1226 Prevalence

{Hum-H, Pre-L, Temp-L, SFlow-L} 2/6 - - 2/6 - 2/5

Table 7. Confidence-based pruning with min conf = 0.3 and output of HMP-Miner.

Rule
Confidence values of the rules in each stations Station
#1203 #1221 #1222 #1224 #1226 Prevalence

WSpeed-M → SFlow-L 2/3 2/3 2/3 - - 3/5
Hum-H → SFlow-L 2/2 - - 2/2 2/2 3/5
Pre-L → SFlow-L 2/3 - - 2/3 - 2/5
Temp-L → SFlow-L 2/2 - - 2/2 2/2 3/5
Hum-H, Pre-L → SFlow-L 2/2 - - 2/2 - 2/5
Hum-H, Temp-L → SFlow-L 2/2 - - 2/2 2/2 3/5
Pre-L, Temp-L → SFlow-L 2/2 - - 2/2 - 2/5
Hum-H, Pre-L, Temp-L → SFlow-L 2/2 - - 2/2 - 2/5

HMP-Miner starts with discovering size 1 patterns. The list of candidate size 1 patterns is given in

Table 2. For each pattern, their support values are calculated for each station. The ones that do not satisfy the

support prevalence threshold of 0.3 are pruned. Next, the station prevalences of the remaining size 1 patterns

are calculated. In Table 2, the last column shows the station prevalence values of the patterns, where it can be

seen that none of the patterns are pruned based on the station prevalence, since they satisfy the threshold of

0.4.

In the second step, by joining prevalent size 1 patterns, candidate size 2 patterns are generated. In

this study, since we aim to find the effect of meteorological parameters on hydrological parameters, one of

the parameters in the size 2 candidates is a hydrological parameter, the stream flow. Table 3 presents size 2

patterns and their support values for each station.

For example, if we inspect the example dataset given in Table 1, the Pre-L and SFlow-L items (that is,

the pattern of {Pre-L, SFlow-L} ) are together in 2 (1st and 2nd months) out of 6 months at station #1203.

Size 2 patterns whose support values are not satisfying the min support threshold of 0.3 are pruned at this
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stage. For example {Pre-L, SFlow-L} is pruned at stations #1222 and #1226 since its support of 1/6 is less

than the minimum support threshold 0.3. The pattern {Pre-L, SFlow-L} does not occur at station #1221 and

so this pattern is represented with a ‘-’ sign in Table 3. Next, the station prevalence values of the patterns

are calculated. The station prevalence of pattern {Pre-L, SFlow-L} is 2/5 since it is support-prevalent at 2

(station #1203 and #1224) out of 5 stations. If the station prevalence is greater than or equal to the threshold

of 0.4, the pattern is a hydrometeorologically prevalent pattern and it will be used at the next candidate size k

generation of the algorithm. The pattern {Pre-L, SFlow-L} is hydrometeorologically prevalent since its station

prevalence value 2/5 satisfies the min station threshold of 0.4. The patterns that do not satisfy the min station

threshold are pruned as shown in Table 3. The list of hydrometeorological-prevalent size 2 patterns can be seen

in Table 4.

By joining size 2 prevalent patterns, candidate size 3 patterns are generated (Table 5). By joining size 3

prevalent patterns, candidate size 4 patterns are generated (Table 6), and so on. This process continues until

no more candidate hydrometeorological patterns are left.

Finally, meaningful hydrometeorological rules that satisfy the minimum confidence threshold min conf

of 0.3 are generated as shown in Table 7. In each station, any rule that does not satisfy the min conf threshold

is pruned. The rules given in Table 7 all satisfy the min conf threshold of 0.3 and there will be no confidence-

based pruning. Next, after these prunings, the station prevalences of the rules are rechecked. The station

prevalences of the rules can be seen in the last column of Table 7. None of the rules are pruned at this

stage since all station prevalence values satisfy the min station threshold of 0.4. Finally, hydrometeorological-

prevalent rules (such as the ones satisfying, min support, min station, and min conf thresholds) are returned

by the algorithm as shown in Table 7.

4.4. Experimental evaluation

In this section, we compare the performances of the proposed näıve algorithm and our proposed HMP-Miner

algorithm on a real dataset. The experimental evaluation aims to answer the questions of what the effect of the

support threshold is, what the effect of the station threshold is, and what the effect of the number of stations is.

The experiments are conducted on a computer that has an Intel Core 2-Quad 2.66-GHz CPU and 3-GB RAM.

4.5. Experimental setup

The experimental setup used to test the performance of the algorithms is presented in Figure 2. In the data

selection step, the gauging and meteorology stations are selected from a database and a correlation analysis is

conducted to ensure that the each gauging station is matched with a meteorology station. In the preprocessing

step, the data are prepared for association analysis. First, the daily data are converted to monthly average or

total data. Next, the data are discretized. After the preprocessing step, the data are used for the experimental

evaluation. Below, these steps are explained in detail.

4.6. Data set

The dataset contains data for precipitation, air temperature, wind speed, relative humidity, and stream flow

parameters. Data for all of the parameters were originally daily observed values. They are converted to monthly

values by calculating the average for air temperature, wind speed, relative humidity, and stream flow, and total

for precipitation. Stream flow data are obtained from 64 gauging stations. These 64 stations were previously

selected from more than 300 stations, based on their completeness, homogeneity, and length [20]. The climate
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data are obtained from a meteorology station in the same river basin as the stream flow gauging stations (Figure

3). The homogeneity of the meteorological data is tested to ensure data quality [21]. As there is more than one

meteorology station in a river basin, we select the meteorology station whose data have the highest correlation

with the stream flow data. All of the data are available from 1975 to 2000.

Data 

Selection
Pre-processing

Naïve Approach

HMP-Miner

Analysis

Meteorological 

and Hydrological 

Database

min_sup

min_conf

min_station

Rules
Pre-processed

Data
Selected 

Data

Figure 2. Experimental setup.

Figure 3. The locations of the stream flow gauging stations and meteorology stations used in this study.

The data are converted to discrete format for the analysis. We discretize the data into 3 groups using

their statistical properties (i.e. mean (µ) and standard deviation (σ)). The data are named ‘medium (M)’ if

they are between ‘µ - 0.5σ ’ and ‘µ + 0.5 σ ’; ‘low (L)’ if they are ‘smaller than µ - 0.5σ ’; and ‘high (H)’ if they

are ‘higher than µ + 0.5σ ’. An example discretization for the stream flow of a station can be seen in Figure 4.

4.7. Experimental results

In this section, we present our experimental evaluations of several design decisions and workload parameters of

the HMP-Miner algorithm.

4.7.1. Effect of the support threshold

In this experiment, we evaluate the effect of the support threshold on the execution time for both algorithms

(Figure 5). The station and confidence thresholds are set to 0.8 and 0.1, respectively. The results show that

the execution times of the algorithms decrease as the support threshold increases. It can also be seen that

HMP-Miner takes less time than the näıve approach, because it prunes station nonprevalent patterns as early

as possible and the candidate patterns are generated using potentially successful patterns.
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Figure 4. An example of data discretization for stream flow parameter of a station.
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Figure 5. Effect of support threshold.

4.7.2. Effect of the station threshold

In this experiment, we evaluate the effect of the station threshold on the execution time for both algorithms

(Figure 6). The support and confidence thresholds are set to 0.1 and 0.1, respectively. The results show

that HMP-Miner is sensitive to the value of the station prevalence threshold and the computational cost of

the HMP-Miner decreases as the station prevalence threshold value increases. In contrast, the näıve approach

is less sensitive to the station prevalence threshold, since it applies station prevalence-based pruning at the

postprocessing step, which is computationally cheaper than support-based pruning. As a result, HMP-Miner

outperforms the näıve approach, since HMP-Miner generates and deals with fewer patterns than the näıve

algorithm.

4.7.3. Effect of number of stations

In this experiment, we evaluate the effect of the station number on the execution time for both algorithms

(Figure 7). The support, station, and confidence thresholds are set to 0.1, 0.8, and 0.1, respectively. The results
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show that näıve approach has a linear-like growth scheme. However, the HMP-Miner algorithm has more flows

from the linearity. This shows that HMP-Miner is more sensitive to the station number than the näıve approach.
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Figure 6. Effect of station prevalence threshold. Figure 7. Effect of number of stations.

5. Evaluation of results

HMP-Miner is used to determine the hydrometeorological patterns over Turkey (Table 8; Figure 8). In this

analysis, we use stream flow data from 64 stream flow gauging stations and associated meteorology stations.

The data are in a monthly timescale and cover the period from 1975 to 2000. A support threshold of 0.15, a

station prevalence threshold of 0.5, and a confidence threshold of 0.5 are used for the discovery of frequent rules.

The targets were the low (L), medium (M), and high (H) stream flow.

Table 8. Rules discovered by the HMP-Miner (support prevalence threshold = 0.15; station prevalence threshold = 0.5,

confidence threshold = 0.5) (L: Low, M: Medium, H: High).

Rules
Support Prevalence Station Prevalence
in all 64 Stations over 64 Stations

Pre-L → SFlow-L ≥ 0.20 0.9
Temp-H → SFlow-L ≥ 0.20 0.8
Temp-L → SFlow-M ≥ 0.15 0.6
Pre-L, Temp-H → SFlow-L ≥ 0.15 0.6
Hum-L → SFlow-L ≥ 0.15 0.6
Hum-H → SFlow-M ≥ 0.15 0.5
WSpeed-M → SFlow-L ≥ 0.15 0.5

With HMP-Miner, 7 rules (Table 8) that satisfy the given thresholds are discovered. The rules discovered

clearly show that there is a strong relationship between the stream flow and precipitation and air temperature,

particularly for low stream flows. The stream flow appears low when the precipitation is low and temperature is

high at a majority of the stations. The rules Pre-L→ SFlow-L and Temp-H → SFlow-L are spatially prevalent

all over Turkey, except for a small region located in northeastern Turkey (Figure 8). The station prevalences

for these 2 rules are 0.9 and 0.8, respectively. This means that these rules are present at at least 80% of the

stations. Relationships with relative humidity and wind speed are also present. The stream flow is low when

the relative humidity is low and wind speed is high. Medium ranges of stream flow are found to be associated

with low temperatures and high relative humidity.
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Figure 8. Rules discovered by the HMP-Miner (support prevalence threshold = 0.15; station prevalence threshold =

0.5, confidence threshold = 0.5).

The results found in this study are evaluated to determine if they are correct and interesting. For this

purpose, we compare our results with previous studies conducted on the same topic. Our evaluation shows

that the results found in this study are consistent with many other studies that examined the relationships

between the stream flow and meteorological parameters [e.g., 22–25]. Similar to our results, previous studies

also indicated that precipitation and air temperature are the 2 most important parameters affecting the stream

flow. More recently, Dadaser-Celik and Cengiz [21] examined the correlations of the stream flow with various

meteorological parameters in Turkey and showed that the correlations between stream flow and air temperatures

are strong over Turkey.
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The techniques used in this study also provide some advantages over the other techniques used to examine

the relationships between the stream flow and meteorological parameters. In many previous studies, techniques

such as regression or correlation analysis were used. Regression analysis provides a model of the data in an

expected error range. The correlation analysis examines the degree and direction of relationships between

2 variables. The HMP-Miner algorithm developed in this study outperforms the other techniques because

with HMP-Miner, we not only examine the relationships between the stream flow and several meteorological

parameters, but also produce rules that show the cause–effect relationships between various combinations of

variables. HMP-Miner is also efficient for analyzing large datasets that contain several variables.

6. Conclusions and future work

We defined the hydrometeorological patterns and the problem of mining these patterns. We proposed a novel

computationally efficient HMP-Miner. We developed an interest measure (hydrometeorological prevalence

index) for finding hydrometeorological patterns. The proposed HMP-Miner was compared with the näıve

approach. We also evaluated the proposed algorithms experimentally. The results found by the HMP-Miner

were evaluated. The experimental evaluations showed that the proposed algorithm outperforms the näıve

alternative. The evaluation of results showed that HMP-Miner can successfully find the relationships between

hydrological and meteorological parameters and provide many advantages over the classical methods.

As future work, we plan to extend our proposed algorithm for mining hydrometeorological patterns in

different spatial and temporal scales.
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