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Received: 22.10.2012 • Accepted: 13.02.2013 • Published Online: 15.08.2014 • Printed: 12.09.2014

Abstract:In this paper, we present a new simulator called pRediCS for the calculation of electromagnetic scattering and

radar cross-section (RCS) from electrically large and complex targets. The simulator utilizes the geometric optics (GO)

theory and launching of electromagnetic rays for tracing and calculating the electric field values as the electromagnetic

waves bounce around the target. The physical optics (PO) theory is also exploited to calculate the final scattered electric

field by calculating the far-field PO integration along the observation direction. The simulator is first tested with known

objects of canonical shapes, whose analytical solutions are available in the literature. Next, our implemented GO-PO–

type algorithm is validated by simulating the benchmark targets that have been well studied and documented by various

studies. Finally, the RCS computation from complex and electrically large objects is calculated. By utilizing the RCS

values for different frequencies and aspects, a successful inverse synthetic aperture radar image of the target with fast

simulation time is achieved.

Key words: Electromagnetic scattering, inverse synthetic aperture radar, numerical electromagnetics, radar cross-

section, shooting and bouncing rays

1. Introduction

The calculation of radar cross-section (RCS) from electrically large and complex-shaped objects has been a

great research topic for decades [1–4]. The RCS information of a military platform is very crucial, especially for

electronic warfare applications. Radar detection and guided missile tracking can only be possible for sufficiently

large RCS values. Therefore, the need for simulating the RCS of military platforms is essential since it is much

cheaper, practical, faster, and more reliable than constructing a RCS measurement setup or a real scenario.

With the aid of such simulators [5–9], it becomes possible to tweak and design various parameters that affect

the RCS of a target. These studies include low-observability or RCS reduction studies [10], inverse synthetic

aperture radar (ISAR) imaging applications [11], and constructing radar signature databases [12].

Many methods, from full-wave solutions to asymptotic or hybrid techniques, have been employed for the

calculation of electrically large and complex platforms. Full-wave solutions like the method of moments (MoM),

finite difference time domain method, and finite element method provide robust calculation of the RCS of such

structures whose sizes are at most a few wavelengths for nominal computers [5–8]. Although these methods

can handle over a billion unknowns [9], powerful computer hardware is still needed to be able to calculate

the RCS values of large and complex bodies. Therefore, the computational load based on the memory and
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simulation time required for the RCS calculation of electrically large and complex objects is not manageable,

even for today’s powerful computers. This is because full-wave methods usually deal with an unknown matrix

of impedances or equivalent parameters. At high frequencies, of course, the size of this matrix becomes very

huge. For that reason, the computation memory requirement to store this matrix and the computation time to

invert it grow to be gigantic for electrically large and complex bodies. On the other hand, asymptotic or hybrid

techniques based on geometric optics (GO) or physical optics (PO) solutions have been much more efficiently

applied for the RCS simulation of such structures [13]. The shooting and bouncing ray (SBR), a hybrid method

that combines GO with PO, has been the pioneering technique for fast and efficient calculation of RCS from

such targets at high frequencies [14,15]. The SBR method is based on the launching of a dense set of optical

rays and tracing these rays according to the GO and PO theory [14]. With this construct, it is conceptually

very different and also computationally much more efficient than full-wave methods. Aside from these benefits,

only a limited number of researchers put effort into studying and enhancing SBR-based algorithms [16,17] since

its first introduction to the electromagnetic (EM) community by Ling et al. [14,15]. Jin et al. provided a

hybrid technique that combines the SBR with MoM for analyzing RCS from large conducting bodies with small

protrusions [16]. Chen and Jeng utilized the SBR for the investigation of indoor radio-wave propagation [18].

Recently, Weinmann developed a new simulator for the implementation of the SBR technique [19], and, more

recently, Tao et al. implemented the SBR for faster RCS calculation by utilizing graphics processing units

(GPUs) [17].

Since studies dedicated to the SBR and other hybrid or asymptotic methods have been limited, there are

only a few simulators developed and available in the literature [20–23]. Furthermore, some of these simulators

are not publicly or commercially accessible and some of them have limitations for different and special scenarios.

For these reasons, we set out to develop a new and fast simulator for the implementation of the SBR theory

that combines the GO theory with the PO theory, such that EM scattering and the RCS from electrically large

and complex-shaped structures can be successfully and efficiently predicted. In the next section, we present

the algorithm behind our implementation of the SBR technique. In Section 3, our RCS simulator code, called

pRediCS, is introduced and tested with various benchmark targets whose RCS values can be readily obtained

from the literature. Furthermore, the simulator is also used to find the EM scattering of a large and complex

platform. The resultant RCS, range profile, and ISAR image for the selected platform are also constructed. We

also simulate these objects with the commercially available EM structure simulator code FEKO [24] so that

we can compare our results with a reliable simulator in terms of accuracy and computation time. In the last

section, computation time values for the simulated structures are given. It is shown that our simulator is highly

efficient while simulating large and complex bodies. The work is concluded by referring to future improvements

for the simulator.

2. Scattered field calculation using the GO-PO theory

Our implementation of the RCS calculation is based on the employment of ray launching with the GO theory

and the application of the PO theory afterwards.

2.1. Launching rays and tracing the field via GO

We begin the implementation of our simulator by assuming that both the transmitter and the receiver are

located at the far field of the target. Therefore, the incident electric field can be assumed to be in the form of
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a plane wave, as given below:

E⃗inc (r) = E⃗ · exp(−jk⃗i · r⃗), (1)

where E⃗ = Eθ · θ̂i + E∅ · ∅̂i corresponds to vertically and horizontally polarized components of the incoming

wave and k⃗i is the incident wave-number vector given by:

k⃗i = k sin θi cos ∅i · x̂+ k sin θi sin ∅i · ŷ + k cos θi · ẑ, (2)

where k = 2πf/c is the wave number corresponding to the frequency variable f . The incident electric field,

assumed to be discretized by a dense set of rays, is launched from a hypothetical transmitter at the far-field

towards the object along the direction of k⃗i . Based on the far-field assumption, all of the rays that hit the

target are parallel to each other as illustrated in Figure 1. For a reliable solution, the ray density should be

selected as at least 10 rays per wavelength as the common practice [19].
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Figure 1. Geometry for the ray tracing and GO theory. The PO theory is applied to find the scattered field along the

observation direction.

In our simulator, we assume that the origin is the phase center of the scene. As demonstrated in Figure

1, the incident electric field that hits a point (say P1(x1y1z1)) on the object has the following form:

E⃗inc
∣∣∣
@r1

= E⃗ · exp(jk⃗i · r⃗1). (3)

When the rays hit the target, they start to bounce around it. The rays are traced with the rules of the GO

theory while bouncing around the object. As the optical ray tracing has to be carefully employed based on

the Snell law of reflection, the amplitude and phase of the electric field need to be traced as well. While some

rays may experience only a single bounce, some others may have multiple bounces (see Figure 1). For the mth

ray, let us assume a total of N bounce mechanisms before it leaves the object. Therefore, the mth ray hits

Pm
n (xnynzn) points on the surface of the target (n = 1, 2, .., N). At this point, we apply the amplitude tracking

methodology that was first introduced and applied in [14]. Therefore, the electric-field value around the nth
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hit point Pm
n (xnynzn) can be found via:

E⃗m
n−1(xnynzn) = (DF )

m
n−1 · (Γ)

m
n−1 · E⃗

m
n−1(xn−1yn−1zn−1) · exp(−jk ·Rm

(n−1)→n), (4)

where E⃗m
n−1(xn−1yn−1zn−1) is the electric field value at the (n− 1)th hit point and Pm

n−1(xn−1yn−1zn−1) for

the mth ray. Here, (DF )
m
n−1 corresponds to the ray tube divergence factor for the (n − 1)th hit of the mth

ray. As illustrated in Figure 1, (DF ) spreads while rays are bouncing around the target. For targets that

have planar surfaces, the divergence factor is 1 as the rays keep their parallel alignment with respect to each

other after bouncing from the surface. For targets that have curved surfaces, the spreading of the rays causes

the amplitude of the ray fields to decrease. The detailed derivation of the ray divergence can be found in

[10,11,14,15] and will not be repeated here.

In the above equation (Γ)
m
n−1 is the reflection coefficient at point Pn−1 for the mth ray. For perfect

electric conductors (PECs), the magnitude of the reflection coefficient is unity. For planar surfaces of the PEC,

the reflected field for the nth hit can be calculated by:

E⃗ref
n = −E⃗

i

n + 2
(
ŝ× E⃗i

n

)
× ŝ, (5)

where E⃗i
n is the incoming electric field before the nth bounce and ŝ is the normal of the surface. When the

PEC surface is coated with a dielectric or magnetic layer, the transmission line equivalent of the coating can

be implemented such that reflection coefficients for the transverse electric and the transverse magnetic wave

polarizations can be calculated as given in [14].

The phase term in Eq. (4) corresponds to the phase delay as the ray travels from point Pm
n−1 to point

Pm
n , in which Rm

(n−1)→n is the actual trip distance between these points:

Rm
(n−1)→n =

[
(xn − xn−1)

2
+ (yn − yn−1)

2
+ (zn − zn−1)

2
]1/2

. (6)

As demonstrated in Figure 1, the GO theory provides the reflected field from the surface according to the Snell

law. This feature of GO may not be well suited for planar surfaces where the reflected field tends to scatter

along the specular direction. For the far-field set-up, if the incoming wave is a plane wave, then the reflected

wave is also a plane wave. This leads to a nonzero scattered field only along the specular direction, which is of

course not correct. It is obvious that the scattered field from a planar surface such as a plate occurs in almost all

directions but with different scattering amplitudes. Furthermore, the numerical calculation of the RCS from an

object requires geometric (or computer-aided design, CAD) modeling of this object. The usual way of modeling

an object is done with small patches of small planar surfaces. Therefore, the abovementioned feature of GO can

be problematic when finding the scattered field from these small patches, as the reflected wave propagates only

along the specular direction. To circumvent this problem, the PO theory comes into play, as we shall explain

next.

2.2. Calculating the scattered field via PO

The scattered field calculation from the last bounce point, Pn(xnynzn), is accomplished with the help of the

PO approach [25], as demonstrated in Figure 1. According to the PO theory, the incoming electric field for
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themth ray, E⃗m
n , produces an equivalent surface current density of J⃗m(SA), which can be approximated as:

J⃗m(SA) ∼= 2 · E⃗m
n (xnynzn)× ŝN , (7)

where ŝN is the surface normal at the last hit point and SA is the ray tube area. As the last step, the PO

integration is carried out to find the far field scattered field contribution of the mth ray due to this surface

current:

E⃗m(k) = j
kη

4πr
·
∫∫
SA

J⃗m(SA) · exp
(
jk⃗s · r⃗mN

)
· dS⃗. (8)

Here, k⃗s is the wave number vector along the scattering direction and is given by:

k⃗s = k sin θs cos ∅s · x̂+ k sin θs sin ∅s · ŷ + k cos θs · ẑ, (9)

and η = (µ/ϵ)
1/2

is the intrinsic impedance of the propagating medium and r⃗mN is the vector from the origin

to the last bounce point Pm
n (xnynzn) for the mth ray, provided that the origin is selected as the phase center

of the scene. Of course, the above result is only valid for a single ray and the electric field contribution from all

of the rays should be summed up to calculate the total scattered electric field E⃗s(k) as:

E⃗s(k) =
M∑

m=1

E⃗m(k), (10)

where M is the total number of rays that hit the object. After completing the summation in Eq. (10), the

scattered field is calculated at the specified frequency and angle.

3. Introducing the pRediCS EM simulator

The above summarized theory of the SBR is implemented in the C programming language for the purpose of

calculating the EM scattering from complex-shaped objects of large electrical sizes. The simulator requires the

CAD file of the object, which should be composed of sufficiently small triangular patches. The user interface

is developed using Visual C++ and OpenGL is used for previewing the CAD model. It can support multiple

simulation projects. Each project file is stored with the associated simulation parameters. Project details

are saved on the MySQL database. The postprocessing tab of the code provides the plots of several metrics,

including the scattered field, RCS, range profile, and ISAR image of the target. Some pictures from the interface

of the simulator can be seen from Figure 2. The CAD selection window is given in Figure 2a and one of the

simulator parameter selection windows is shown in Figure 2b.

3.1. Validation with benchmark objects

To assess the accuracy of our implementation of the SBR algorithm, various canonical objects, whose RCS has

been either analytically calculated or is numerically well documented in the literature [26,27], are chosen. Our

simulator is tested with these benchmark objects for different look angles and frequencies.
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Figure 2. Some pictures from the interface of pRediCS: a) CAD file selection window and b) simulation parameter

selection window.
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3.1.1. Rectangular plate

As the first object, a perfectly conducting square plate is chosen, whose CAD file is given in Figure 3a. The

monostatic RCS (or the backscattered RCS) simulation is carried out with the pRediCS code. For this

simulation, the elevation angle variation of the simulator is tested such that EM backscattering from the object

is calculated for different elevation angles that range from θi = θs = 0◦ to 180◦ , while the azimuth angle is

set to ∅i = ∅s = 0◦ , as illustrated in Figure 3a. The frequency of operation is taken as 10 GHz, such that the

plate’s electrical size becomes 12λ by 12λ . The analytical solution for this geometry is available in [12] and

plotted as the solid line in Figure 3b. Next, the backscattered electric field calculation of the geometry for the

horizontal-horizontal (HH) polarization is done with our simulator. The resultant variations of the monostatic

RCS for different elevation angles are calculated and plotted in Figure 3b as the dotted line. Finally, the

monostatic RCS simulation of the object for HH polarization is carried out with FEKO and the result is drawn

as the dashed line in Figure 3b for comparison. While our result almost perfectly coincides with the analytical

solution, FEKO’s simulation result matches well up to around –15 dBsm, as observed from Figure 3b.
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Figure 3. Monostatic RCS from the rectangular plate model: a) geometry for the simulation and b) RCS results for

different elevation angles: analytical (solid), FEKO (dashed), and pRediCS (dotted).

3.1.2. Dihedral corner reflector

In the previous numerical example, the object provides only single-bounce mechanisms for the calculation of

the RCS. Next, we test the accuracy of our simulator for the multibounce mechanism as well. For this goal,

the dihedral corner reflector, whose geometry is shown in Figure 4a, is chosen as the second test object. This

time, the azimuth variation for the single elevation value at θi = θs = 90◦ is tested. To compare our result with

the other simulators, square plates that have side lengths of 5.6λ by 5.6λ are used to constitute the dihedral,

as defined in [28]. Therefore, the side length of the plates is set to 17.90 cm for the chosen frequency of 9.4

GHz. The monostatic RCS for the vertical-vertical (VV) polarization that Griesser [28] found is plotted as the

solid line in Figure 4b. The FEKO solution of the geometry is also presented in Figure 4b as the dashed line.

The VV-polarized monostatic RCS that we calculated after running pRediCS is also drawn in Figure 4b as the

dotted line, and, as is clearly seen, the result that we get with pRediCS fairly well matches Griessier’s result

and the FEKO solution.
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Figure 4. Backscattered RCS from the dihedral corner reflector model: a) geometry for the simulation and b) RCS

results for different azimuth angles: Griesser’s result (solid), FEKO (dashed), and pRediCS (dotted).

3.1.3. Triangular trihedral corner reflector

In this example, pRediCS is tested for frequency variation of the incoming wave. The triangular trihedral corner

reflector, whose geometry given in Figure 5a, is chosen as the geometry to be simulated. This geometry provides

the maximum value of the monostatic RCS when θi = θs = 54.74◦ and ∅i = ∅s = 45◦ , as illustrated in Figure

5a. The analytical value for the monostatic RCS of the triangular trihedral corner reflector can be found in [29].

The monostatic RCS is plotted using the analytical formula in [29] for frequencies between 1 GHz and 9 GHz

as the solid line in Figure 5b. Moreover, the FEKO simulation of this geometry for the VV polarization is also

carried out for comparison purposes and drawn as the dashed line. The result that we obtain using pRediCS

is shown as the dotted line that matches very well with the analytical solution. This clearly demonstrates

the success of our simulator in predicting the EM scattering of multibounce mechanisms for different values of

frequencies.
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Figure 5. Backscattered RCS from the triangular trihedral corner reflector model: a) geometry for the simulation and

b) RCS results for different frequencies: analytical (solid), FEKO (dashed), and pRediCS (dotted).

3.1.4. Cone-sphere

Cone-sphere geometry is one of the popular and most commonly used benchmark targets, whose RCS variation

with respect to azimuth angles can be readily found in the literature [30,31]. The CAD file and simulation
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geometry are shown in Figure 6a. The measured result of Griesser et al. [31] is plotted as the solid line in

Figure 6b. The FEKO simulation is also carried out at 9 GHz for a total of 181181 discrete azimuth angles,

ranging from −180◦ to 0◦0◦ , and is drawn as the dashed line in Figure 6b. The CAD file of the cone-sphere

is meshed in such a way that the maximum length of each triangular patch is equal to or less than one-tenth

of the corresponding wavelength of 9 GHz. Our calculation of the RCS from the cone-sphere geometry with

the same simulation parameters is given as the dotted line in Figure 6b. All of the results are provided for the

HH polarization. Fair agreement of our simulation with the other references can also be easily observed from

Figure 6b. Small differences between our results and the FEKO results are attributed to the different method

(SBR vs. MoM) and meshing parameters of the CAD files that are used in different simulations. Moreover,

small discrepancies between our results and the measured results can be explained by 2 main points: first, the

measurements always include some shifts created by measurement errors, noises, and the imperfectness of the

measurement setup. Second, pRediCS requires the discretization (i.e. meshing) of the curved surfaces of the

cone-sphere structure. The approximate realization of curved structures with small planar patches is, of course,

not perfect. Therefore, this can alter the RCS results within a small range, as expected.
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Figure 6. Monostatic RCS from the cone-sphere model: a) geometry for the simulation and b) RCS results for different

azimuth angles: measurements taken from [31] (solid), FEKO (dashed), and pRediCS (dotted).

3.2. Simulation of a large and complex target

In the previous section, the validity and accuracy of our simulator is tested with canonical structures and

benchmark targets. Now we can use the pRediCS code for the calculation of the EM scattering and RCS from

an electrically large and complex target at high frequencies. The generic fighter called xplaneh, whose CAD

file is shown in Figure 7a, is chosen. We carried out the EM backscattering simulation for the VV polarization

from the model at the center frequency of 5 GHz. The backscattered electric field is collected for the nose-on

case, within the frequency bandwidth of 500 MHz with 4.17 MHz frequency increments, such that a total of 120

discrete frequency points exist within the specified bandwidth. The RCS of the fighter is plotted in Figure 7b

for the simulated frequencies. Next, we get the time domain backscattered response of the fighter by taking the

inverse Fourier transform of these frequency-diverse data. Next, the range profile of the fighter can be readily

constructed using the time-to-range transformation formula of r = c · t . Here, c corresponds to the speed of

light, and r and t are the range and time variables, respectively. The resultant range profile of the target from

the nose-on case is given in Figure 7c, where the key hot points on the target can be easily deduced. As seen

1263
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from Figure 7c, the dominant scattering centers occur around the nose of the fighter. We also see significant

backscattering energy from the wings, missiles, landing gear, and tails of the target.

Monostatic RCS of xplaneh over the azimuth angles is also calculated with our simulator to observe the

RCS variation for different azimuth angles. While the monostatic elevation angle is set to 0◦ , the simulation

is carried out at 9 GHz with 1◦ azimuthal angular increments. Next, the calculated monostatic RCS variation

(in dBsm) over the azimuth angles is plotted in Figure 8.

 20 m 

5.75 m

14.23 m

 

Figure 7. a) CAD file of a xplaneh, b) monostatic RCS for VV polarization from the nose-on case.
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Figure 7. c) corresponding range profile.

Figure 8. Monostatic RCS variation for the VV polarization (in dBsm) of xplaneh over the azimuth angles at 9 GHz.
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Since pRediCS can calculate the RCS values from large and complex structures, we can also utilize it to

construct the ISAR images of complex targets by calculating the EM scattering for multiple frequencies and

multiple look angles. For this purpose, we compute the backscattered electric field for the VV polarization from

xplaneh for the azimuth angles, ranging from 43.1◦ to 46.85◦ , for a total of 64 stepped frequencies. While the

elevation look angle is kept at 60◦ , the frequency of the EM wave is altered between 5.9 GHz and 6.1 GHz,

for a total of 32 distinct frequencies. Therefore, a total of 32 by 64 multifrequency multiaspect backscattered

field data are collected with our simulation simulator. Using the conventional ISAR processing that was already

given in [32] and [33], the ISAR image of xplaneh is gathered and shown in Figure 9, where it is seen that the

scattering centers on the nose, landing gear, and missiles appear to be dominant for the selected look angle and

the frequencies. As is obvious from Figure 9, pRediCS has the ability to calculate and plot the ISAR images of

electrically large and complex targets.

Figure 9. Monostatic ISAR image for the VV polarization of xplaneh at 45◦ from the nose-on.

4. Conclusion

In this work, we present a new simulator for the fast computation of EM scattering from electrically large and

complex-shaped objects. The simulation of benchmark objects with our simulator demonstrated a very good

match with the analytical/measured results from the literature. Therefore, the accuracy of our simulator for

the RCS calculation was first validated with these reference results. Next, the prediction of RCS from a large

and complex target was presented.

The Table lists the computation time values of the simulated structures using the FEKO simulator and

those of pRediCS are provided for comparison. The simulations were run on a PC with a 1.73-GHz processor

and 16 GB of RAM. As seen from the Table, our simulator can calculate simple structures such as plate,

1266
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dihedral, and trihedral on the order of only a few seconds. Although the simulation time for electrically large

and complex targets increases, the total computation times are still on the order of minutes or hours, depending

on the electrical size and complexity of the object.

Table. Computation time values for the simulated structures.

Target
Computation is
done for.

Total computation time
for single CPU
pRediCS FEKO

P late (12λ× 12λ) 181 angles 8 s 380 s

Dihedral
(each plate is 5.6λ× 5.6λ)

361 angles 10 s 109 s

T riangular trihedral
(edge is 40 cm; frequencies
from 1 to 9 GHz)

33 frequencies 4 s 782 h
55 min

Cone-sphere
(length: 20.4λ)

181 angles 9 min 108 h
20 min

(size: ∼ (316λ to 350λ)
×(225λ to 249λ))

120 frequencies 15 min N/A

Xplaneh
(size: ∼ 600λ× 427λ)

361 angles 38 h 50 min N/A

(size: ∼ (393λ to 406λ)
×(280λ to 289λ))

32 frequencies
×64 angles

11 h
16 min

N/A

For the time being, the presented simulator can calculate only the scattering, not the diffracted field from

PECs. In the near future, we plan to improve our simulator such that it may predict RCS from dielectric- or

magnetic-coated structures as well. Furthermore, diffracted field contribution is also planned to be added to

the total scattered field to have more accurate simulation of the scattered field, and we are planning to speed

up the code by employing a message passing interface routine. Therefore, parallel processing of the code will be

done in the near future, such that the code could be run on GPU-based machines for a much shorter simulation

time.
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[32] Özdemir C. Synthetic aperture radar. In: Chang K, editor. The Wiley Encyclopedia of RF and Microwave Engi-

neering. New York, NY, USA: Wiley-Interscience, 2005. pp. 5067–5080.

[33] Yılmaz B. Calculation of electromagnetic scattering from large and complex targets and obtaining their inverse

synthetic aperture radar images. MSc, Mersin University, Mersin, Turkey, 2008.

1269

http://dx.doi.org/10.1109/74.210840
http://dx.doi.org/10.1109/74.210840
http://dx.doi.org/10.1109/5.32071
http://dx.doi.org/10.1109/5.32071

	Introduction
	Scattered field calculation using the GO-PO theory
	Launching rays and tracing the field via GO 
	Calculating the scattered field via PO 

	Introducing the pRediCS EM simulator
	Validation with benchmark objects
	Rectangular plate
	Dihedral corner reflector
	Triangular trihedral corner reflector
	Cone-sphere

	Simulation of a large and complex target

	Conclusion

