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Abstract: The performance of the state estimation (SE) depends on the accuracy of the received measured data, as

well as the parameter data of the power system. In this paper, a new algorithm is proposed for the simultaneous

identification and correction of measurement and branch parameter errors (series and shunt admittances) in the power

system SE problem. The proposed method uses Lagrange multipliers for the identification and correction of branch

parameter errors without the need for a-priori specification of suspect parameter vectors. Erroneous measurements

and branch parameter values can be corrected using the proposed method to estimate the measurement and branch

parameter errors. Finally, IEEE 14-, 30-, and 57-bus test systems are used to show the validity and robustness of the

proposed algorithm. Single, multiple, and simultaneous errors in the conventional measurements and branch parameters

are considered for different case studies.
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1. Introduction

The input data of conventional state estimation (SE) are a redundant collection of measurements and a

mathematical model that relates these measurements to the nodal voltage magnitudes (V) and their phase

angles (θ), which are taken as state variables of system. This model relies on several assumptions, among

which the network configuration and associated parameters are considered to be known without any errors.

Unfortunately, these assumptions do not hold true. However, the network parameter values stored in the static

database may be incorrect due to inaccurate data supplied by the manufacturers and network changes that are

not properly updated in the database. Moreover, these parameters can change due to temperature (especially

the series resistance) or environmental conditions (especially the shunt conductance), etc. [1]. As a result,

parameter errors, which are usually assumed not to exist normally, can have adverse impacts on SE solutions;

hence, the detection, identification, and correction of network parameter errors are very important.

Most state estimators are designed to suspect only the conventional measurement errors and to ignore all

other types of errors. Most of the conventional measurement errors can be effectively detected, identified, and

corrected using methods such as the largest normalized residual test [1]. In [2], a topological/geometrical based

approach was used to define the undetectability index for bad data analysis and measurement error detection.

To detect gross errors in the power system SE, a new method based on the definition of innovation index and

concepts of [3] was proposed in [4]. Moreover, bad data detection was presented in [5] using a robust method

for the solution of the power system SE with equality constraints. A systematic approach for SE based on
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wavelet analysis to detect and eliminate bad data in measurements was developed in [6]. The identification of

measurement and topology errors was analyzed in [7]. Furthermore, in [8], a simple multiarea decentralized SE

procedure and bad data detection problem were proposed in multiarea systems.

On the other hand, the influence of parameter errors on the SE solution was studied in detail in [9].

There are several published methods for the identification and estimation of branch parameter errors using

Supervisory Control and Data Acquisition measurements [10–13] and considering the power management unit’s

(PMU’s) measurements in static SE [14]. Moreover, the joint estimation of state and parameter estimation

with PMUs were presented in [15,16] in a dynamic SE. Sensitivities of the SE solution with respect to line

reactances and shunt susceptances were analyzed in [17]. Thus, there are 2 types of methods for parameter

error identification [9]. The first type is based on residual sensitivity analysis [18,19], where the sensitivities of

the measurement residuals to the assumed parameter errors are used for identification. The second type uses

a state vector augmented by additional variables, which are the suspected parameters. This approach can be

implemented in 2 different ways using the static normal equations [20–22] and the Kalman filter theory [23–25].

Although there are various branch parameter estimation approaches, most of them address only the

branch series admittances and assume that the influence of branch shunt admittances is insignificant on the SE

solution [13,26], while the influence of shunt admittances is important. As a result, all of the branch parameter

error identification and estimation methods have common limitations as follows:

1. A primary set of suspect parameters is required before the estimation and correction of parameter error.

2. The branch parameter estimation with an augmented state vector requires a high computational volume

and an extra iteration in the estimation process because the weighted least square (WLS) algorithm should

first be solved to estimate the actual values of the branch parameters.

3. When the augmented state vector method is applied, it may yield some unreasonable results, such as

negative resistances and unacceptable large branch parameter values.

4. Bad data in the measurement vector have to be removed before the parameter error identification.

5. There is no obvious difference for distinguishing 2 kinds of residuals caused by measurement and branch

parameter errors.

However, in order to obtain a reliable SE, simultaneous identification and correction of the measurement and

branch parameter errors still represents a challenging task. The method proposed in this paper overcomes these

limitations and problems, as described in the next sections.

In this paper, a new algorithm is proposed for the simultaneous identification and correction of mea-

surement and branch parameter errors by eliminating the necessity for the augmented state vector. Using the

proposed method, the erroneous branch parameter values can be corrected using a linear approximation for

the estimated branch parameter errors and its effectiveness is illustrated by test systems. The main advan-

tage of the proposed method is that the normalized measurement residuals and Lagrange multipliers of the

parameter errors can be computed, which allow them to be identified and then corrected, even when appearing

simultaneously. Moreover, all of the common limitations listed above can be solved using the proposed method.

Thus, considering the above sentences, the contributions of this paper are 7-fold:

1. The proposed is a new and useful algorithm based on Lagrange multipliers analysis to detect, identify,

and correct the simultaneous measurement and branch parameter errors in power systems SE problem.
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2. A straightforward correcting procedure of the erroneous branch parameters using a new linear approxi-

mation equation.

3. The eliminating of augmented state vector that were used in all related papers and that may obtain some

unreasonable results.

4. The elimination of the need for an a-priori specification of the suspect parameter vectors before correction

of the parameter errors.

5. The decreasing of the computation volume if multiple errors in the measurement and branch parameters
occur.

6. The correcting of simultaneous errors in the measurement and branch parameter errors. In previous papers

in related branch parameter estimation, bad data in the measurement vector have to be removed before

the parameter error identification.

7. The analysis and reporting of the results of the IEEE case studies.

The paper is organized as follows: section 2 summarizes the Lagrange multipliers approach for the detection

and identification of the branch parameter errors. The proposed algorithm for the simultaneous correction and

estimation of conventional measurement and branch parameter errors that replaces the augmented state vector

is presented in section 3. Section 4 describes the simulation results of the proposed approach on the IEEE 14-,

30-, and 57-bus systems. Finally, section 5 presents the conclusions and final remarks.

2. Lagrange multipliers approach for the detection and identification of branch parameter errors

The mathematical model that relates the measurements of the state variables and the branch parameter errors

can be formulated as follows:

z = h(x,p) + e, (1)

where z is the vector of measurement (m×1) and x is the system state vector (nx×1). The state vector includes

the voltage magnitudes and phase angles, except for the reference bus angle. The nonlinear function h(x,p)

relates the measurement to the system states and power system branch parameter errors. p is the vector of the

power system branch parameter errors and e is the vector of the measurement errors, which is usually considered

to be a random Gaussian variable with a zero mean value and covariance matrix of R = diag
{
δ2z1, δ

2
z2, ..., δ

2
zm

}
.

δ2zi is the variance of the ith measurement. If there are no errors in the parameters, the vector of the power

system branch parameter error, p , will be zero. Therefore, the conventional WLS SE approach in the presence

of the network parameters can be formulated as the following optimization problem:

Minimize : J(x) = rT ·R−1 · r
Subject to : p = 0

, (2)

where r = z− h(x,p) and W = R−1 represent the measurement residual vector and the diagonal matrix, the

inverse of which is the measurement error covariance matrix, respectively.

If the analysis of the Lagrange multipliers is applied to solve this problem, the objective function can be

written as follows:

L(x,p, λ) = rT ·R−1 · r− λTp. (3)
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This function can be solved using the Karush–Kuhn–Tucker first-order optimality conditions:

∂L

∂x
= HT

x ·R−1 · r = 0, (4)

∂L

∂p
= HT

p ·R−1 · r+ λ = 0, (5)

∂L

∂λ
= p = 0, (6)

where Hx = ∂h(x,p)
∂x , Hp = ∂h(x,p)

∂p , and λ are the state Jacobian matrix, parameter Jacobian matrix, and

Lagrange multiplier vector for the parameter errors, respectively. Note that λ can now be expressed in terms

of r , using Eq. (5) as follows:

λ = SP · r = −
[
HT

p ·R−1
]
· r. (7)

The state vector x can be estimated by an iterative solution of the conventional WLS SE and solving the

following normal equations:

∆x = G−1 ·HT
x ·R−1 (z− h(x, 0 )) , (8)

where G = HT
x ·R−1 ·Hx represents the gain matrix.

In the Lagrange multiplier approach, it is assumed that all Lagrange multipliers are distributed according

to a normal distribution with a zero mean value and a nonzero covariance. The covariance matrix can be derived
from the relation between the Lagrange multipliers and the measurement residuals as follows:

Λ = cov(λ) = SP · cov(r) · SPT = SP ·Ω · SPT

Ω =
{
I−Hx(H

T
xR

−1Hx)
−1HT

xR
−1

} . (9)

The Lagrange multipliers for the parameter errors can be normalized using the diagonal elements of the

covariance matrix Λ , according to the following equation:

λN
i =

λi√
Λ (i, i)

, i = 1, ..., np, (10)

where np is the total number of power system branch parameters. The vector λN
i is a Gaussian random variable

with a zero mean and unit variance. The parameter that has the largest normalized Lagrange multiplier (larger

than threshold) is identified as the erroneous parameter and should be corrected using the proposed linear

approximation approach, which is described in the following section.

3. The proposed algorithm for the simultaneous correction and estimation of the identified

measurement and branch parameter errors

In all of the related literature, if a branch parameter is identified as erroneous, it is corrected by estimating its

value using the method described in [9], using the augmented state vector [27]. The estimated branch parameter

value is substituted in the database and then the WLS algorithm is repeated. This parameter error correction

method needs to solve the WLS algorithm for estimating the correct parameter value with a high computational

volume and extra iteration in the estimation process. Following the traditional SE solution, the measurement
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residuals are used to calculate the Lagrange multipliers associated with the parameter errors. If they are found

to be significant, then the associated parameter will be suspected to have an error. The proposed method in

this paper overcomes this problem by eliminating the necessity for an augmented state vector. The erroneous

branch parameter values could be corrected using a linear approximation for the estimated parameter errors

with high accuracy.

Let the augmented state vector be written as follows:

xaug = [x1, x2, ..., xn| p], (11)

where x1, x2, ..., xn are the conventional state variables and p is a parameter that is previously identified as

erroneous. Next, execution of the SE solution will provide the optimal estimation of the state variables, as well

as the erroneous branch parameters.

As is evident from the above, after identification of the branch parameter errors, an algorithm iteration

is required to perform the augmented SE approach for estimating each erroneous branch parameter. If there

are multiple branch parameter errors in the power system, they should be estimated one by one, using the

augmented SE approach. Hence, this process needs to be run multiple times for correcting all of the branch

parameters errors. Such a performance of this method results in the increase of the computational volume and

iteration numbers in the estimation process.

A new linear approximation approach is proposed in this paper to overcome this problem by eliminating

the necessity for an augmented state vector. The proposed approach deals with the electrical parameters in the

classical steady-state π -equivalent model of branches, which consists of series and shunt admittances. If the

physical parameters of the line resistances (ri−j) and reactances (xi−j) are required, the chain rule must be

used as indicated in Appendix A. The proposed linear approximation approach is described below:

Let Eq. (1) be rewritten as:

z = h(x,p0) + [h(x,p)− h(x,p0)] + e, (12)

where p and p0 are the actual and erroneous values of the branch parameters, respectively. The term in square

brackets in Eq. (12) is equivalent to an additional measurement error. If the parameter errors are large enough,

this term may lead to bad data, which should be detected. This term can be linearized as:

[h(x,p)− h(x,p0)] ≃
[
∂h(x,p)

∂p

]
· ep = Hp · ep, (13)

where ep is the vector of the branch parameter errors, considered a random Gaussian variable with a zero mean

value and covariance matrix of Rp .

By combining Eqs. (12) and (13), a linear relationship can be established between the vector of the

residual measurement r and the vector of the parameter errors ep :

r = z− h(x̂,p0) ≃ Hp · ep, (14)

Using Eqs. (14) and (7), the vector of parameter errors ep can be written as follows:

ep =
λ

SP ·Hp
=

λ

SHp
. (15)
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Suppose that the ith branch parameter is identified as erroneous. Thus, λbad
i = SHp(i, i) · ep(i).

Moreover, the covariance matrix of λ can be obtained as follows:

Λ = cov(λ) = cov
[
(SHp · ep) · (SHp · ep)T

]
= SHp · cov

[
ep · eTp

]
· SHT

p = SHp ·Rp · SHT
p = SHp ·Rp

, (16)

Consequently, parameter error ep for the ith branch parameter in Eq. (15) can be written as follows:

ep(i) =
λbad
i

SHp(i, i)
=

Rp(i, i)

Λ(i, i)
· λbad

i , (17)

Thus, the actual branch parameter value can be estimated as:

pcorrecti = pbadi − Rp(i, i)

Λ(i, i)
· λbad

i , (18)

where pbadi and pcorrecti are the erroneous values of the identified branch parameter and estimated (corrected)

value of the erroneous branch parameter, respectively. Moreover, Rp(i, i) is the ith diagonal element of the

branch parameter errors covariance matrix (Rp). As seen in Eq. (18), a linear simple trend is found the between

branch parameters, Lagrange multipliers, and their covariance matrices. Applying this proposed method results

in faster and more accurate identification and estimation of branch parameter errors in comparison with all

other methodologies. Thus, the mentioned limitations in the identification and estimation of branch parameters

can be efficiently developed by the proposed method.

On the other hand, the redundancy index is an important index in the accuracy of SE results in power

systems. All of the parameter error detection and identification approaches need high redundancy. If a

system has more measurement errors, removing bad data will reduce redundancy and also decrease the system

observability. Therefore, in this paper, the bad data in the measurement set were not deleted and their true

value was estimated by a corrective algorithm. A similar corrective equation for parameter errors could be used

for measurement errors as follows:

Zcorrect
i = Zbad

i − R(i,i)
Ω(i,i) · r

bad
i

rbadi = Zbad
i − h

(
x̂bad
i

) . (19)

The above formulation can be used to develop an algorithm in which the detection, identification, and correction

of conventional measurement and branch parameter errors are processed simultaneously without losing any

measurements. A flowchart of the proposed algorithm is shown in the Figure. It should be noted that the

measurement and branch parameter errors are processed simultaneously. This process continues until all of the

measurement and branch parameter errors are identified. If the measurement redundancy is low, the parameter

errors may be wrong with the measurement errors and ineligible results are detected for the SE.
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Figure. Flowchart of the identification and correction of the measurement and branch parameter errors.

4. Simulation results

In this section, the validity and performance of the proposed approach are evaluated. In this regard, the

proposed approach is implemented and tested on the IEEE 14-, 30-, and 57-bus test systems. The topologies

and parameters of these systems can be downloaded from [28]. Different case studies are simulated with errors

that are introduced in the branch parameters and conventional measurements. In the simulations, single and

multiple errors and simultaneously occurring errors in the conventional measurements and branch parameters

are considered. In all of the tests, it is considered that the measurement system is highly redundant. In this

regard, it is considered that all of the power injection and power flow measurements are available.

The true value of the measurements is provided by adding Gaussian noise into the calculated values of

the load flow solution. On the other hand, to obtain the initial branch parameters (bad parameters), errors are

added to the true values of the branch parameters. These errors are considered to be 50% of the true values.

Moreover, the initial measurement values (bad measurements) are selected as 50% of the measurement values.

In this paper, a typical threshold of 3 is selected for the Lagrange multiplier analysis and normalized residual

test.

In the following sections, the parameter and measurement values in the tables are in p.u. Moreover, gi−j ,

bi−j , and bcshunti−j are the series conductance, series susceptance, and shunt susceptance of the π -equivalent
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model of the branch connecting buses i and j , respectively. Moreover, the series and shunt admittances of the

line connecting buses i and j are defined as yi−j = gi−j + jbi−j and yshunti−j = jbcshunti−j , respectively.

4.1. Single error in the branch parameters or conventional measurements

In this section, a single error in the branch parameters or conventional measurements is simulated in the test

systems. Table 1 shows tests A and B for the 3 test systems, where tests A and B introduce an error in the

branch parameters and the measurements, respectively. These tests are listed in Table 1 for the IEEE 14-, 30-,

and 57-bus systems. The true and initial values of the branch parameters and measurements are also given in

Table 1.

Table 1. Simulated single errors in the branch parameters and measurements.

Test system
Bad parameter or

True value Initial value
measurement

14-bus
Test A g2−5 1.702 2.553

Test B Qflow
7−8 –0.229 –0.343

30-bus
Test A b12−15 –6.097 –9.146

Test B P inj
17 –0.090 –0.135

57-bus
Test A bcshunt12−13 0.060 0.090

Test B P flow
9−11 0.132 0.198

A cycle of successive SE with the proposed algorithm is run and the erroneous branch parameters are

identified and estimated until
∣∣rNi.max

∣∣ < 3 and
∣∣λN

i.max

∣∣ < 3. After the successful identification and correction

of bad data and parameters, all normalized residuals and Lagrange multipliers are lower than 3. Notice that

the convergence tolerance of the SE algorithm is equal to 10−6 .

The results of the error identification for single errors are shown in Table 2. The estimated (corrected)

values obtained by the proposed method can also be seen in Table 2. A comparison of these estimated values

with the true values of the measurements and parameters is listed in Table 1, which reveals that the proposed

method very accurately estimates and corrects the erroneous branch parameters and measurements. This table

also demonstrates the 3 largest normalized residuals (rN ) for the measurements and Lagrange multipliers (λN )

for the parameters. In Table 2, the percentage of correction is defined as follows:

percentage of correction =

∣∣∣∣ true value− estimated value

true value

∣∣∣∣× 100 (20)

4.2. Multiple errors in the branch parameters

In this section, multiple branch parameter errors are simultaneously added to the parameters of the selected

branches in the IEEE 14-, 30-, and 57-bus systems, as listed in Table 3. Table 3 also presents the actual values,

initial values, and estimated values of the series conductances, series susceptances, and shunt susceptances of

the selected branches in the test systems using the proposed method. The results of the proposed method are

also compared with those of the existing methods in [11] (for the 14-bus system) and [12] (for the 30- and 57-bus

system) by the percentage of correction index. It should be noted that to obtain the initial branch parameter

values, errors are added to the actual values of the parameters. These errors are considered as 30% of the actual

values.
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Table 2. Total results of the error identification for single errors in the branch parameters or measurements.

a) 14-bus system.

Test A

Step
J(x) in last Identified bad Estimated Percentage

rN or λN Measurement
iteration parameter parameter of correction or parameter

1 5.52 × 10+3 g2−5 1.699 0.176

54.069 g2−5

22.250 g4−5

8.907 Qflow
2−5

2 15.485 - - - rNandλN < 3 -

Test B

Step
J(x) in last Identified bad Estimated Percentage

rNorλN Measurement
iteration measurement measurement of correction or parameter

1 9.52 × 10+3 Qflow
7−8 –0.230 0.436

47.499 Qflow
7−8

30.559 b7−8

11.432 bcshunt
7−8

2 14.351 - - - rNandλN < 3 -

b) 30-bus system.

Test A

Step
J(x) in last Identified bad Estimated Percentage

rNorλN Measurement
iteration parameter parameter of correction or parameter

1 1.965 × 10+4 b12−15 –6.086 0.18

10.015 b12−15

5.933 b12−14

4.454 b14−15

2 8.539 - - - rNandλN < 3 -

Test B

Step
J(x) in last Identified bad Estimated Percentage

rNorλN Measurement
iteration measurement measurement of correction or parameter

1 1.165 × 10+3 P inj
17 –0.09 0

34.013 P inj
17

13.663 P flow
10−17

11.584 P flow
17−10

2 17.636 - - - rNandλN < 3 -

c) 57-bus system.

Test A

Step
J(x) in last Identified bad Estimated Percentage

rNorλN Measurement
iteration parameter parameter of correction or parameter

1 2.267 × 10+3 bcshunt
12−13 0.06 0

47.561 bcshunt
12−13

33.792 Qflow
13−12

19.725 Qflow
12−13

2 5.208 - - - rNandλN < 3 -

Test B

Step
J(x) in last Identified bad Estimated Percentage

rNorλN Measurement
iteration measurement measurement of correction or parameter

1 3.65 × 10+3 P flow
9−11 0.132 0

60.381 P flow
9−11

23.351 b9−11

19.392 b11−13

2 4.944 - - - rNandλN < 3 -

In a comparison of the results of the proposed method with those of [11,12], it is evident that the proposed

method estimated and corrected the erroneous branch parameters with higher precision.

4.3. Simultaneous errors in the conventional measurements and branch parameters

The main goal of this paper is to detect, identify, and correct conventional measurement and branch parameter

errors with high accuracy. This section shows the identification and correction of multiple errors in conventional

measurements and branch parameters in the IEEE 14-, 30-, and 57-bus system tests. The simulated errors are
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Table 3. Total results of the multiple error identification in the branch parameters.
a) 14-bus system.

Parameter

Estimated value Estimated Percentage of Percentage
Initial Actual (proposed value correction of correction
value value method) by [11] (proposed method) by [11]

g1−5 0.71806 1.0258 1.02651 1.0231 0.0692 0.2632
b1−5 –2.96443 –4.2350 –4.23245 –4.2161 0.0602 0.4439
bcshunt1−5 0.03444 0.0492 0.04904 0.049 0.3252 0.4065
g2−3 0.8731 1.1350 1.13393 1.1297 0.0942 0.4669
b2−3 –3.34726 –4.7818 –4.77401 –4.7602 0.1631 0.4517
bcshunt2−3 0.03066 0.0438 0.044106 0.0442 0.6937 0.9132
g2−4 1.1802 1.6860 1.68748 1.6793 0.0877 0.3974
b2−4 –3.58106 –5.1158 –5.11648 –5.0768 0.0133 0.7623
bcshunt2−4 0.0238 0.034 0.034137 0.0348 0.4029 2.3529

b) 30-bus system.

Parameter

Estimated value Estimated Percentage of Percentage
Initial Actual (proposed value correction of correction
value value method) by [12] (proposed method) by [12]

g1−2 6.7919 5.2246 5.2385 5.2530 0.2653 0.5436
b1−2 –20.3407 –15.647 –15.5963 –15.5596 0.3231 0.5566
bcshunt1−2 0.0343 0.0264 0.02635 0.0263 0.1897 0.3787
g2−4 2.21715 1.7055 1.7025 1.7001 0.1762 0.3166
b2−4 –6.75649 –5.1973 –5.19218 –5.2177 0.0985 0.3925
bcshunt2−4 0.02392 0.0184 0.01836 0.0183 0.2178 0.5434
g8−28 1.8770 1.4439 1.4513 1.4590 0.5098 1.0457
b8−28 –5.9030 –4.5408 –4.53602 –4.5570 0.1053 0.2923
bcshunt8−28 0.0278 0.0214 0.021331 0.0216 0.3234 0.9345

c) 57-bus system.

Parameter

Estimated value Estimated Percentage of Percentage
Initial Actual (proposed value correction of correction
value value method) by [12] (proposed method) by [12]

g7−8 3.4337 2.6413 2.6397 2.6350 0.0605 0.2385
b7−8 –17.5881 –13.5293 –13.5516 –13.4267 0.1648 0.7583
bcshunt7−8 0.0126 0.0097 0.0099 0.0093 2.0618 4.1237
g1−15 2.6914 2.0703 2.06523 2.0765 0.2449 0.2994
b1−15 –13.7593 –10.5841 –10.5785 –10.6052 0.0529 0.1993
bcshunt1−15 0.0642 0.0494 0.049074 0.0489 0.6599 1.0121
g3−15 6.8567 5.2744 5.32459 5.1101 0.95157 3.1150
b3−15 –22.4715 –17.2481 –17.2083 –17.4715 0.23075 1.2952
bcshunt3−15 0.0354 0.0272 0.02697 0.0276 0.84558 1.4705

shown in Table 4, which include 3 measurement errors and 3 branch parameter errors, simultaneously. Moreover,

the true and initial values of these variables are given in Table 4.

Simulation results are demonstrated in Table 5. These results include the objective function in the last

iteration, identified bad parameter or measurement, and estimated values of these measurements or parameters.

Note that when there are multiple errors in the network parameters as well as conventional measurements,

repeated application of the proposed method can identify and correct errors one by one. Table 4 also shows the
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3 largest normalized residuals (rN ) for the measurements and Lagrange multipliers (λN ) for the parameters,

as well as the percentage of correction.

Table 4. Simulated simultaneous errors in the branch parameters and measurements.

Test system
Bad parameter

True value Initial value
or measurement

14-bus

g3−4 1.986 2.979
b5−6 –3.968 –5.952
bcshunt2−5 0.0346 0.052

Qinj
10 –0.058 –0.087

P flow
4−5 –0.618 –0.927

Qflow
12−13 0.0115 0.0172

30-bus

g1−3 1.540 2.310
b2−6 –5.116 –7.674
bcshunt9−11 0 0.050

P inj
7 –0.228 –0.342

P flow
12−14 0.076 0.114

Qflow
23−24 0.008 0.012

57-bus

g3−4 7.645 11.467
b9−10 –5.681 –8.521
bcshunt12−16 0.0216 0.0324

Qinj
15 –0.05 –0.075

P flow
38−48 –0.136 –0.204

Qflow
54−55 –0.067 –0.100

Table 5. Total results of the error identification for the simultaneous error in the parameters and measurements.

a) 14-bus system.

Step

J(x) in Identified bad Estimated Percentage

rNorλN

Measurement
last measurement or measurement of or
iteration parameter or parameter correction parameter

1 2.849 × 10+3 g3−4 1.975 0.554

38.716 g3−4

31.541 g2−3

27.156 P flow
4−5

2 1.805 × 10+3 bcshunt2−5 0.035 1.156

25.423 bcshunt2−5

23.481 Qflow
2−5

21.012 g3−4

3 910.553 Qinj
10 –0.058 0

21.703 Qinj
10

20.123 Qflow
12−13

19.343 bcshunt2−5

4 463.290 b5−6 –3.961 0.176

20.035 b5−6

17.312 b4−7

12.143 b7−9

5 60.798 Qflow
12−13 0.0115 0

5.342 Qflow
12−13

5.164 bcshunt2−5

4.132 Qflow
2−5

6 34.2598 P flow
4−5 –0.618 0

3.967 P flow
4−5

3.824 b5−6

3.213 P flow
5−4
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Table 5. Continued.

b) 30-bus system.

Step

J(x) in Identified bad Estimated Percentage

rNorλN

Measurement
last measurement or measurement of or
iteration parameter or parameter correction parameter

1 3.913 × 10+4 g1−3 1.538 0.308

43.762 g1−3

39.342 g1−2

37.921 g3−4

2 2.205 × 10+4 bcshunt9−11 0 0

35.521 bcshunt9−11

33.342 b9−11

29.561 Qflow
9−11

3 1.134 × 10+4 P inj
7 –0.227 0.438

27.391 P inj
7

24.133 Qflow
23−24

23.012 b2−6

4 3.874 × 10+3 b2−6 –5.114 0.039

23.399 b2−6

21.753 Qflow
23−24

19.537 g1−3

5 1.334 × 10+3 P flow
12−14 0.076 0

17.191 P flow
12−14

14.162 g14−15

9.534 b12−14

6 24.486 Qflow
23−24 0.008 0

3.368 Qflow
23−24

3.254 g1−3

2.243 g1−2

c) 57-bus system.

Step

J(x) in Identified bad Estimated Percentage

rNorλN

Measurement
last measurement or measurement of or
iteration parameter or parameter correction parameter

1 6.023 × 10+4 P flow
38−48 –0.136 0

58.855 P flow
38−48

48.723 P inj
48

44.812 P flow
48−38

2 2.556 × 10+3 Qflow
54−55 –0.0674 0.597

29.413 Qflow
54−55

27.351 b9−10

24.715 Qinj
15

3 1.717 × 10+3 b9−10 –5.694 0.228

23.819 b9−10

23.713 Qinj
15

22.976 g10−12

4 1.241 × 10+3 g3−4 7.651 0.078

22.476 g3−4

20.678 g8−9

20.118 g4−6

5 153.926 bcshunt12−16 0.02157 0.138

19.987 bcshunt12−16

17.483 Qflow
54−55

13.762 Qflow
12−16

6 78.537 Qinj
15 –0.0499 0.20

11.033 Qinj
15

7.712 bcshunt15−45

6.452 bcshunt14−15
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A comparison of these estimated values with the true values of the conventional measurements and branch

parameters listed in Table 4 shows that the proposed method estimated and corrected the erroneous branch

parameters and measurements with high precision. Moreover, it can be observed that the multiple errors in the

measurements and parameters were identified and corrected by the proposed approach.

Table 6 lists the number of simulated errors, average number of iterations in any runs, and total central

processing unit (CPU) time for a laptop computer with a 2-GHz Pentium 2 CPU and 1-GB RAM using the

proposed method based on Lagrangian analysis for validating the measurement and branch parameter errors.

As is evident above, using the proposed method, a CPU time of less than 1 s is required to obtain the

correct solution and to identify the suspected measurements and branch parameters with reference to the IEEE

14-, 30-, and 57-bus systems.

5. Conclusions

This paper proposes a new algorithm for the simultaneous identification and correction of conventional mea-

surement and branch parameter errors to enhance the efficiency of power system SE. There is no need for an

a-priori specification of suspect parameter vectors. The proposed method uses Lagrange multipliers for the

identification of branch parameter errors, which are calculated based on the results of the conventional WLS

SE. Erroneous measurement and branch parameter values could be corrected using a new linear approximation

approach by eliminating the necessity for augmented state vectors. Finally, the proposed method for branch

parameter error correction is implemented and tested on the IEEE 14-, 30-, and 57-bus test systems. Different

cases are simulated, in which errors are introduced in the measurements and branch parameters. All single,

multiple, and simultaneous errors in the conventional measurements and branch parameters are simulated. The

performance of the proposed method is illustrated through these examples and it is shown that it can identify

and correct erroneous measurements and branch parameters with high accuracy.

Appendix A: derivatives with respect to the physical line parameter

In order to simplify the mathematical formulation of the SE problem, system parameters are expressed in

terms of the network branch admittances, namely series (yi−j = gi−j + jbi−j) and shunt (yshunti−j = jbcshunti−j )

admittances, and the proposed error correction method is applied for these parameters. If the physical

parameters of the line resistances (ri−j), and reactances (xi−j) are required, the chain rule must be used

as indicated below.

Terms of the network branch admittances are related to the line resistances and reactances as:

gi−j =
ri−j

r2i−j + x2
i−j

, bi−j =
−xi−j

r2i−j + x2
i−j

, ∀i,∀j ∈ Ωi (A1)

and

gi−i =
∑
j

gi−j , bi−i =
∑
j

bi−j + bcshunti−j , ∀i,∀j ∈ Ωi, (A2)

where Ωi is set of buses adjacent to bus i.

Let F be the variable for which the partial derivatives are looked. These partial derivatives with respect
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to the resistances (ri−j) can be obtained using the chain rule as follows:

∂F
∂ri−j

=
∂gi−j

∂ri−j

[
∂F

∂gi−j
+ ∂F

∂gi−i
· ∂gi−i

∂gi−j
+ ∂F

∂gj−j
· ∂gj−j

∂gi−j

]
+

∂bi−j

∂ri−j

[
∂F

∂bi−j
+ ∂F

∂bi−i
· ∂bi−i

∂bi−j
+ ∂F

∂bj−j
· ∂bj−j

∂bi−j

] (A3)

From Eq. (A1), the derivatives of the network branch admittance terms with respect to the resistances (ri−j)

can be obtained as follows:

∂gi−j

∂ri−j
=

x2
i−j − r2i−j(

r2i−j + x2
i−j

)2 , ∂bi−j

∂ri−j
=

2ri−jxi−j(
r2i−j + x2

i−j

)2 (A4)

whereas from Eq. (A2),

∂gi−i

∂gi−j
=

∂bi−i

∂bi−j
= 1 (A5)

Finally, Eq. (A3), using Eqs. (A4) and (A5), could be written as below:

∂F
∂ri−j

=
x2
i−j−r2i−j

(r2i−j+x2
i−j)

2

[
∂F

∂gi−j
+ ∂F

∂gi−i
+ ∂F

∂gj−j

]
+

2ri−jxi−j

(r2i−j+x2
i−j)

2

[
∂F

∂bi−j
+ ∂F

∂bi−i
+ ∂F

∂bj−j

]
, ∀i,∀j ∈ Ωi

(A6)

Similarly, the partial derivative of the variable F with respect to the reactances (xi−j) can be obtained as:

∂F
∂xi−j

=
∂gi−j

∂xi−j

[
∂F

∂gi−j
+ ∂F

∂gi−i
· ∂gi−i

∂gi−j
+ ∂F

∂gj−j
· ∂gj−j

∂gi−j

]
+

∂bi−j

∂xi−j

[
∂F

∂bi−j
+ ∂F

∂bi−i
· ∂bi−i

∂bi−j
+ ∂F

∂bj−j
· ∂bj−j

∂bi−j

] (A7)

From Eq. (A1), the derivatives of the network branch admittance terms with respect to the reactances (xi−j)

can be obtained as follows:

∂gi−j

∂xi−j
=

−2ri−jxi−j(
r2i−j + x2

i−j

)2 , ∂bi−j

∂xi−j
=

x2
i−j − r2i−j(

r2i−j + x2
i−j

)2 (A8)

Finally, Eq. (A7), using Eqs. (A5) and (A8), could be written as below:

∂F
∂xi−j

=
−2ri−jxi−j

(r2i−j+x2
i−j)

2

[
∂F

∂gi−j
+ ∂F

∂gi−i
+ ∂F

∂gj−j

]
+

x2
i−j−r2i−j

(r2i−j+x2
i−j)

2

[
∂F

∂bi−j
+ ∂F

∂bi−i
+ ∂F

∂bj−j

]
, ∀i,∀j ∈ Ωi

(A9)

If the partial derivative of the variable F with respect to half of the shunt susceptances (bcshunti−j ) are sought,

the following expressions should be used:

∂F
∂bcshunt

i−j

= ∂F
∂bcshunt

i−j

+ ∂F
∂bi−i

· ∂bi−i

∂bcshunt
i−j

+ ∂F
∂bj−j

· ∂bj−j

∂bcshunt
i−j

= ∂F
∂bcshunt

i−j

+ ∂F
∂bi−i

+ ∂F
∂bj−j

, ∀i,∀j ∈ Ωi

(A10)

Note also that due to Eq. (A2), ∂bi−i

/
∂bcshunti−j = ∂bj−j

/
∂bcshunti−j = 1.
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