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Abstract: The stability of modern interconnected thermal power systems is greatly affected by the presence of low-

frequency inertial oscillations in the system, due to various forms of disturbances experienced. This paper provides an

efficient damping solution to these oscillations based on nature-inspired modified cuckoo search algorithm-based controller

design. The proposed controller design is formulated as a parameter optimization problem based on damping ratio and

time-domain error deviations. The effectiveness of the proposed damping controller design is illustrated by performing

the nonlinear time domain simulations of the test multimachine power systems under various operating conditions and

disturbances. Moreover, an exhaustive comparative stability analysis is performed based on the damping performance

of the modified cuckoo search controller design over the genetic algorithm-based and cuckoo search algorithm-based

controller designs.

Key words: Low-frequency inertial oscillations, damping ratio, nature-inspired optimization, cuckoo search algorithm,

multimachine thermal systems

1. Introduction

The stable operation of modern interconnected power systems is becoming more complex due to various forms

of instabilities [1]. The concept of angular stability in power systems has received a great deal of attention in

recent years. Angular instability is mainly responsible for causing low-frequency inertial oscillations in power

system networks. These low-frequency oscillations are alternator rotor angle oscillations with a frequency range

of around 2 Hz and these are considered to be the most important root cause for blackouts in interconnected

power systems [2,3].The implementation of a power system damping controller (PSDC) in power system networks

is the most cost-effective method for the mitigation of these oscillations. The main function of the PSDC is

to provide positive damping to these oscillations using supplementary stabilizing signals. The effectiveness of

the PSDC depends upon its tuning phenomenon. The parameters of the PSDC must be tuned using a robust

algorithm so that a global optimal solution will be achieved for better system stability. Tuning of the PSDC

using conventional algorithms will lead to a local optimum solution that is not sufficient for system stability.

Conventional damping controllers designed using the lag-lead theory can provide good damping to these

oscillations at a particular operating condition [4,5]. However, the damping performance of these controllers

will not be satisfactory for other operating conditions and network changes. Since modern interconnected power

systems are highly dynamic, it is the responsibility of the power system operator to design an adaptive controller,

which can be tuned to provide effective damping at all possible variations in the system. Damping controllers
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were designed and implemented using the concepts of neural networks, fuzzy logic, variable structure control,

and adaptive algorithms in [6–8]. These controllers gave effective damping suitable for system stability, but

these controllers had some disadvantages with respect to complex design procedures in fuzzy logic, difficulty in

training the neural network, etc. [9].

Recently, as an alternative to these techniques, nature-inspired optimization algorithms were extensively

implemented in various engineering optimization problems. These include evolutionary programming, harmony

search algorithm, honey bee algorithm, genetic algorithm (GA), particle swarm optimization (PSO), shuffled frog

leaping algorithm, cuckoo search (CS) algorithm, self-adaptive differential evolution (JDE) algorithm, adaptive

differential evolution (JADE) algorithm, strategy adaptation-based differential evolution (SADE) algorithm,

and differential search algorithm (DSA) [10–15]. These algorithms can be implemented effectively to solve

complex power system parameter optimization problems.

In this paper, the GA, CS, and proposed modified CS (MCS) algorithms are implemented for the

controller design, so that optimal controller parameters can be computed for better stability of the system.

The main objective of this paper is to damp the low-frequency inertial oscillations experienced in the test IEEE

3-machine 9-bus and IEEE 10-machine 39-bus multimachine thermal power systems and to enhance the stability

of these systems using various nature-inspired damping controller designs, namely the GAPSDC, CSPSDC, and

MCSPSDC. The design problem is formulated as a parameter optimization problem with objective functions

based on damping ratio and time-domain error deviations.

The optimal controller parameters computed using the 3 damping controller designs are implemented in

closed-loop modeling of the systems to compute the damping ratios of the system. A detailed comparative

stability analysis is done based on the damping performance of the 3 controllers under various operating

conditions and parameter changes. The simulation results of the test multimachine systems prove the robustness

of the proposed MCS algorithm-based controller design. The damping performance in terms of the damping

ratio maximization and error deviation minimization are better for the proposed MCSPSDC in comparison

with GAPSDC and CSPSDC. The proposed MCSPSDC design can be implemented for modern complex

interconnected power system networks, so that the experienced low-frequency inertial oscillations will be

effectively damped to enhance the power system stability.

2. Problem statement

2.1. Modeling of the test power systems

In the case of multimachine system modeling, the following assumptions are implemented in this paper.

1. The mechanical power input (governor turbine) variations are included in the modeling.

2. Natural damping (D, due to damper windings) in the system is assumed to be very negligible.

3. The generator is modeled as a constant voltage source behind a transient reactance.

The effect of thermal governor-turbine dynamics is included in the modeling of the multimachine system along

with the synchronous generator model. This is an important feature of this work, since the mechanical power

input variations (governor turbine effect) are taken as constants in the classical model of power system stability

analysis. The proposed controllers will damp both the torsional mode and intra mode of oscillations in the

system considered. The torsional mode of oscillations will be due to the interaction of the governor-turbine

variations with generator-excitation system variations.
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Two test multimachine power systems are taken for modeling and simulation in this paper. Figure 1

represents the IEEE 3-machine 9-bus thermal power system and Figure 2 represents the IEEE 10-machine

39-bus power system network. All of the system data and specifications are given in Appendix A [16,17].

  

 

  

Load C 

   Load A Load B 

 

Figure 1. IEEE 3-machine 9-bus power system model.
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Figure 2. IEEE 10-machine 39-bus power system model.
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Figure 3 represents the Heffrons–Phillips synchronous generator model taken for the state space modeling

and analysis of the system [18]. The PSDC in this model represents the PSDC implemented in the generator

excitation system feedback loop.
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Figure 3. Heffron–Phillips generator model with a controller.

The dynamic linearized state space equation used for modeling the power systems is given by:

[ẋ] = Ax+Bu, (1)

where x is the state variable vector taken for modeling, and A and B are the state matrix and input matrix,

respectively.

In this paper, 2 types of thermal system configurations (the SA and SB models) are implemented in the

modeling and stability analysis.

SA model: For this model, the generator is modeled with a rotating-type IEEE type 1 excitation system

along with the effect of thermal governor- and reheat-type turbines.

SB model: For this model, the generator is modeled with a static-type IEEE ST1A excitation system

along with the effect of thermal governor- and nonreheat-type turbines.

Figure 4 represents the SA model, in which the thermal governor and reheat turbine with reheat time

constant TRH are included along with the Heffrons generator model for modeling and analysis. Figure 5

represents the IEEE type 1 excitation system model implemented in the SA model.

Figure 6 represents the thermal SB model, in which the thermal governor and nonreheat turbine with

time constant TT are included along with the Heffrons generator model for modeling and analysis. Figure 7

represents the IEEE ST1A excitation system model implemented in the SB model.
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Figure 5. IEEE type 1 excitation system model.
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Figure 6. SB thermal system model.

Figure 8 represents the PSDC model. It consists of the reset block, gain KS block, and the 2-stage phase

compensation block. The input to the PSDC is the rotor speed deviation (∆ω) and the output is the damping

control signal (∆U) given to the generator-excitation system feedback loop. The purpose of the PSDC is to

provide positive damping torque to the rotor inertial oscillations, thereby improving stability of the system.

2.2. State space modeling of the SA and SB models

The following are the state variables selected for the state space modeling of thermal system models:

[xSA]CLOSED = [∆ω,∆δ,∆Eq′,∆EFD,∆VR,∆VE ,∆PG,∆Tm,∆S1,∆S2,∆U ]T , (2)
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[xSB ]CLOSED = [∆ω,∆δ,∆Eq′,∆EFD,∆VE ,∆PG,∆Tm,∆S1,∆S2,∆U ]T . (3)

Eqs. (2) and (3) represent the closed-loop state variables for the SA and SB models, respectively. The closed-

loop state matrix order will be (11 × 11) for the SA model and it will be (10 × 10) for the SB model. ∆S1 ,

∆S2 , and ∆U are the state variables selected from the PSDC model. The various abbreviations and variables

used in this paper are given in Appendix B.
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Figure 7. IEEE ST1A excitation system model.
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Figure 8. PSDC model.

3. Proposed optimization criterion and PSDC tuning

The primary aim of this proposed optimization criterion is to compute the global optimal solution required for

stability of thermal power systems. The proposed tri-objective optimization criterion consists of 2 objective

functions (JA and JB).

3.1. Objective function JA

The magnitude of damping provided to a practical power system is represented in terms of the damping ratio.

The damping ratio can be calculated from the computed system eigenvalue. The objective function JA is set to

a minimum of ξk among the damping ratios of the electromechanical modes of oscillation, as given in Eq. (4).

JA = Min (ξk) . (4)

Here, ξk belongs to a computed set of electromechanical modes of oscillation for a particular operating condition.

ξk represents the damping ratio of the k th electromechanical mode eigenvalue. The aim here is to maximize

the damping ratio of the weakly damped oscillatory eigenvalue for better stability.
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3.2. Objective function JB

The system electromechanical oscillations are reflected in terms of the rotor speed and power angle deviations.

The damping of oscillations involves minimizing the deviations of the rotor speed and power angle involved in

the system.

JB =

T∫
0

e2(t) · dt (5)

The objective here is to minimize [JB ], so that the integral of the squared error deviations in the rotor speed

and power angle are minimized for better stability of the system, i.e. to minimize the deviation overshoots

and settling time of the deviations as early as possible. The optimization problem, including the proposed

constraints, is formulated as follows:

Optimize J [Maximize JA , Minimize JB ]

Subject to

Tmin
1 ≤ T1 ≤ Tmax

1 Kmin
S ≤ KS ≤ Kmax

S (6)

Ksmin≤ Ks ≤Ksmax (7)

Pmin
x ≤ Px ≤ Pmax

x (8)

Tmin
2 ≤ T2 ≤ Tmax

2 (9)

αmin ≤ α ≤ αmax (10)

Here, Eqs. (3) to (6) represent the constraints taken in the optimization problem to compute the global solution

suitable for stability of the system.

3.3. PSDC tuning

The PSDC is tuned effectively using the proposed controller design algorithm. Ks, T1 , and T2 are the

parameters involved in the PSDC. PX and α will be discussed in detail with respect to the MCS algorithm in

Section 4.2 of this paper. The lower and upper limits of these 5 parameter constraints are given in Appendix

A.

4. Proposed MCS algorithm for stability

4.1. An overview of the conventional CS algorithm.

The CS algorithm was developed by Yang and Deb in 2009 [19]. This algorithm is best suited to complex

optimization problems and its performance is better when compared to other nature-inspired algorithms like

the GA, PSO, etc. [20,21].

The CS algorithm was inspired by the interesting natural breeding of the cuckoo species [22]. Cuckoo

species lay their eggs in the nests of other host birds. The host birds often have conflict with the cuckoos.

Whenever the host bird finds that the eggs are of alien type, they immediately throw all of the alien eggs out

of their nests. Some host birds will destroy their nests and build a new nest some other place.

Another feature of these cuckoo species is that parasitic cuckoos will choose a nest where the host bird

laid its own eggs. Whenever the first cuckoo chick is hatched, the host eggs will be evicted from the nests by

the cuckoos. This will increase the share of food for the cuckoo chicks.

Generally, the following points are implemented for implementing the CS algorithm.
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• Each cuckoo will lay one egg at a time. It will dump this egg in a randomly chosen nest.

• The nests with eggs of higher quality will be carried on to the next generation for finding better solutions.

• The available host nests (‘n’ nests) are taken as constants. The host bird will find the alien egg in the

nest with a probability Px.

The breeding behavior of the cuckoo species is based on Levy flights. Levy flight is nothing but the random

walk performed by animals in nature in search of food. When generating new solutions x (t+1) , a Levy flight is

performed based on Eq. (11).

x
(t+1)
i = x

(t)
i + α(t−λ). (11)

Here, α is the step size and λ will have values from 1 to 3.

The above concepts are incorporated into the implementation of the CS algorithm for finding the global

optimal solution required for stability of the system.

4.2. Proposed MCS algorithm

In the proposed MCS algorithm, the shortcomings experienced in the conventional CS algorithm are modified

to obtain an effective solution, suitable for thermal power system stability.

In the conventional CS algorithm, the worst nest’s probability Px and step size α used in the algorithm

are taken as constants. In light of this, the number of iterations required for an optimal solution is large. The

performance of the algorithm will be poor, leading to a higher number of iterations, whenever the value of Px

is low and the value of α is large. Moreover, a higher Px value and lower α value will not provide the best

solution suitable for better stability.

Based on the above demerits, the proposed MCS algorithm will solve the above problem by taking the

probability Px and step size α as constraints in the proposed optimization problem discussed in Section 3.2

and Eqs. (6) and (11). The proposed modified algorithm will select an optimal value for probability Px and α

at the final iteration along with the optimal solution for the PSDC parameters Ks, T1, and T2. In the MCS

algorithm, the following limits are selected for Px and α . For Px, the range is between 0.001 and 1, and for α ,

it is between 0.01 and 0.6.

Figure 9 represents the pseudocode for the proposed MCS algorithm to obtain the optimal parameters

required for better stability. In this code, g represents the generation number and gmax represents the maximum

number of generations.

The proposed MCS algorithm implemented in this paper to obtain the optimal damping controller

parameters is given as follows:

Step 1: Specify the various parameters involved for the MCS algorithm implementation (i.e. number

of host nests, limits for the PSDC parameters (Ks, T1 , and T2), worst nest’s probability, step size, number of

generations, termination criteria, etc.).

Step 2: Initialize a population of n host nests in the problem space of the possible solutions.

Step 3: Compute the fitness function (Pi) for the randomly selected cuckoo (i) by Levy flights.

Step 4: Choose a nest k among available nests and replace k by new solution, if the fitness (Pi) is greater

than fitness (Pk).

Step 5: If the termination condition is reached, then optimal solution is equal to those obtained in

current generation; otherwise, go to step 6.
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begin MCS  
 
 g=1;  
 Initialize population with n host nests;  
 Compute the fitness P(i) for selected cuckoo (i);  
 Choose a nest k among available n nests;  
 
 If (P i > P k ),  
 Replace k by a new solution;  
 end  
 
     While (g > g max ) not done do  
 

 Abondon a fraction of worst nests with P x and step size α ,  

 Update the solutions to compute optimal K s , T 1 , T 2 , P x, α;  

     end While  
 
end MCS.  
  
 

Figure 9. Pseudocode for the proposed MCS algorithm.

Step 6: Abandon a fraction of the worse nests with the optimal value of probability Pa and step size α .

Step 7: Update the solutions to calculate x
(t+1)
i , using Eq. (11).

Step 8: Repeat steps 3–7 until the termination criterion is met.

4.3. An overview of the GA

In this paper, the damping performances of the CS algorithm-based and MCS algorithm-based controller designs

are compared with the GA-based controller design. GAs are nature-inspired algorithms inspired by natural

selection and genetics [23–25]. The following 4 operators are essential in the GA to create the fittest individuals:

selection, crossover, mutation, and replacement.

Selection is the process of identifying 2 parent chromosomes from the initial population for reproduction.

The roulette wheel selection concept is implemented in this paper. The roulette wheel selection is a genetic

selection operator for selecting potentially useful solutions for recombination compared to other selection

methods.

Crossover is the process of taking 2 selected parent chromosomes to produce better offspring. In this work,

the uniform crossover method is implemented. After the crossover, the strings are subjected to the phenomenon

of mutation. Mutation recovers the lost genetic materials involved in the genetic process. Mutation of a bit

involves flipping a bit, i.e. changing 0 to 1 and vice versa.

Replacement is the last stage in the genetic cycle. In this paper, weak parent replacement involving a

generation gap of 0.8 is implemented.

5. Simulation results and stability analysis

The MATLAB tool is implemented for the modeling and simulation of the test multimachine power systems in

this paper. The system data used for simulation are given in Appendix A.
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5.1. Three-machine 9-bus system results.

In the 3-machine test system, the 125-MVA generator bus is taken as the infinite bus and the system is considered

with generators G2 and G3 providing power to the infinite bus. Table 1 represents the generator loading

conditions, with ∆Pd being the load change disturbance given to the system. The linearized state space

modeling of the test system provides the open-loop eigenvalues, as given in Table 2. The damping ratios

are calculated for the weakly damped oscillatory mode eigenvalues. The complex eigenvalues with negative

real parts represent the decaying mode of oscillations. The weakly damped eigenvalue is identified among the

complex eigenvalues computed for a particular operating condition. The negative damping ratios in Table 2

indicate that the system is unstable. Moreover, the speed deviation response in Figure 10 indicates that the

deviations are more oscillatory, leading to instability. In order to make the system stable, damping controllers

are to be implemented using the 3 nature-inspired algorithms.

Table 1. Generator loading conditions for the 3-machine test system.

Generator
Case A Case B
P (p.u) Q (p.u) P Q

G1 0.72 0.27 2.21 1.09
G2 1.03 0.07 1.92 0.56
G3 0.85 –0.11 1.28 0.36
Load disturbance ∆Pd = 0.02 p.u ∆Pd = 0.04 p.u

Table 2. Computed open-loop eigenvalues and damping ratios without PSDC.

S. No.
Operating Weakly damped values
conditions (p.u) Eigenvalues Damping ratios

1 Case A 0.0241 ± j 5.141 –0.004687
2 Case B 0.019 ± j 4.711 –0.004033
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Figure 10. Speed deviation response of the open-loop system for Case A conditions.

5.2. Proposed MCS algorithm implementation

The 3 algorithms (GA, CS, and MCS) are implemented to compute the optimal parameters, Ks, T1 , T2 , Px,

and α . These optimal values are substituted in the closed-loop modeling of the test systems considered to

compute the closed-loop eigenvalues and damping ratios. Table 3 provides the various parameters selected for

algorithm implementation.
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Table 3. GA, CS, and MCS parameters implemented for the controller design.

S. no. GA parameters CS parameters MCS arameters
1 Population size 90 No. of nests 75 65

2
No. of

40 No. of generations 33 25
generations

3 No. of variables 03 No. of variables 03 03

4 Selection operator
Roulette Worst nests’

0.22
Given in Tables

wheel probability (Px) 4 and 6

5

Cross over type Uniform

Step size (α) 0.9

Given in Tables
and probability crossover 4 and 6

and 0.95

6
Mutation

0.10 Levy flight (λ) 2.4 3.3
probability

7
Generation gap

0.80
(replacement)

8
Termination Maximum

Termination method
Maximum Maximum

method generations generations generations

Table 4 provides the computed optimal parameters obtained from the 3 controller designs. The eigenvalues

of the weakly damped eigenvalues for the MCSPDC are given in Table 4. The real parts of these eigenvalues are

well placed in stable locations in the s plane, leading to stable conditions. The damping ratios are computed

for the weakly damped oscillatory eigenvalues for the Case A and Case B operating conditions and are listed

in Table 5. The computed damping ratios for the MCSPSDC are positive and even greater than the damping

threshold ((ξT ) = 0.2) selected in this paper.

Table 4. Optimal MCS-based controller parameters for 3-machine test system.

S. no. 
Operating 

conditions (p.u.) 
Gen 

Optimal damping controller parameters 

and MCS parameters (Ks, T1, T2, Px, α) Closed-loop weakly 

damped eigenvalues of 

the proposed MCSPSDC 
Gain Ks 

Time constants 

T1 and T2 
Px , α 

1 
Case A 

(with SA model) 

G2 33.412 0.2210, 0.1401 0.32,  0.18 –3.915 ± j 8.095 

G3 47.914 0.1933, 0.3034 0.19,  0.48 –3.715 ± j 18.814 

2 
Case B 

(with SB model) 

G2 24.099 0.3300, 0.1919 0.21, 0.35 –2.500 ± j 7.615 

G3 39.785 0.4022, 0.1834 0.34, 0.27 –4.414 ± j 18.013 

5.3. Comparison with existing standard results

Apart from comparing the damping performance of the proposed MCSPSDC with the GAPSDC and CSPSDC,

the closed-loop results are also compared with existing standard results. The standard results refer to the

simulation results in [26], where the genetic local search algorithm was implemented for both 3-machine and

10-machine test power systems.

From Table 5, it is clear that the damping ratios of the proposed MCSPSDC are better in comparison

with the existing standard results and the other 2 controllers implemented in this paper. This satisfies the

objective JA formulated in this paper for stability. Nonlinear time domain simulations are performed and the

speed deviation and power angle responses are given in Figures 11–13 for the Case A and Case B operating

conditions. These deviation responses indicate that the deviations are damped at various intervals for the
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different controller implementations. Comparatively, the damping performance of the proposed MCS-based

controller is better than those of the GA-based and CS-based controllers. The oscillation overshoots are reduced
and the deviations settle more quickly, comparatively. This satisfies the objective JB , formulated in this paper

for stability.

Table 5. Computed damping ratios for the 3-machine test system.

S. no. 
Operating 

conditions (p.u.) 
Gen 

Damping ratios of the weakly damped electromechanical mode 
eigenvalues; damping ratio threshold (ξT) = 0.2 

GAPSDC CSPSDC 
Existing standard 

results 
MCSPSDC 

1 
Case A 

(with SA model) 

G2 0.137622 0.201769 0.416546 0.435386 

G3 0.092770 0.135487 0.192760 0.193719 

2 
Case B 

(with SB model) 

G2 0.292337 0.229023 0.301734 0.311920 

G3 0.077912 0.187935 0.209164 0.238004 
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Figure 11. Speed deviation responses of the system for

Case A conditions.

Figure 12. Power angle deviation responses of the system

for Case A conditions.
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Figure 13. Speed deviation responses of the system for Case B conditions.
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5.4. Ten-machine 39-bus system results

In the simulation of the 10-machine test power system, the damping controllers are implemented in all of the

generators, except for generator 1. The damping performance of the controllers are analyzed for 2 conditions,

namely the outage of lines 21–22 with a load change disturbance and the outage of lines 14–15 with load change

disturbances.

Table 6 provides the optimal parameters computed for the 3 controller designs as well as the eigenvalues

of the weakly damped modes. Table 7 provides the closed-loop damping ratios computed for the GAPSDC,

CSPSDC, and MCSPSDC. The damping ratios for the MCSPSDC are better in comparison to the existing

standard results [26] and compared to the damping ratios computed from the GAPSDC and CSPSDC.

Table 6. Optimal MCS-based controller parameters for the 10-machine test system.

S. no. 
Operating 

conditions (p.u.) 
Gen 

Optimal damping 

controller parameters and MCS parameters 

(Ks, T1, T2, Px, α) 

Closed-loop weakly 

damped eigenvalues of 

the proposed MCSPSDC

 

Gain Ks 
Time constants 

T1 and T2 
Px, α 

1 

Outage of lines 

21–22 with ∆Pd = 0.01 

p.u., SA model 

G2 37.123 0.4922, 0.2889 0.32, 0.18 –0.215 ± j 5.501 

G3 25.342 0.1984, 0.3672 0.23, 0.27 –0.133 ± j 4.009 

G4 64.209 0.8009, 0.2894 0.13, 0.42 –0.081 ± j 6.152 

G5 61.329 0.1449, 0.3459 0.49, 0.09 –0.041 ± j 8.553 

G6 18.104 0.3771, 0.7701 0.38, 0.31 –0.9915 ± j 7.9917 

G7 17.293 0.1784, 0.6692 0.5, 0.19 –0.9399 ± j 6.571 

G8 54.349 0.2786, 0.9287 0.29, 0.34 –0.175 ± j 9.814 

G9 39.225 0.7801, 0.1856 0.11, 0.50 –0.199 ± j 8.015 

G10 46.233 0.4509, 0.3781 0.28, 0.47 –0.3152 ± j 9.300 

Table 7. Computed damping ratios for the 10-machine test system.

S. no. 
Operating conditions 

(p.u.) 
Gen 

Damping ratios of the weakly damped electromechanical modes; 

damping ratio threshold (ξT) = 0.02 

GAPSDC CSPSDC 
Existing standard 

results 
MCSPSDC 

1 
Outage of lines 

21–22 with ∆Pd = 0.01 p.u., 

SA model 

G2 0.01993 0.01154 0.034094
 

0.039054 

G3 0.03299 0.03091 0.031842 0.033157 

G
4
 0.00923 0.00834 0.016148

 
0.013165 

G5 0.00233 0.00234 0.003300
 

0.004794 

G6 0.09347 0.01293 0.012974
 

0.123122 

G7 0.00878 0.01599 0.016728
 

0.141596 

G8 0.01455 0.01554 0.017290 0.017829 

G9 0.01338 0.02199 0.025308
 

0.024820 

G10 0.02001 0.02766 0.026964
 0.033873 

Figures 14–17 represent the speed deviation and power angle responses computed for the 2 different

operating conditions. From these deviation responses, it is clear that the proposed MCS algorithm-based
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controller performs better than the other 2 controllers and in comparison with the existing standard results

(results from [26]).
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Figure 14. Speed deviation responses for the outage of

lines 21–22 with 0.01 p.u. disturbance.

Figure 15. Power angle deviation responses for the out-

age of lines 21–22 with 0.01 p.u. disturbance.
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Figure 16. Speed deviation responses for the outage of

lines 14–15 with 0.02 p.u. disturbance.

Figure 17. Power angle deviation responses for the out-

age of lines 14–15 with 0.02 p.u. disturbance.

6. Dominant features of the MCSPSDC

The following are the dominant features of the proposed MCS-based controller design for improving thermal

power system stability.

• The closed-loop eigenvalues and damping ratios computed from the MCSPSDC design are better in terms

of providing more positive damping to the oscillations compared to the GA- and CS-based controllers.

• Rotor speed and power angle deviations are damped out effectively for the MCSPSDC, comparatively.

• Optimal solution computed in fewer iterations, comparatively (as in Table 3).

• Easier implementation of the proposed MCS algorithm with only a few parameters to adjust to compute

the optimal solution.

1112



RANGASAMY and MANICKAM/Turk J Elec Eng & Comp Sci

• Both torsional mode and intra mode of the oscillations experienced in the thermal power system are

mitigated effectively for better stability.

7. Conclusion

This paper provides an effective and robust solution to the problem of low-frequency inertial oscillations

experienced in the various configurations of 2 multimachine test power systems. The detailed comparative

stability analyses (based on closed-loop eigenvalues, damping ratios, and error deviations) reveal that the

proposed MCS algorithm-based controller is the best damping controller and can enhance the stability of

multimachine thermal systems effectively compared to the damping performances of the GA and CS algorithm-

based controller designs.

A. Appendix

Generator 1: 125 MVA, 13.8 KV, 3600 rev/min, power factor = 0.9, frequency = 50 Hz, Xd = 1.05, Xd ’ =

0.3, Xq = 0.686, Xq’ = 0.696, Tdo’ = 6.170, D = 0, M = 10.

Generator 2: 192 MVA, 18 KV, 3600 rev/min, power factor = 0.9, frequency = 50 Hz, Xd = 0.8958,

Xd ’ = 0.1198, Xq = 0.8645, Xq’ = 0.1969, Tdo ’ = 6, D = 0, M = 12.8.

Generator 3: 100 MVA, 13.8KV, 3600 rev/min, power factor = 0.9, frequency = 50 Hz, Xd = 1.3125,

Xd’ = 0.1813, Xq = 1.2578, Xq’ = 0.25, Tdo ’ = 5.89, D = 0, M = 6.02.

Excitation system:

IEEE ST1A type: KA = 210,TA = 0.04, KF = 0.06, TF = 1, VRMax = 6.45, VRMIN = –6.0, KE

= 1, TE = 0.

IEEE type 1 model: KA = 190, TA = 0.04, KF = 0.06, TF = 1, VRMax = 6.43, VRMIN = –6.0,

KE = 1.10, TE = 0.45.

Thermal reheat and nonreheat governor turbine:

TG = 0.2 s, RP = 0.05, TRH = 6 s, TT = 0.3 s, FHP = 0.3.

PSDC: Ks - [1 to 75], T1 - [0.1 to 1], T2 - [0.1 to 1], T1 = T3 and T2 = T4 (identical compensation

block), Tw = 15s.

MCS parameter limits: Px - (min = 0.001 to max =1), α -(min = 0.01 to max = 0.6).

All of the parameters are in p.u., unless specified otherwise.

(2) IEEE 10-machine 39-bus system data

Data from [17].

B. Appendix

Nomenclature

PSDC Power system damping controller (PSDC)
GAPSDC Genetic algorithm-based PSDC
CSPSDC Cuckoo search-based PSDC
MCSPSDC Modified cuckoo search-based PSDC
ESS Excitation system stabilizer
ξ System damping ratio
∆ω,∆δ Incremental change in the rotor speed

and power angle

∆Eq’ Incremental change in the generator
voltage

∆EFD Incremental change in the generator field
voltage

∆VR Incremental change in the amplified voltage
∆VE Incremental change in the excitation

stabilizer output voltage
KF ,TF Gain and time constant of the excitation

system stabilizer
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Ke,Te Gain and time constant of the exciter
KA, TA Gain and time constant of the amplifier
Tdo ’ Field open-circuit time constant

K1 -K6 K constants involved in the Heffron–
Phillips generator model

RP Steady-state speed droop
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