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Abstract: Chaos is a complex behavior of dynamical nonlinear systems that is undesirable in most applications and

should be controlled; however, it is desirable in some situations and should be generated. In this paper, a robust

chaotification scheme based on sliding mode control is proposed for model based chaotification. A continuous time

single input observable system is considered such that it is subject to parameter uncertainties, nonlinearities, noises,

and disturbances, which are all additive to the input and can be modeled as an unknown function but bounded by

a known function. The designed dynamical state feedback control law forces the system to match a reference chaotic

system in finite time irrespective of the mentioned uncertainties, noises, and disturbances, as provided by the developed

sliding mode control scheme. Simulation results are provided to illustrate the robustness of the proposed scheme against

parameter uncertainties and noises. The results are compared with those of other model-based methods and Lyapunov

exponents are calculated to show whether the closed-loop control systems exhibit chaotic behavior or not.
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1. Introduction

Chaos is a complex behavior of dynamical nonlinear systems that exhibits 3 main properties: sensitivity to initial

conditions, topological transitivity, and denseness of unstable periodic orbits [1, 2, 3]. Chaos is a behavior to

be avoided in most applications and thus should be controlled; however, it is thought to be useful in nature and

in some engineering applications and so it should not be suppressed and even should be generated. Generation

of chaos from a nonchaotic dynamical system is the process of chaotification (also called anticontrol of chaos

or chaotization). In contrast, controlling chaos is the process of directing a chaotic system to exhibit a desired

behavior. Stabilizing an equilibrium, tracking a desired nonchaotic trajectory, e.g., a periodic solution, and

modification of chaotic behavior in some ways are examples of chaos control applications [4, 5, 6, 7, 8, 9].

Controlling chaos can be achieved via feedforward (open loop) and feedback (closed loop) methods.

Feedforward methods rely generally on a properly chosen input function or external excitations as expressed in

[4, 5]. It is beneficial for its quick response and its simplicity due to the absence of the feedback part. The OGY

method [10], Pyragas’s time-delayed method [11], the sliding mode control method [12, 13, 14, 15, 16, 17, 18],

frequency domain methods [19], adaptive control methods [4], the speed gradient method [4], neural network and

fuzzy-based methods [4, 20], and other nonlinear methods [4, 6, 21] are among the feedback methods used for

chaos control in the literature. In addition to these feedback methods applied to the discrete and continuous time
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integer order dynamical systems, controlling chaos in the fractional order systems [22] and designing fractional

order controllers [23] are attracting growing interest in the literature. Among the chaos control methods,

sliding mode chaos control [12, 13, 14, 15, 16, 17, 18], which is indeed a discontinuous feedback method, has a

distinguishing feature of applying a high frequency switching feedback in order to eliminate chaotic behavior

even under parameter uncertainties, noises, disturbances, and nonlinearities. On the other hand, anticontrol

of chaos is emerged as an interesting and potential area of research due to the many indications about the

usefulness of chaos in nature and in engineering practice. Several efficient chaotification methods employing

feedback control techniques have been introduced in the literature for both discrete and continuous time systems.

Chaotification methods for discrete time systems [24] are mainly based on a proper feedback law yielding chaos in

the overall system in the sense of Devaney [2] and/or Li-Yorke [25]. Many chaotification methods for continuous

time systems have been developed in the literature [26, 27]. Some of them can be categorized as the Vanecek–

Celikovsky method [28], time-delay feedback [29, 30, 31], impulsive control [27], and model-based static feedback

chaotification [32, 33]. In addition to these methods, sliding mode control-based chaotification methods have

been introduced in [34, 35]. The method in [34] can be categorized as a synchronization method because it is

designed to follow the states of a reference chaotic system. In [35] a sliding mode control-based chaotification

method designed for nonlinear discrete time systems is proposed.

This paper proposes a model-based robust chaotification scheme using sliding mode control in a manner

different to that in [34, 35]. The proposed chaotification method yields a dynamical state feedback in order

to match all system states to a reference chaotic system. In contrast to this, another model-based dynamical

feedback method [3] introduces extra states and matches to a higher dimensional reference chaotic system. The

proposed method can be applied to any single input, observable and input state linearizable system subject to

parameter uncertainties, nonlinearities, noises, and disturbances. It is assumed that parameter uncertainties,

nonlinearities, noises, and disturbances are all additive to the input and they can be modeled as an unknown

function having a bound specified by a known function. The discontinuous feedback control law of the sliding

mode chaotification method provides robustness against noise and disturbances. The robustness of the proposed

method makes the chaotification immune in the sense that the resulting system remains in chaos for a wide

range of system parameters and also under noise and disturbances. The matching of the considered system to

the reference chaotic system is always achieved in finite time, which can be made arbitrarily small by modifying

a parameter changing the control input.

The proposed method needs reference chaotic systems in the normal form. Therefore, in Section 2,

transformation of reference chaotic systems into the normal form and obtaining higher dimensional chaotic

systems in the normal form are described. In Section 3, a sliding mode control-based robust chaotification

scheme in which a nonlinear sliding manifold and a dynamical feedback law are determined appropriately to

match all states of controllable linear and input state linearizable nonlinear systems to reference chaotic systems

in the normal form is described. Section 4 presents simulation results for a linear system and an input state

linearizable nonlinear system respectively subject to parameter uncertainties and uniformly distributed random

noise.

2. Normal form of reference chaotic systems

A great number of chaotic systems are in the normal form [32, 33, 36, 37] given as

ż = Acz + bcgc(z), (1)
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where gc : R
n → R is a nonlinear function, Ac ∈ Rn×n is a constant matrix, and bc ∈ Rn is a constant vector.

Ac and bc are in the following controllable canonical form:

Ac =



0 1 0 . . . 0
...

. . .
. . .

...
...

. . . 1 0
0 . . . . . . 0 1
a0 a1 . . . . . . an−1

 , bc =


0
0
...
0
1

 (2)

Including the linear terms weighted by ai ’s into Gc(z), the system in (1) can be reformulated as

ż1 = z2
ż2 = z3

...
żn = Gc(z),

(3)

where Gc(z) = gc(z) + a0z1 + a1z2 + · · ·+ an−1zn .

For n = 3, Gc(z) represents the jerk function and gc(z) represents the nonlinearity in the jerk function.

In the rest of the paper, Gc(z) will be called a jerk function for arbitrary dimension n ≥ 3. There exists a

large class of systems in the form of jerk equations [36, 37]. In addition, a great number of chaotic systems can

be formulated as
ẋ = Ax+ bgc(x), (4)

where A ∈ Rn×n is a constant matrix, b ∈ Rn is a constant vector, and gc : R
n → R represents the nonlinear

part of the chaotic system. Any system in the form of (4) can be transformed into the normal form as in (1)

via the linear transformation z = Tx if the controllability matrix Cnxn has rank n, and hence it is invertible

[32].

C =
[
b Ab · · · An−1b

]
The transformation matrix is given as

T =


qT

qTA
...

qTAn−1

 (5)

where qT is the nth row of C−1 , and in the transformed system Ac = TAT−1 and bc = Tb have the form in 2.

Example 1 (Transformation of Chua’s circuit with cubic nonlinearity into the normal form):

State space of Chua’s circuit with cubic nonlinearity [38] is in the form ẋ1

ẋ2

ẋ3

 =

 α[x2 − f(x1)]
x1 − x2 + x3

−βx2

 (6)

where f(x1) = m0x
3
1 +m1x1 is the cubic nonlinearity of the Chua’s circuit. This system can be written in the

form of (4) as follows:

ẋ =

 0 α 0
1 −1 1
0 −β 0

x+

 1
0
0

 [−αf(x1)] (7)
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There exists an invertible linear transformation

z = Tx =

 0 0 −β−1

0 1 0
1 −1 1

x (8)

yielding a normal form as in (1),

ż =

 0 1 0
0 0 1
0 α− β −1

 z +

 0
0
1

 [−αf(βz1 + z2 + z3)] (9)

and can be reformulated as in (3) for n = 3, where

Gc(z) = (α− β)z2 − z3 − αf(βz1 + z2 + z3). (10)

In [39] the conditions to transform a 3-dimensional nonlinear system into at least 1 equivalent jerk equation

are introduced. In [40] it is proved that chaotic systems in the strict-feedback form can be transformed into

the normal form. There exists a great number of 3-dimensional chaotic systems that either exist in the normal

form [36] or can be transformed into the normal form via global diffeomorphisms on Rn as described above.

A method to generate chaotic systems for n > 3 in the form of (1), which have chaotic attractors

qualitatively similar to lower dimensional chaotic systems of the same form, is described in [33]. In order to

obtain a 4-dimensional chaotic system via modifying a 3-dimensional chaotic system in the form of (3), the

following system is considered:

ż1 = z2
ż2 = z3
ż3 = Ĝc(z1, z2, z3)

(11)

The system in (11) is modified in order to obtain a higher dimensional system in the following form:

ż1 = z2
ż2 = z3
ż3 = Ĝc(z1, z2, z3) + z4
ż4 = −γz4

(12)

where γ > 0 is an arbitrary constant. It is well known that z4(t) = z4(0)e
γt → 0 as t → ∞ . The system in

(12) exhibits a chaotic attractor qualitatively similar to the lower dimensional chaotic model in (11). By the

procedure described in [33], the system in (12) can be reformulated into the normal form as follows:

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = Gc(z)

(13)

where

Gc(z1, z2, z3, z4) =
d
dt (Ĝc(z1, z2, z3))− γ[z4 − Ĝc(z1, z2, z3)]. (14)

Furthermore, an arbitrary dimensional chaotic system can be obtained by introducing a new state variable at

each step, provided that Ĝc is sufficiently smooth. The details of the procedure may be found in [33].
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Example 2 (Obtaining a 4-dimensional chaotic system by modifying a 3-dimensional chaotic

system with a quadratic nonlinearity): A 3-dimensional chaotic system with a quadratic nonlinearity is

considered here in order to obtain a 4-dimensional chaotic system as described above. The 3-dimensional chaotic

system with quadratic nonlinearity is given in the state space form as in (11), where Ĝc = αz3 + βz2 + z21 − 1

[37]. This chaotic system can be modified in order to obtain a 4-dimensional chaotic system as described in

(12) and it can be written into the normal form as in (13) by choosing γ = 1:

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = Gc(z)

(15)

where

Gc(z) = (α− 1)z4 + (α+ β)z3 + (β + 2z1)z2 + z21 − 1. (16)

3. Sliding mode chaotifying control laws for matching input state linearizable systems to reference

chaotic systems

Continuous time single input observable systems subject to uncertainties, nonlinearities, noises, and disturbances

are considered in the paper as the systems to be chaotified

ẋ = f(x) + g(x)[u+ δ(t, x, u)], (17)

where x ∈ Rn is the state, u ∈ R is the scalar control input, f : Rn → Rn and g : Rn → Rn are sufficiently

smooth functions, and the function δ(t, x, u) with δ : R × Rn × R → R is an unknown real valued function

describing the uncertainties, nonlinearities, noises, and disturbances additive to the input. It is assumed that

the unknown function δ(t, x, u) is bounded by a known function. For this system, a feedback law such that

the resulting closed-loop system exhibits chaotic behavior after a finite time under uncertainties, nonlinearities,

noises, and disturbances additive to the input is proposed. All the states of the systems of (17) are assumed

available or can be obtained in an indirect way since the systems are considered observable.

A sliding mode feedback control law yielding the desired chaotic behavior for the closed loop system is

provided in Section 3.1 for the controllable linear system case of (17). Section 3.2 provides the feedback law in

the same way for the input state feedback linearizable case of (17).

3.1. Linear system case

An n-dimensional single input observable linear system subject to parameter uncertainties, nonlinearities,

noises, and disturbances additive to the input is considered in the following form:

ẋ = Ax+ b[u+ δ(t, x, u)] (18)
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Assuming that the linear system is controllable, the system can be transformed via a linear transformation

z = Tx , similarly given in (5), into the following normal form:

ż =



0 1 0 . . . 0
...

. . .
. . .

...
...

. . . 1 0
0 . . . . . . 0 1
a0 a1 . . . . . . an−1

 z +


0
0
...
0
1

 [u+ δ(t, T−1z, u)] (19)

where δ(t, T−1z, u) represents uncertainties, nonlinearities, noises, and disturbances additive to the input. The

dynamical feedback law is chosen as

u = −a0z1 − a1z2 − · · · − an−2zn−1 − an−1zn + żn − z̈n
+∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
żn + v,

(20)

where Gc(z1, z2, · · · , zn) : Rn → R is a nonlinear function chosen to be the jerk function of the reference chaotic

system in the normal form of (3). Then the system becomes

ż =



0 1 0 · · · 0
...

. . .
. . .

...
...

. . . 1 0
0 · · · · · · 0 1
0 · · · · · · · · · 0

 z +



0
...
...
0
1

 [v + żn − z̈n + ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
żn + δ̂(t, z, v)], (21)

where v is the new control input and δ̂(t, z, v) is the uncertainty, nonlinearity, and noise rewritten in terms of z

and v. By defining a new state variable żn = zn+1 with z̈n = żn+1 = ∂Gc

∂z1
z2+

∂Gc

∂z2
z3+· · ·+ ∂Gc

∂zn
zn+1+v+δ̂(t, z, v),

the n+ 1 dimensional state space form of the system can be obtained as in (22). The amplitude of δ̂(t, z, v) is

assumed to be bounded by a known function: |δ̂(t, z, v)| ≤ p̂(t, z) + k ∥ v ∥∞ for p̂(t, z) > 0 and 0 ≤ k < 1.

ż1 = z2
ż2 = z3
...
żn = zn+1

żn+1 = ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
zn+1 + v + δ̂(t, z, v)

(22)

Now, the sliding manifold is specified as s = zn+1 − Gc(z1, z2, · · · , zn), where Gc(z1, z2, · · · , zn) is chosen to

be the jerk function of the reference chaotic system in the normal form of (3). Then one can apply the sliding

mode control where η > 0 is a scalar to adjust finite reaching time to the sliding manifold.

v = −η + p̂(t, z)

1− k
sign(s) (23)

After reaching the sliding manifold, s becomes zero and so zn+1 = Gc(z1, z2, · · · zn). Therefore, the first n

states of the system (22) can be seen to be matched to the reference chaotic system (3) with the jerk function

Gc(z1, z2, · · · , zn).
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KOCAOĞLU and GÜZELİŞ/Turk J Elec Eng & Comp Sci

In order to show that the matching can be achieved in finite time, one can choose the Lyapunov function

as V = 1
2s

2 . It is shown below that time derivative V̇ of this Lyapunov function along trajectories of the

system in (22) is not greater than −η|s| . Therefore, reaching to the sliding manifold is of finite duration rather

than asymptotical [41].

V̇ = sṡ = s(∇z̄s)
T ˙̄z =

s


−∂Gc

∂z1

−∂Gc

∂z2
...

−∂Gc

∂zn
1



T 
z2
z3
...

zn+1
∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
zn+1 + v + δ̂(t, z, v)

 = s[v + δ̂(t, z, v)],
(24)

where ∇z̄s is the gradient of s manifold with respect to z̄ = [zT zn+1]
T .

V̇ ≤ sv + |s||δ̂(t, z, v)| (25)

Under the assumption of |δ̂(t, z, v)| ≤ p̂(t, z) + k ∥ v ∥∞ , (25) becomes as follows:

V̇ ≤ sv + [p̂(t, z) + k ∥ v ∥∞]|s| (26)

Now, substituting v in (23) into (26), an upper bound for V̇ is obtained as follows:

V̇ ≤ − η + p̂(t, z)

1− k
|s|+ [p̂(t, z) + k

η + p̂(t, z)

1− k
]|s| = −η|s| (27)

The differential inequality in (27) can be solved first by dividing both sides by |s| and then integrating them.

Thus, one can get |s(t)| − |s(0)| ≤ − ηt for the initial time, i.e. t0 = 0. It means that the time needed to reach

sliding manifold s = 0 should be finite and has an upper bound as treach ≤ |s(0)|
η , i.e. t0 = 0 [42]. Therefore,

(22) with (23) becomes (28) when s = 0 ⇒ zn+1 = Gc(z1, z2, · · · , zn).

ż1 = z2
ż2 = z3
...
żn = Gc(z1, z2, · · · , zn)

żn+1 = Ġc(z1, z2, · · · , zn)

(28)

The first n states of the system (28) can be seen to be matched to the reference chaotic system (3) with the jerk

function Gc(z1, z2, · · · , zn). |zn+1| = |Gc(z1, z2, · · · , zn)| < ∞ since zi ’s are bounded for a chaotic trajectory

and the continuous function Gc(z1, z2, · · · , zn) maps a bounded set into a bounded set.

3.2. Input state linearizable nonlinear system case

An n -dimensional single input observable and input state linearizable system subject to parameter uncertainties,

nonlinearities, noises, and disturbances additive to the input is considered in the form given below:

ẋ = f(x) + g(x)[u+ δ(t, x, u)], (29)
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where x ∈ Rn is the state, u ∈ R is the scalar control input, f : Rn → Rn and g : Rn → Rn are sufficiently

smooth functions, and δ(t, x, u) with δ : R × Rn × R is an unknown real valued function describing the

uncertainties, nonlinearities, noises, and disturbances additive to the input. The δ(t, x, u) is assumed to be

bounded by a known function. Since the system (29) is assumed to be input state linearizable then there should

exist a smooth scalar function h(x) satisfying LgL
i
fh(x) = 0 for i = 0, · · · , n− 2 and LgL

n−1
f h(x) ̸= 0 for all

x ∈ D [43].

Under the above input state linearizability assumption, the system in (29) can be transformed with the

state transformation z = T (x) =
(
h(x)Lfh(x) · · ·Ln−1

f h(x)
)T

,

which is a diffeomorphism over D ∈ Rn , into the normal form [43] as

ż1 = z2
...
żn−1 = zn
żn = Ln

fh(T
−1(z)) + LgL

n−1
f h(T−1(z))[u+ δ(t, T−1(z), u)]

(30)

The dynamical feedback law is chosen as

u = 1
LgL

n−1
f h(T−1(z))

[żn − z̈n − Ln
fh(T

−1(z)) + ∂Gc

∂z1
z2

+∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
żn + v],

(31)

where Gc(z1, z2, · · · , zn) : Rn → R is a nonlinear function chosen to be the jerk function of the reference chaotic

system in the normal form of (3). Then the system in (30) becomes

ż1 = z2
...

żn−1 = zn
żn = żn − z̈n + ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
żn + v

+LgL
n−1
f h(T−1(z))[δ̂(t, z, v)],

(32)

where v is the new control input and δ̂(t, z, v) is the uncertainty, nonlinearity, and noise rewritten in terms

of z and v. As done in the linear case, by defining a new state variable żn = zn+1 with z̈n = żn+1 =

∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
zn+1 + v+LgL

n−1
f h(T−1(z))[δ̂(t, z, v)] , an n+1 dimensional state space form of the

system can be obtained as in Eq. (33). The amplitude of δ̂(t, z, v) with LgL
n−1
f h(T−1(z)) is assumed to be

bounded by a known function: |LgL
n−1
f h(T−1(z))[δ̂(t, z, v)]| ≤ p̂(t, z)+k ∥ v ∥∞ for p̂(t, z) > 0 and 0 ≤ k < 1.

ż1 = z2
...
żn = zn+1

żn+1 = ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 + · · ·+ ∂Gc

∂zn
zn+1 + v

+LgL
n−1
f h(T−1(z))[δ̂(t, z, v)]

(33)

The sliding manifold is chosen as s = zn+1 −Gc(z1, z2, · · · , zn), where Gc(z1, z2, · · · , zn) is the jerk function

of the reference chaotic system in the normal form of (3). Then one can apply the sliding mode control in (34)
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where η > 0 is a scalar used to adjust finite reaching time to the sliding manifold. In a similar way to the

linear case, the first n states of the system (33) match the reference chaotic system (3) with the jerk function

Gc(z1, z2, · · · , zn) when the reaching phase is over.

v = −η + p̂(t, z)

1− k
sign(s) (34)

After reaching the sliding manifold, s becomes zero and so zn+1 = Gc(z1, z2, · · · zn). Therefore, the first n

states of the system (33) can be seen to be matched to the reference chaotic system (3) with the jerk function

Gc(z1, z2, · · · , zn).

As done in the linear controllable case, V = 1
2s

2 can be chosen as the Lyapunov function and its time

derivative along the trajectories of the system in (33) is shown not to be greater than −η|s| to ensure that the

system (33) reaches the sliding manifold in finite time.

V̇ = sṡ = s(∇z̄s)
T ˙̄z = s[v + LgL

n−1
f h(T−1(z))[δ̂(t, z, v)], (35)

where ∇z̄s is the gradient of s manifold with respect to z̄ = [zT zn+1]
T .

V̇ ≤ sv + |s||LgL
n−1
f h(T−1(z))[δ̂(t, z, v)]| (36)

Under the assumption of |LgL
n−1
f h(T−1(z))[δ̂(t, z, v)| ≤ p̂(t, z) + k ∥ v ∥∞ , it becomes as follows:

V̇ ≤ sv + [p(x, t) + k ∥ v ∥∞]|s| (37)

Now, substituting v in (34) into (37), an upper bound for V̇ is obtained as follows:

V̇ ≤ − η + p(x, t)

1− k
|s|+ [p(x, t) + k

η + p(x, t)

1− k
]|s| = −η|s| (38)

The differential inequality in (38) means that the time needed to reach sliding manifold s = 0 should be

finite and has an upper bound treach ≤ |s(0)|
η , i.e. t0 = 0 [42]. Therefore, (33) with (34) becomes (39) when

s = 0 ⇒ zn+1 = Gc(z1, z2, · · · , zn).

ż1 = z2
ż2 = z3
...
żn = Gc(z1, z2, · · · , zn)

żn+1 = Ġc(z1, z2, · · · , zn)

(39)

The first n states of the system (39) can be seen to be matched to the reference chaotic system (3) with the jerk

function Gc(z1, z2, · · · , zn). |zn+1| = |Gc(z1, z2, · · · , zn)| < ∞ since zi ’s are bounded for a chaotic trajectory

and the continuous function Gc(z1, z2, · · · , zn) maps a bounded set into a bounded set.
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4. Simulation results

4.1. Linear system application

A single input linear system with parameter uncertainty is considered in the form of (40)

ẋ =

 −1 −1 0
1 −1 1
2 0 −1

x+

 1
0
0

 (u+ δ(x)) (40)

where δ(x) is the parameter uncertainty and defined as δ(x) = ∆a0x1 + ∆a1x2 + ∆a2x3 . δ(x) is obviously

bounded by a known function |δ(x)| ≤ p(x) = |∆a0||x1|+ |∆a1||x2|+ |∆a2||x3| . The system can be transformed

into the controllable canonical form by a linear transform as in (5):

z = Tx =

 0 0.5 −0.25
0 −0.5 0.75
1 0.5 −1.25

x (41)

The transformed system is in the normal form as in (19):

ż =

 0 1 0
0 0 1
−4 −4 −3

 ż +

 0
0
1

 (u+ δ(T−1z)) (42)

To focus on the effect of parameter uncertainty, the system can also be written as

ż =

 0 1 0
0 0 1

−4 +△w0 −4 +△w1 −3 +△w2

 z +

 0
0
1

u (43)

where △w0 = △a0 + 3△a1 + 2△a2 , △w1 = 2△a0 +△a1 + 2△a2 , and △w0 = △a0 .

In order to chaotify the system in (42), Gc(z1, z2, z3) is taken to be the jerk function of Chua’s circuit

with cubic nonlinearity as given in (10) and the dynamical feedback law is chosen as follows with α = 15.6,

β = 28.58, m0 = 0.0659179490, m1 = −0.1671315463 where the parameters are taken from [44].

u = 4z1 + 4z2 + 3z3 + ż3 − z̈3 +
∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 +

∂Gc

∂z3
ż3 + v

= 4z1 + 4z2 + 3z3 + ż3 − z̈3 − α3m0(βz1 + z2 + z3)
2(βz2 + z3 + ż3)

−αm1βz2 + (α− β − αm1)z3 − (1 + αm1)ż3 + v

(44)

By inserting the control input in (44) into the system in (42) and by defining a new state variable ż3 = z4 with

z̈3 = ż4 = ∂Gc

∂z1
z2 + ∂Gc

∂z2
z3 + ∂Gc

∂z3
z4 + v + δ̂(t, z, v), the 4-dimensional state space form of the system can be

obtained as

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 +

∂Gc

∂z3
z4 + v + δ̂(t, z, v)

(45)

The sliding manifold is specified as s = z4 −Gc(z1, z2, z3) and the switching control input (v) described in (23)

with setting the parameters of it as k=0, η = 1, and p̂(z) = p(T−1z) = |△a0||z1 +2z2 + z3|+ |△a1||3z1 + z2|+
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|△a2||2z2 +2z3| is defined as follows:

v = −[1 + p̂(z)]sign(s) (46)

After the finite time treach < |s(t = 0)|/η [42], the system in (45) reaches the sliding manifold and s becomes

zero and so z4 = Gc(z1, z2, z3). Then the system in (45) with its first 3 states matches the reference chaos

model in (3) as

ż1 = z2
ż2 = z3
ż3 = Gc(z1, z2, z3)

ż4 = Ġc(z1, z2, z3)

(47)

and the system in (40) becomes topologically conjugate to the reference chaotic system [32].

In Figure 1, the simulation result for △a0 = −0.4596,△a1 = 0.8103, and △a2 = −0.8812 is presented.

The chaotic attractor of the reference chaotic system given in (9) is shown in Figure 1a. The chaotic attractor

of the chaotified system with the model-based method in [32, 33] and the chaotic attractor of the chaotified

system with the proposed sliding mode control method are shown in Figure 1b,1c. In Figure 1b, the chaotified

system with the model-based method in [32, 33] is observed to exhibit limit cycle behavior due to the parameter

uncertainty with Lyapunov exponents λ1
∼= 0(−0.0027), λ2 = −2.428, λ3 = −2.4893 calculated by [45]. As
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Figure 1. Chaotic attractor of (a) reference chaotic system, i.e. the cubic Chua’s circuit (9), (b) the chaotified

system with the model-based method in [32, 33], which causes limit cycle behavior with Lyapunov exponents λ1
∼=

0(−0.0027), λ2 = −2.428, λ3 = −2.4893, (c) the chaotified system with the proposed sliding mode control method, (d)

chaotifying control input in (44) for the proposed method, (e) z1 versus time, (f) z2 versus time, (g) z3 versus time for

t ≤ 30s of the chaotified system with the model-based methods in [32, 33].
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seen in Figure 1c, the chaotified system with the proposed method matches the chaotic system despite the

uncertainty and after a finite transient time slides on it. In Figure 1d, the chaotifying control input in (44) for

the proposed method is presented. In order to observe limit cycle behavior of the chaotified system with the

model-based method in [32, 33], the states z1 , z2 , and z3 versus time for t ≤ 30s are shown in Figure 1e–1g.

In Figure 2, the simulation result for △a0 = −0.8359,△a1 = −0.9793, and △a2 = −0.9844 is presented.

The chaotic attractor of the reference chaotic system given in (9) is shown in Figure 2a. The chaotic attractor

of the chaotified system with the model-based method in [32, 33] and the chaotic attractor of the chaotified

system with the proposed sliding mode control method are shown in Figure 2b, 2c. In Figure 2b, the chaotified

system with the model-based method in [32, 33] is observed to tend towards an equilibrium point due to the

parameter uncertainty with Lyapunov exponents λ1 = −0.0432, λ2 = −0.0446, λ3 = −6.3534 calculated by [45].

As seen in Figure 2c, the chaotified system with the proposed method matches the chaotic system despite the

uncertainty and after a finite transient time slides on it. In Figure 2d, the chaotifying control input in (44) for

the proposed method is presented. In order to observe the asymptotically stability of the chaotified system with

the model-based method in [32, 33], the states z1 , z2 and z3 versus time are shown in Figure 2e–2g.

Furthermore, in order to show the effectiveness of the proposed method, the system in (40) is subjected

to randomly chosen ∆ai ’s in the range [-1,1] for 100 trials. For the model-based method [32, 33] just 32 of
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Figure 2. Chaotic attractor of (a) reference chaotic system, i.e. the cubic Chua’s circuit (9), (b) the chaotified

system with the model-based method in [32, 33], which tends toward an equilibrium point with Lyapunov exponents

λ1 = −0.0432, λ2 = −0.0446, λ3 = −6.3534, (c) the chaotified system with the proposed sliding mode control method,

(d) chaotifying control input in (44) for the proposed method, (e) z1 versus time, (f) z2 versus time, (g) z3 versus time

of the chaotified system with the model-based method in [32, 33].
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the 100 trials have Lyapunov exponents λ1 > 0 in the interval of [0.0468,0.5529], λ2
∼= 0 in the interval of

[-0.0071,0.0015], and λ3 < 0 in the interval of [-6.8093,-3,4982], which is the sign of chaotic behavior for 3-

dimensional systems [46], whereas the proposed method copes with uncertainties and after a finite transient it

exhibits chaotic behavior for all trials.

4.2. Nonlinear system application

A link driven by a motor through a torsional spring (a single-link flexible-joint robot arm) with unit values of

coefficients is considered. The details of the system may be found in [42]. A state space form of the system is

given as

ẋ =


x2

−sinx1 − (x1 − x3)
x4

x1 − x3

+


0
0
0
1

 (u+ δ(t)) (48)

where δ(t) is a uniformly distributed random noise added to see the effect of noise and it is in the interval

[d0, d1] . δ(t) is bounded by a known scalar: |δ(t)| ≤ p = max(|d0|, |d1|).
By the change of the variables, the feedback linearizable system in (48) can be transformed with the

global diffeomorphism z = (x1 x2 − sinx1 − (x1 − x3) − x2cosx1 − (x2 − x4))
T into the normal form

ż =


z2
z3
z4

sinz1(z
2
2 + cosz1 + 1)− (z3 + sinz1)(2 + cosz1)

+


0
0
0
1

 (u+ δ(t)) (49)

In order to chaotify the system in (49), Gc(z1, z2, z3, z4) is taken to be the jerk function of the 4-dimensional

chaotic system defined in (15) with quadratic nonlinearity as given in (16) and the dynamical feedback law is

chosen as

u = ż4 − z̈4 − sinz1(z
2
2 + cosz1 + 1) + ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 +

∂Gc

∂z3
z4 +

∂Gc

∂z4
ż4 + υ

= ż4 − z̈4 − sinz1(z
2
2 + cosz1 + 1) + 2z2

2 + 2z1(z2 + z3)
+βz3 + (α+ β)z4 + (α− 1)ż4 + v

(50)

By inserting the control input in (50) into the system in (49) and by defining a new state variable ż4 = z5

with z̈4 = ż5 = ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 +

∂Gc

∂z3
z4 +

∂Gc

∂z4
z5 + v + δ(t), the 5-dimensional state space form of the system

can be obtained as

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = z5
ż5 = ∂Gc

∂z1
z2 +

∂Gc

∂z2
z3 +

∂Gc

∂z3
z4 +

∂Gc

∂z4
z5 + v + δ(t)

(51)

The sliding manifold is specified as s = z5 − Gc(z1, z2, z3, z4) and the switching control input v described in

(34) with setting the parameters of it as k=0, η = 1, and p̂(t) = p is defined as follows:

v = −(1 + p)sign(s) (52)

After the finite time treach < |s(t = 0)|/η [42], the system reaches the sliding manifold and s becomes zero and
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so z5 = Gc(z1, z2, z3, z4) and the system in (51) with its 4 states matches the reference chaos model in (3) as

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = Gc(z1, z2, z3, z4)

ż5 = Ġc(z1, z2, z3, z4)

(53)

and the system in (48) becomes topologically conjugate to the reference chaotic system [32].

In Figure 3, the simulation result for d0 = −0.18 and d1 = 1.93 is presented. In Figure 3a–3c, z1 versus

z2 , z3 , and z4 of the reference chaotic system in (15) are shown. In Figure 3d–3f, z1 versus z2 , z3 , and z4 of
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Figure 3. (a) z1 versus z2 , (b) z1 versus z3 , (c) z1 versus z4 of the reference chaotic system in (15), (d) z1 versus

z2 , (e) z1 versus z3 , (f) z1 versus z4 of the chaotified system with the model based method in [32, 33], (g) z1 versus

z2 , (h) z1 versus z3 , (i) z1 versus z4 of the chaotified system with the proposed sliding mode control method, and (j)

chaotifying control input in (50) for the proposed method.
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the chaotified system with the model-based method in [32, 33] are shown. In Figure 3g–3i, z1 versus z2 , z3 , and

z4 of the chaotified system with the proposed sliding mode control method are shown. In Figure 3j, chaotifying

control input in (50) for the proposed method is presented. In Figure 3d–3f, it is observed that the chaotified

system with the model-based methods in [32, 33] exhibits different behavior than the reference chaotic system

due to the effect of the uniformly distributed noise. As seen in Figure 3g–3i, the chaotified system with the

proposed method reaches the chaotic manifold despite the noise and slides on it thereafter.

Furthermore, in order to show the effectiveness of the proposed method, the system in (48) is subjected to

uniformly distributed random noise δ(t) in the interval [d0, d1] , where d0 and d1 are chosen randomly between

[-2,2] for 100 trials. For the model-based method [32, 33] just 7 of the 100 trials have Lyapunov exponents

λ1 > 0 in the interval of [0.0145,0.1543], λ2
∼= 0 in the interval of [-0.0049,0.0061], λ3 < 0 in the interval

of [-0.6464,-0.5121], and λ4 < 0 in the interval of [-1.014,-1.0018], which is the sign of chaotic behavior for

4-dimensional systems [46], whereas the proposed method copes with noises and after a finite transient time it

exhibits chaotic behavior for all trials.

5. Results and conclusion

A sliding mode control-based robust chaotification scheme has been introduced for model-based chaotification.

The scheme can be applied to any continuous time single input controllable linear and input state linearizable

nonlinear systems subject to parameter uncertainties, nonlinearities, noises, and disturbances that are all

additive to the input and can be modeled as an unknown function but bounded by a known function. It

is assumed that a reference chaotic system exists in the normal form and the designed dynamical state feedback

control law forces the system to match the reference chaotic system in finite time irrespective of the mentioned

uncertainties, noises, and disturbances, as provided by the developed sliding mode control scheme. The matching

of the considered system to the reference chaotic system is always achieved in finite time, which can be made

arbitrarily small by modifying a parameter changing the control input. Several simulations have demonstrated

the robustness and effectiveness of the chaotification scheme.
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