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Abstract:This paper presents a design method for a sliding mode controller with the contribution of a fractional order

differential operator. The conventional sliding mode controller has been widely studied in different control applications.

This paper proposes that the fractional order differential operator enlarges the output span of the classical sliding mode

controller to obtain a better-fitting control signal for enhanced control performance. The sliding surface and the equivalent

control law are modified with the addition of a fractional differential operator and a conventional one. The proposed

sliding mode controller with fractional order differentiation is applied to the unstable time delay systems successfully.

Illustrative examples are presented to demonstrate the performance of the proposed design method.
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1. Introduction

Fractional order systems and fractional order control structures are a promising research area in engineering

problems. Recent research efforts have been focused on developing analysis and design procedures to extend

classical control methods with fractional order integro-differential operators [1]. The first discussion of a frac-

tional order derivative can be traced back to the 1690s, when L’Hospital wrote to Leibniz speculating about

whether the order of a derivative could become a noninteger [2]. In the last several decades, with a better theo-

retical understanding of fractional calculus and subsequent developments in computing technologies, fractional

calculus has begun to be widely utilized in various science and engineering areas [3]. The implementations of

fractional order integro-differential operators have brought new horizons in control engineering. Consequently,

fractional order integro-differential operators have been used in many control system applications in recent

studies [4–7].

Some recent research efforts appear to use fractional integro-differential operators in sliding mode control

(SMC) structures for different control systems’ design applications. The conventional SMC structure is one of

the well-known topics in control theory. The idea of using variable structure control for the control of a nonlinear

system was proposed by Emelyanov [8]. SMC is a variable structure control system that increases the robustness

of the system and preserves stability under parameter fluctuations. Much research has been conducted for the

application of conventional SMC in recent studies. For instance, SMC adaptation and chattering reduction

techniques for DC motor drives were proposed in [9]. A sliding mode observer was used in conjunction with

a disturbance observer to predict the states of a slave system in [10]. SMC design methodology for a class of
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uncertain switched hybrid systems with unmeasurable states was given in [11]. The research efforts on combining

the SMC structure with fractional order differentiation (FOD) bring a new perspective to this control technique.

Vinagre and Calderon proposed a controller with the fractional order control law and sliding surface for the

double integrator structure [12]. Valério and Costa proposed a fractional order SMC (FOSMC) structure for

liquid flow in a 3-tank system [13]. Huang et al. used FOSMC for synchronous motor position control [14].

Batalov et al. applied this structure to a 3 degrees of freedom robot system driven by DC motors [15]. Dadras

and Momeni controlled a nonlinear uncertain system via FOSMC [16]. Efe proposed the FOSMC with the

reaching law approach in [17]. Consequently, the modification of a sliding mode controller for an unstable time

delay system, in which the span of control output is enlarged with the fractional order differential operator, will

contribute to research in this field.

A time delay is unavoidable in the practice of real control systems due to measurement lags, analysis

times, computation lags, etc. [18]. A control system designer may sometimes neglect a relatively small delay

in which the system still satisfies the design requirements, but a time delay frequently causes instability in real

applications and it cannot be underestimated. Therefore, the stability problems of this kind of control system

have been a main research subject for many researchers in the recent decades [19]. Additionally, when a plant

has an unstable pole, the effects of time delay have to be considered along with the impact of the unstable pole

on the stability of the system [20]. Thus, the SMC is an appropriate technique to overcome this undesirable

situation. There have been several examples to overcome the stabilization problem with this controller, such as

the combined approach of predictive structures with SMC for some long time delay systems investigated in [21]

and the SMC for unstable first order plus delay time processes designed in [22].

This paper proposes to use the fractional order differential operator together with the integer order one

to compute the sliding surface and equivalent control law of the conventional SMC. The proposed method

is illustrated for unstable systems with time delay. It is clear from the simulation results that the proposed

structure of the fractional differentiation enhances the control efforts of the conventional SMC, which results in

better control performance.

The paper is organized as follows. Section 2 presents the design of the sliding mode controller with FOD

(SMC-FOD). In Section 3, simulation results are presented demonstrating the control performance for unstable

systems. Section 4 is devoted to the conclusions.

2. Sliding mode controller with FOD

2.1. Motivation

A conventional SMC, which is derived from variable structure control, is widely used to control nonlinear systems

and preserve stability under parameter fluctuations [23]. Additionally, this control structure is independent of

model uncertainties and disturbances. The main objective of SMC is to determine the controller signal that

forces the system’s error along a sliding surface. Thus, the SMC approach provides stable and robust control

performance, despite the effect of external disturbances and model uncertainties, by staying confined to the

sliding surface. This robust controller structure involves 2 steps. The first step is the selection of a stable plane,

called the switching function or sliding surface S(t), and the second step is to determine the control law for

reaching and staying on the sliding surface. Consider the following negative unity feedback system given in

Figure 1.
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YEROĞLU and KAVURAN/Turk J Elec Eng & Comp Sci

Figure 1. Block diagram of the closed-loop system.

The sliding surface S(t) can be defined as follows [24]:

S(x̄; t) =

(
d

dt
+ λ

)n − 1

e(t), (1)

where e(t) = xd(t)−x(t) is the tracking error of state variable x(t), xd(t) is the desired trajectory, λ represents

the time constant, and n is the order of the system to be controlled. As seen from Eq. (1), the order of the

switching function is less than the order of the plant. The control objective is to keep the system on the sliding

surface as given in Eq. (1). The trajectory of the tracking error reaches the switching line, S(t) = 0, and then

slides along it towards the origin. In order to determine the control law, the Lyapunov function approach is

defined as follows:

V (S) =
1

2
S2(t). (2)

The system reaches S(t) = 0 in finite time if the above Lyapunov function satisfies

1

2

d

dt
S2(t) ≤ −η |S(t)| , (3)

for positive constant η . Eq. (3) gives a condition to reach S(t) = 0, which is called the reaching law. Using

Eq. (3), one can obtain the following equation to force e(t) to be 0 at all times:

SṠ ≤ 0. (4)

In the conventional SMC law u(t) consists of 2 parts. The first is a discontinuous or corrective control law,

which compensates for the deviations to reach the sliding surface. The second is a continuous or equivalent

control law, which makes the derivative of the sliding surface equal to 0 to stay on the sliding surface. The

control law is obtained as follows:
u(t) = ueq(t) + ud(t). (5)

This paper proposes that the differentiation in the sliding surface S(x̄; t) in Eq. (1) can be used together with

the fractional order differential operator to enhance the effect of the differentiation. The developments in the

solution methods for the fractional order calculus enable us to use the FOD easily. Fractional calculus can be

considered to be the generalization of the integration and differentiation of the integer order expressions to the

noninteger order one. The most frequently used integro-differential definitions are those given by Grünwald

and Letnikov, Riemann and Liouville, and Caputo. The general form of a fractional order integro-differential

equation can be defined as follows [25,26]:

aD
α
t =


dα

dtα Re(α) > 0
1 Re(α) = 0
t∫
a

(dτ)−α Re(α) < 0

, (6)
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where α is the order of the differentiation or integration. The most general formula for the Laplace transfor-

mations of the integro-differential expressions can be given as follows:

L

{
dmf(t)

dtm

}
= smL {f(t)} −

n − 1∑
k = 0

sk
[
dm − 1 − kf(t)

dtm − 1 − k

]
t = 0

, (7)

where n is an integer number and m satisfies n− 1 < m < n [26].

The motivation of the present paper comes from understanding the possibility of improving the control

effort of the sliding mode controller structure using fractional differentiation for computation of control law and

sliding surface. There are some fractional order sliding mode controller methods in recent studies. However,

this study proposes to use small deviations in FOD to enlarge the span of the control effort against the output

disturbances.

2.2. Problem formulation

Let us denote (d/dt) = D in Eq. (1) for the nth order system as follows:

S(x̄; t) = (D + λ)
n − 1

e(t). (8)

The sliding surface S(t) in Eq. (8) can be written using a binomial expansion as:

S(x̄; t) =

[
i∑

k = 0

(
i
k

)
[D]

k
λi − k

]
e(t), (9)

where i = n− 1, k = 0, 1, · · ·n− 1.

Remark 1: The fractional differentiation Dα enlarges the effect of differentiation on the sliding surface

in Eq. (9) as follows:

S(x̄; t) =

[
i∑

k = 0

(
i
k

)[
(D)

k
D± αk

]
λi − k

]
e(t). (10)

2.3. Controller design

Consider the following transfer function:

G(s) =
K

bnsn + bn − 1sn − 1 + . . .+ b1s + b0
. (11)

The sliding surface and derivative of the sliding surface with the fractional order differential operator can be

obtained for this transfer function using Remark 1 as follows:

S(t) = nkD
k ± αke(t) + nk − 1D

k − 1 ± αk − 1e(t) + · · · + n1D
1 ± α1e(t) + n0D

0 ± α0e(t), (12)

Ṡ(t) = nkD
k + 1 ± αke(t) + nk − 1D

k ± αk − 1e(t) + · · · + n1D
2 ± α1e(t) + n0D

1 ± α0e(t), (13)

where nk, nk − 1, · · ·n1, n0 are the coefficients obtained from the binomial expansion of Eq. (10). One can

compute from the binomial expansion that nk = 1. αk, αk − 1, · · ·α1, α0 are real numbers in the interval
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YEROĞLU and KAVURAN/Turk J Elec Eng & Comp Sci

0 < αk < 1. Eq. (3) states that the system reaches S(t) = 0 in finite time. Consider Ṡ(t) = 0 in Eq. (13) to

define the equivalent control law as follows:

Dk + 1D± αke(t) + nk − 1D
k ± αk − 1e(t) + nk − 2D

k − 1 ± αk − 2e(t) + · · · · · · + n0D
1 ± α0e(t) = 0, (14)

Dk + 1e(t) = − nk − 1D
k ± βk − 1e(t) − nk − 2D

k − 1 ± βk − 2e(t) − · · · · · · − n0D
1 ± β0e(t), (15)

where βk − 1, βk − 2, · · · , β0 are the fractional orders of derivatives that are obtained by dividing D±αk . One

can obtain the following equation, using Eq. (11) in Figure 1, and define it in the time domain, while the initial

conditions are assumed to be 0:

u(t) = bmDk + 1x(t) + bm − 1D
kx(t) + · · · · · · + b1D

1x(t) + b0x(t), (16)

where u(t) is the control signal, n is the order of the system for k + 1 = n , and bm = bn/K .

The equivalent control law can be determined as follows using Eq. (15) in Eq. (16):

ueq(t) = bm(− nk−1D
k ± βk − 1x(t) − nk − 2D

k − 1 ± βk − 2x(t) − · · · · · · − n0D
1 ± β0x(t)) +

bm − 1D
kx(t) + bm − 2D

k − 1x(t) + · · · · · · + b1D
1x(t) + b0x(t)

, (17)

for e(t) = xd(t) − x(t) and xd(t) = 0. In order to satisfy the reaching condition under such uncertainties

and disturbances, a term, which is discontinuous across the line S = 0, is added to ueq(t). Next, the total

control law becomes as follows:

u(t) = bm(− nk−1D
k ± βk − 1x(t) − nk − 2D

k − 1 ± βk − 2x(t) − · · · · · · − n0D
1 ± β0x(t)) +

bm − 1D
kx(t) + bm − 2D

k − 1x(t) + · · · · · · + b1D
1x(t) + b0x(t) − Kdsign(S(t))

, (18)

where the sign function is defined as

sign(S(t)) =

{
1 S(t) > 0
−1 S(t) < 0

. (19)

One can obtain the block diagram in Figure 2 for the SMC-FOD structure using Eq. (18).

It is important to select the parameters Kd and λ , which should satisfy the reaching condition in

the presence of model uncertainties and external disturbances. It is impossible to achieve instantaneous high

switching because of the physical limitations that cause chattering. Chattering is a high-frequency oscillation

that is undesirable in practice because of its high control activity [24]. There are several methods to overcome

the problem of chattering. In this paper, the signum function is replaced with the saturation function, which

can be written as follows:

sat(S(t)) =

{
sign(S(t)) |S(t)| > ϕ
S(t)
ϕ |S(t)| ≤ ϕ

, (20)

where ϕ is the boundary layer. The amplitude of chattering is directly proportional to parameter Kd .

Additionally, the performance of the system is sensitive to bandwidth λ .
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Figure 2. Block diagram of the proposed SMC-FOD.

2.4. Stability analysis of SMC-FOD with the saturation function

Some new results on the fractional SMC approach use sign and saturation functions for stability analysis [27]. In

this manuscript, the saturation function is used for the stability analysis of the proposed SMC-FOD. Consider

the transfer function in Eq. (11), derivative of the sliding surface in Eq. (13), and total fractional control law

in Eq. (18). One can use the saturation function in the control law in Eq. (18) as follows:

u(t) = bm(− nk−1D
k ± βk − 1x(t) − nk − 2D

k − 1 ± βk − 2x(t) − · · · · · · − n0D
1 ± β0x(t)) +

bm − 1D
kx(t) + bm − 2D

k − 1x(t) + · · · · · · + b1D
1x(t) + b0x(t) − Kdsat(S(t))

. (21)
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Substituting Eqs. (21) and (11) into Eq. (13), we have:

Ṡ(t) = nkD
±αk

[
(−nk−1D

k±βk−1x(t)− nk−2D
k−1±βk−2x(t)− · · · − n0D

1±β0x(t))− Kd

bm
sat(S(t))

]
+nk−1D

k±αk−1x(t) + · · ·+ n1D
2±α1x(t) + n0D

1±α0x(t)
, (22)

where βk−1 = αk−1 ∓ αk and nk= 1, and Eq. (22) can be rewritten as follows:

Ṡ(t) =
[
− nk−1D

k ± αk − 1x(t) − nk − 2D
k−1 ± αk − 2x(t) − · · · − n0D

1 ± α0x(t) − D± αk K
bn
Kdsat(S(t))

]
+ nk − 1D

k ± αk − 1x(t) + · · · + n1D
2 ± α1x(t) + n0D

1 ± α0x(t)
.

(23)

After the simplifications, the following equation can be obtained:

Ṡ(t) = D± αk

[
− K

bn
Kdsat(S(t))

]
. (24)

Outside of the boundary layer, if |S(t)| > ϕ , then sat(S(t)) = sign(S(t)) and we have the derivative of the

Lyapunov function as follows:

V̇ = D± αk

[
− K

bn
Kdsign(S(t))

]
S(t) < 0. (25)

Therefore, the system is stable on the condition that K
bn
Kd > 0.

Inside the boundary layer, |S(t)| ≤ ϕ and sat(S(t)) = S(t)/ϕ . The derivative of the Lyapunov function

is written as follows:

V̇ = D± αk

[
− K

bn
Kd

S(t)

ϕ

]
S(t) < 0. (26)

It is clear that V > 0 and V̇ < 0 for K
bn
Kd > 0. Therefore, the system with the SMC-FOD controller in the

presence of the saturation function is stable. In order to improve the stability of the system, the effect of the

fractional order integro-differential operator D± αk must be considered. A proper value of the fractional order

of the differentiation αk provides better control performance.

2.5. Application of the proposed SMC-FOD to unstable time delay systems

This paper is dedicated to time delay systems with one or more unstable poles. Both the unstable poles and

time delay yield more complicated control processes and instability. Consequently, a suitable controller design

for the unstable plant with time delay will be important. In this section, the stability problem of the transfer

function with an unstable pole and time delay was studied. The unstable plant transfer function can be modeled

as follows:

G(s) =
Ke − ts

(τns ∓ an)(τn−1s ∓ an−1) · · · (τ1s ∓ a1)
, (27)

where K , t , and τn are the gain, time delay, and time constant of the model, respectively. an, an − 1, · · · , a1 are

real numbers. A Padé approximation of the time delay for the SMC design is widely used in the literature. For

example, a single-input single-output delay system tracking problem was considered in [28], with a second order

SMC and Padé approximation. In [29], a higher order Padé approximation was used to construct a model of a
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transformed system without a time delayed output. In this paper, a Padé approximation is used to approximate

the exponential expression by a polynomial function for these systems. Hence, the 0/1 Padé approximation is

used to simplify the processes dynamics. According to the 0/1 Padé approximation for ex ,

exp0/1(x) =
1

1− x
. (28)

Next, the time delay is defined as [30] follows:

e − ts =
1

ts + 1
. (29)

Thus, Eq. (27) becomes as follows:

G(s) =
K

(τns ∓ an)(τn−1s ∓ an−1) · · · (τ1s ∓ a1)(ts + 1)
. (30)

This transfer function can be written in the form of Eq. (11). Next, the SMC-FOD can be designed for an

unstable time delay system, as given in Section 2.3.

3. Numerical examples and simulation results

In this section, the proposed fractional sliding mode controller is applied to unstable time delay systems in

illustrative examples to demonstrate the performance of the control effort. Different processes under the effect

of output disturbances were controlled by changing the order of the fractional differentiation operator Dα . The

MATLAB/Simulink model of the SMC-FOD in Figure 2 is used to simulate the controller and the system. The

sampling frequency is selected as 2 kHz. In the simulation, fourth order rational approximations of the fractional

differentiation operator, sα, (0 < α < 1), are obtained using the continuous fraction expansion (CFE) method,

which is one of the most important approximations for fractional order systems. The CFE method can be

expressed in the following form [31]:

(1 + x)α =
1

1−
αx

1 +

(1 + α)x

2 +

(1− α)x

3 +

(2 + α)x

2 +

(2− α)x

5 + ...
. (31)

In Eq. (31), x = s− 1 is used for the computation of sα [32].

Example 1 Consider a first order unstable plant with time delay, which is also given in [22], as follows:

G1(s) =
1

s − 1
e − 0.8s. (32)

This transfer function can be rewritten using Eq. (29) as follows:

G1(s) =
1

(s − 1)(0.8s + 1)
=

1

0.8s2 + 0.2s − 1
. (33)

One can compute the sliding surface and equivalent control law using Remark 1 as follows:

S(t) = D1 ± α1e(t) + λD0 ± α0e(t), (34)
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ueq(t) = 0.8 ( − λD1 ± β0x(t)) + 0.2 (D1x(t))− x(t), (35)

and the total control law is obtained as:

u(t) = 0.8( − λD1 ± β0x(t)) + 0.2(D1x(t)) − x(t) − Kdsign(S(t)). (36)

Different values of differentiation orders α0 , α1 , and β0 in Eqs. (34)–(36) are used in the simulation models

in Figure 2 to observe the effect of the order of fractional differentiation on the system performance. Figure

3 presents the step responses of the system in Eq. (33), controlled with SMC-FOD, to illustrate the effect

of the parameters. The reference input is set to 1 and the saturation function is adopted in the control law.

Figures 3a–3c present the effects of α0 , α1 , and β0 , respectively, while the other parameters remain 0. The

best response to the SMC-FOD is obtained at values of α0 = − 0.01, α1 = − 0.05, and β0 = 0.1. The

proposed SMC-FOD method becomes a conventional SMC (CSMC) for the values of α0 = 0, α1 = 0, and

β0 = 0.
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Figure 3. Step responses with different orders of differentiation: (a) step responses for different α0 values, (b) step

responses for different α1 values, (c) step responses for different β0 values.
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Figures 4a and 4b present the step responses and control signal, respectively, for the CSMC and SMC-

FOD. One can conclude from Figure 4 that the SMC-FOD provides better performance than the CSMC for the

values of α0 = − 0.41, α1 = − 0.4, and β0 = 0.2. The control signal that belongs to the proposed controller

is appropriate. It is clear from Figure 5 that the control effort of the SMC-FOD with the same parameters

compensates for the disturbance better than the CSMC.
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Figure 4. Step responses (a) and control signals (b) for α0 = −0.41, α1 = −0.4, β0 = 0.2.
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Figure 5. Step responses with output disturbance (noise) of 0.2 during 10–20 s (α0 = −0.41, α1 = −0.4, β0 = 0.2).

In other words, the performance of the proposed SMC-FOD method is more robust than that of the

CSMC method. The quality of the system responses can also be compared using the following integral absolute

error (IAE) function.

IAE =

∫
|e| dt (37)

The IAE is computed as ∆e = 0.6057 for the CSMC and ∆e = 0.5172 for the SMC-FOD, respectively. It can

be seen that the performance of the SMC-FOD is better than that of the CSMC.
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Example 2 Consider the following second order unstable plant with a time delay:

G2(s) =
1

(0.5s + 1)(2s − 1)
e− 0.5s. (38)

Eq. (38) can be rewritten using Eq. (29) in the form of Eq. (11), as follows:

G2(s) =
1

0.5s3 + 1.75s2 + s − 1
. (39)

One can compute the sliding surface and equivalent control law using Remark 1 as follows:

S(t) = D2 ± α2e(t) + 2λD1 ± α1e(t) + λ2D0 ± α0e(t), (40)

ueq(t) = 0.5( − 2λD2 ± β1x(t) − λ2D1 ± β0x(t)) + 0.25D2x(t) − 2D1x(t) − x(t), (41)

and the total control law is obtained as:

u(t) = 0.5( − 2λD2 ± β1x(t) − λ2D1 ± β0x(t)) +
0.25D2x(t) − 2D1x(t) − x(t) − Kdsign(S(t))

. (42)

Different values of differentiation orders α0 , α1 , α2 , β0 , and β1 in Eqs. (40)–(42) are used in the block

diagram of the SMC-FOD in Figure 2 to observe the effect of the order of fractional differentiation on the

system performance. Figure 6 presents the step responses of the transfer function in Eq. (39) to illustrate the

effect of the parameters in the SMC-FOD separately. Figures 6a–6e present the effects of α0 , α1 , α2 , β0 , and

β1 , respectively, while the other fractional order parameters remain 0. The best response to the SMC-FOD is

obtained at values of α0 = − 0.01, α1 = − 0.01, and α2 = 0.1 in Figures 6a–6c, respectively. The β

parameters (especially β1) in Figures 6d and 6e usually contribute in the presence of disturbing effects.

Figure 7 presents the control performance of the CSMC and SMC-FOD with parameters of α0 = − 0.01,

α1 = 0, α2 = 0.04,β0 = 0.7, and β1 = 0.6. One can see that the SMC-FOD compensates for the disturbance

better than the CSMC. Additionally, the IAE is computed as ∆e = 1.1420 for the CSMC and ∆e = 1.0082 for

the SMC-FOD. It can be seen that the performance of the SMC-FOD is better than that of the CSMC.

Example 3 Consider a third order unstable plant with a time delay as follows:

G3(s) =
1

(s − 1)(0.2s + 1)(0.3s + 1)
e− 0.1s, (43)

which was also given in [20]. This transfer function can be rewritten using Eq. (29) as:

G3(s) =
1

0.006s4 + 0.104s3 + 0.49s2 + 0.4s − 1
. (44)

According to the conditions given by Remark 1, the equations for the proposed SMC-FOD controller for the

above fourth order transfer function are obtained as follows:

S(t) = D3 ± α3e(t) + 3λD2 ± α2e(t) + 3λ2D1 ± α1e(t) + λ3D0 ± α0e(t), (45)

ueq(t) = 0.006( − 3λD3 ± β2x(t) − 3λ2D2 ± β1x(t) − λ3D1 ± β0x(t)) +
0.104D3x(t) + 0.49D2x(t) + 0.4D1x(t) − x(t)

, (46)
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Figure 6. Step responses with different orders of differentiation: (a) step responses for different α0 values, (b) step

responses for different α1 values, (c) step responses for different α2 values, (d) step responses for different β0 values,

(e) step responses for different β1 values.
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and the total control law is obtained as:

u(t) = 0.006( − 3λD3 ± β2x(t) − 3λ2D2 ± β1x(t) − λ3D1 ± β0x(t)) +
0.104D3x(t) + 0.49D2x(t) + 0.4D1x(t) − x(t) − Kdsign(S(t))

. (47)
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Figure 7. Step responses with output disturbance (noise) of 0.2 during 10-20 s.

Figure 8 presents the step responses of the transfer function in Eq. (43) to illustrate the effect of parameters

α0 , α1 , α2 , α3 , β0 , β1 , and β2 in the SMC-FOD separately. Figures 8a–8d present the effects of α0 , α1 , α2 ,

and α3 , and Figures 8e–8g present the effects of β0 , β1 , and β2 separately, while the other parameters remain

0. The best response to the SMC-FOD is obtained at values of α0 = − 0.02, α1 = − 0.002, α2 = − 0.05 ,

α3 = − 0.1, β0 = − 0.1, β1 = 0.1, and β2 = 0.2, respectively, in Figure 8. It is clear that the variation

of the β parameters is more effective to compensate for the disturbances than the parameters of α . One can see
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Figure 8. Step responses with different orders of differentiation: (a) step responses for different α0 values, (b) step

responses for different α1 values.
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Figure 8. Step responses with different orders of differentiation: (c) step responses for different α2 values, (d) step

responses for different α3 values, (e) step responses for different β0 values, (f) step responses for different β1 values, (g)

step responses for different β2 values.
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YEROĞLU and KAVURAN/Turk J Elec Eng & Comp Sci

from Figure 9 that when the output disturbance is added to the system at t = 10 s, the variation of the

amplitude of the disturbance by the SMC-FOD method with the α0 = − 0.01, α1 = − 0.02, α2 = − 0.1,

α3 = − 0.5, β0 = 0.8, β1 = 0.8, and β2 = 0.1 parameters is smaller than that of the CSMC method. One can

also compute the IAE as ∆e = 1.0316 for the CSMC and ∆e = 0.8970 for the SMC-FOD. It can be seen that

the performance of the SMC-FOD is better than that of the CSMC.
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Figure 9. Step responses with output disturbance (noise) of 0.2 during 10-20 s.

4. Conclusion

This paper proposes to use FOD with the conventional SMC method to improve control performance. It is

shown that the proposed SMC-FOD and CSMC are efficient to compensate for the effect of disturbances.

However, the robustness of the system is much better with the proposed SMC-FOD method than with the

conventional one with small dynamic tracking errors. It is clear from the simulation results that the SMC-FOD

structure enlarges the span of the control efforts of the CSMC, which results in better control performance. The

performance of the proposed method is demonstrated via the stability problem of unstable systems with time

delay under output disturbances. The authors aim to design an adaptive SMC-FOD structure with optimized

parameters to achieve better stability performance for more complicated plants in future works.
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[7] C. Yeroğlu, N. Tan, “Classical controller design techniques for fractional order case”, ISA Transactions, Vol. 50, pp.

461–472, 2011.

[8] S.V. Emelyanov, Variable Structure Control Systems, Moscow, USSR, Nauka, 1967.

[9] M. Dal, R. Teodorescu, “Sliding mode controller gain adaptation and chattering reduction techniques for DSP-based

PM DC motor drives”, Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 19, pp. 531–549, 2011.
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