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Abstract: There are many cases in real inventory systems where more than one objective must be optimized. The

main purpose of this research is to develop a multiobjective joint replenishment problem (JRP), where one objective

is the minimization of the total inventory investment and another is the minimization of the total inventory ordering

and holding costs. To solve the suggested model, 3 algorithms are proposed. In the first algorithm, the existing RAND

method, called the best heuristic for solving the JRP, is modified and a new heuristic algorithm is developed to be

applicable to the JRP with 2 objectives. The second algorithm is a multiobjective genetic algorithm that has shown

good performance for solving the JRP. Finally, a third algorithm is developed, using a combination of the 2 previous

ones. The performances of these algorithms are then compared. Running the programs shows good performance in

solving the 9200 randomly produced problems.
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1. Introduction

The main objective of most inventory models is the minimization of the total cost. In multiproduct inventory

problems, the total cost consists of the set up or ordering cost and the holding cost. The joint replenishment

problem (JRP) is a multiitem inventory model in which products are ordered from the same supplier, use the

same transportation devices, or are placed in different packages from a batch production [1].

The cost of placing an order to a supplier consists of 2 main components:

1. The major ordering cost, independent of the number of different products in the order, which is carried

out when each order is placed.

2. The minor ordering cost, which depends on the number of different products in the order, where a different

number for each product is used.

Because of the major ordering cost, using a group replenishment or group ordering may lead to substantial cost

savings [2,3]. Arkin [4] showed that the JRP is a nondeterministic polynomial-time hard (NP-hard) problem.

There are 2 major strategies for solving the JRP: a direct grouping strategy (DGS) and an indirect grouping

strategy (IGS). Under the DGS, products are partitioned into a predetermined number of sets; the products

within each set have the same cycle time. In the IGS, replenishment is made at regular time intervals, named
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the basic cycle time. Each product has a replenishment quantity sufficient to last for exactly an integer multiple

of the basic cycle time. Products within each group have the same integer multipliers [5].

In this research, a special case of the classic JRP is developed. The proposed model consists of 2 objective

functions. Most inventory models aggregate several cost concepts and other requirements such as the service

level into a single objective, but in the multiobjective inventory model, the decision maker (DM) tries to

optimize 2 or more objectives simultaneously with or without constraint(s) [6,7]. Starr and Miller [8] proposed

an inventory model with 2 minimization objectives: cycle stock investment and the workload. Gardner and

Dannenbring [9] used minimization of the workload, minimization of the inventory investment, and maximization

of customer service as 3 objectives of their inventory model. Padmanabhan and Vart [10] used minimization

of the wastage cost and maximization of the profit as 2 objectives. Wee et al. [7] solved an inventory model

with 2 minimization objectives: the expected annual total relevant cost and expected annual frequency of sock

out. Tsou [6] formulated an inventory model consisting of minimization of the expected annual total cost of the

relevant expected annual frequency of stock-out occasions and expected annual number of items stocked out.

Xu et al. [11,12] used maximization of the total average profit and minimization of the total average wastage

cost as 2 objectives in their inventory models. Kang and Lee [1] developed an inventory model with 3 objectives:

minimization of the total cost, maximization of the yield rate, and fixing of the replenishments to a desired

number. The model developed in this paper optimizes 2 objective functions, which were introduced in Section 1.

Sections 2 and 3 describe the main concepts of the RAND algorithm and multiobjective optimization problems,

respectively. Section 4 states the developed model (bi-objective joint replenishment model). Section 5 describes

3 new algorithms for solving the proposed model, consisting of a modified RAND (M-RAND) algorithm, a

multiobjective genetic algorithm (GA), and a hybrid of the M-RAND and GA (RG). Section 6 states the results

of the computational experiments to compare the performances of the 3 algorithms for some randomly generated

problems. A conclusion of this research follows in Section 7.

2. The RAND algorithm

In the JRP, the order quantity of each item, Q i , and the order cycle time of each item, T i , are 2 replenishment

schedules. Under the IGS strategy, the decision variables are the basic cycle time, T, and an integer number

that states the replenishment schedule of the ith item, k i , such that:

Ti=kiT and Qi=DiTi ∀i = 1 , 2 , . . . , n (1)

Thus, the JRP model is as follows:

min TC (T,Ki,s)= TCH + TCS =
T

2

n∑
i=1

kiDihi+

(
S+

n∑
i=1

si
ki

)
T

(2)

subject to : T ≥ 0 , ki≥ 1 , ki∈ N ∀ i = 1 , 2 , . . . , n (3)

Here, n is the number of items, D i is the demand of the ith item per unit time, h i is the holding cost of the

ith item per unit time, S is the major ordering cost and s i is the minor ordering cost of the ith item, TCH

is the total cost of the inventory holding, and TCS is the total cost of set up or ordering of the inventory.

Silver [13] developed a heuristic algorithm for solving the JRP, which Goyal and Belton [14] and then Kaspi

and Rosenblatt [15] further improved. This new heuristic algorithm was then called the RAND (based on a
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randomly procedure) method. RAND is the most popular heuristic method for solving the JRP. It is based on

computing m equally spaced values of the basic cycle time within its upper and lower bounds obtained from

Eqs. (4) and (5) and then applying Silver’s improved algorithm at each T [2].

Tmax=

[
2

(
S +

n∑
i=1

si

)/
n∑

i=1

Dihi

]1/2
(4)

Tmin =

√
si

hiDi
(5)

• Procedure of the RAND algorithm

Step 1: Compute Tmax and Tmin from Eqs. (4) and (5), respectively.

Step 2: Divide the range [Tmin , Tmax ] into m different equally spaced values of T (T1 , T2 , . . . , T j ,

. . . , Tm ). The value of m is to be decided by the DM.

Set j = 0.

Step 3: Set j = j +1 and r = 1.

Step 4: Set r = r + 1 for Tj and for each product i compute:

k2i,r=
2 siT

2
j

Dihi
(6)

Step 5: Set r = r + 1 for T j and for each product i, find k∗i (r) for each i, where:

k∗i (r) = L if L (L− 1) < k2i (r) ≤ L (L+ 1) (7)

Step 6: Compute a new cycle time Tj according to:

T j=

[(
S +

n∑
i=1

Si/k∗i (r)

)/
n∑

i=1

Dihik
∗
i (r)

]1/2
(8)

Step 7: If r = 1 or k∗i (r) ̸= k∗i (r − 1 ) for any i, then go to step 4; otherwise, compute: TC (T,Ki,s) for

(Tj , k
∗
1 (r) , . . . , k

∗
n (r)) (from Eq. (2)).

Step 8: If j = m, then select (Tj , k
∗
1 (r) , . . . , k

∗
n (r)) with the minimum TC (T,Ki,s) (from Eq. (2));

otherwise, go to step 3.

3. Multiobjective optimization problems

Multiobjective optimization problems usually belong to complex and nonlinear systems in real engineering

cases and contain several objectives that require optimization. The goal of these problems is finding a vector

of feasible decision variables to reach a vector of acceptable values for all of the objective functions. For a

multiobjective problem, with several and possibly conflicting objectives, there is usually no single or perfect

optimal solution and a set of Pareto optimal solutions (POSs) must be obtained [16]. A POS is a solution

dominated with no solution in the feasible region. A dominated solution is a solution that performs better
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in at least one objective and equivalently or better in the other objectives. In this research, we assume that

the DM may need a single solution or may want to find a set of POSs. The main goal of a multiobjective

optimization algorithm is to identify the Pareto optimal set. There are 2 general approaches for solving a

multiobjective optimization problem. In the first approach, the preference approach, one POS, instead of

multiple POSs, is found. The classical multiobjective optimization algorithms are based on this approach.

The second general approach is the ideal approach, in which a representative set of POSs must be found.

Evolutionary multiobjective optimization algorithms use this approach. These algorithms can be classified into

3 groups: 1) aggregating function approaches that combine all of the objective functions into a single function,

2) population-based approaches that use an evolutionary algorithm for obtaining POSs, and 3) Pareto-based

approaches that are based on multiobjective evolutionary algorithms and use the Pareto optimality concept in

their selection mechanism [17].

4. Developing a new model

This section introduces the notation and formulation used in our bi-objective JRP model. All of the assumptions,

input parameters, and decision variables are stated.

4.1. Assumptions

The assumptions of the proposed model are similar to those of the classic JRP, as follows:

1. Parameters are known and deterministic.
2. Shortages are not permitted.

3. Quantity discounts are not allowed.

4. The holding cost is linear.

5. The IGS strategy is used.

4.2. Input parameters

i: Index of the items; i = 1, 2, 3, .., n.

D i : The demand rate of item i.

S: The major ordering cost.

s i : The minor ordering cost of the item.

h i : The inventory holding cost of item i per unit time.

c i : The unit cost of item i.

4.3. Decision variables

T: The basic cycle time.

k i : The integer number that decides the replenishment schedule of item i.

4.4. Objective functions

TC: The total cost of ordering and holding of inventory per unit time.

TII: The total inventory investment per unit time.
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4.5. The multiobjective JRP formulation

The 2 objectives of the proposed model are:

1)minimize TC (T ,Ki,s)=TCH+TCS

=
T

2

n∑
i=1

kiDihi+

(
S+

n∑
i=1

si
ki

)
T

(9)

2)minimize TII (T,Ki,s)= T

n∑
i=1

cikiDi (10)

subject to : T ≥ 0 , ki ≥ 1 , ki∈ N ∀ i = 1 , 2 , . . . , n (11)

5. Developing 3 new algorithms for solving the proposed model

5.1. Modifying the RAND algorithm (M-RAND)

To solve the proposed model, according to Eqs. (9) to (11), it is assumed that w1 and w2 are the weights of the

2 objective functions, such that w2 = 1 – w1 . Using the ıp metric method with p = 1, the following objective

function must be optimized:

TCF (T,Ki,s) = w1

(
TCmax − TC

TCmax − TCmin

)
+ w2

(
TIImax − TII

TIImax − TIImin

)
(12)

It is supposed that

w
′

1 =
−w1

TCmax − TCmin
(13)

w
′

2 =
−w2

TIImax − TIImin
(14)

such that TCmaxTCmin , TIImaxTIImin can be obtained from the RAND algorithm.

Thus, the final model is as follows:

minimize TCF
′
(T,Ki,s)= w

′

1 (TC) + w
′

2 (TII)

=
w

′

1T

2

n∑
i=1

kiDihi +

w
′

1

(
S +

n∑
i=1

si
ki

)
T

+ w
′

2T
n∑

i=1

cikiDi (15)

subject to:T ≥ 0 , ki ≥ 1, , ki∈ N ∀ i = 1, 2, . . . , n (16)

For a fixed value of ki (∀ i = 1 , 2 , . . . , n),

∂TCF
′

∂T
= 0, yields:
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T (Ki,s) =

 2w
′

1

(
S +

n∑
i=1

si
ki

)
n∑

i=1

Diki
(
w

′
1hi + 2w

′
2ci
)


1
2

(17)

Since T (Ki,s) is decreasing in (k1k2, . . . , kn) ∈ Nn if it is assumed that ki = 1 ( ∀ i = 1 , 2 , . . . , n), the upper

bound of T is obtained as follows:

Tmax =

 2w
′

1

(
S +

n∑
i=1

si

)
n∑

i=1

Di

(
w

′
1hi + 2w

′
2ci
)


1
2

(18)

On the other hand, for a fixed value of T,

∂TCF
′

∂Ki
= 0 (∀ i = 1 , 2 , . . . , n) , gives:

k2i =
2w

′

1si
T 2(w

′
1hi + 2w

′
2ci)Di

(19)

Thus, we can show that (k1(T ), k2(T ), . . . , kn(T )) ∈ Nn must satisfy:

2w
′

1si
ki(T ) (ki (T ) + 1 )(w

′
1hi + 2 w

′
2ci)Di

≤ T 2 ≤ 2w
′

1si
ki(T ) (ki (T )− 1 )(w

′
1hi + 2w

′
2ci)Di

∀i = 1 , 2 , .., n (20)

If ki = 1( ∀ i = 1 , 2 , . . . , n), Eq. (20) gives the following lower bound of T:

Tmin = [
w

′

1si
(w

′
1hi + 2w

′
2ci)Di

]

1
2

(21)

Using Tmax and Tmin from Eqs. (18) and (21), respectively, we modify the RAND method and develop a new

algorithm for solving the bi-objective JRP. Figure 1 shows the modified RAND algorithm that we call M-RAND

from now on.

It is clear that for obtaining the POSs, we can solve the proposed model many times with different values

of the objective weights using M-RAND and then obtain the POSs.

5.2. Developing a GA

In this section, a multiobjective GA for solving the proposed model is introduced. Two cases are possible, which

are described in the following.
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Stop

yes

j = m 

Select ( , 1
∗( ), … , , ∗ ( )) with minimum TCF'

yes

No

No

 Select m and divide the range [Tmin , Tmax ] into m different 

equally spaced values of T  (T1 , T2 , … , Tj , … , Tm )  

 

j=0 

 

j =  j + 1 and r  = 1

∗( ) =              ( − 1) < 2( ) ≤ ( + 1)
Find ∗( )  for each i , where

Compute a new cycle time for ∗( ) from Eq. (17)

Compute TCF' for ( , 1
∗( ), … , , ∗ ( )) from Eq. (15)

Compute , , ,  from the RAND

Compute 1
′ , 1

′   from Eqs. (13) and (14)

Compute ,  from Eqs. (18) and (21)

Start

r = r + 1, For Tj and each product i compute 2( ) from Eq. (19)

∗( ) ≠  ∗( − 1) 

r =1 or    ∃  ℎ ℎ

Figure 1. The M-RAND algorithm.

5.2.1. Case 1: Obtaining a single optimal solution

In this case, we suppose that the DM needs a single optimal solution instead of the set of POSs and propose

his/her preferences, i.e. the weights of the objective functions. For developing a GA, we use the preference

approach, and we aggregate 2 objective functions into 1 objective and develop a single objective GA. For

designing a GA, some basic components are considered as follows:
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• Variable bounds

As mentioned earlier, under the IGS strategy, decision variables are the basic cycle time (T) and integer

multiplier of the basic cycle time for each product (ki,s). The upper and lower bounds of T can be obtained

from Eqs. (18) and (21). The lower bound of each (ki,s) is obviously ki (min) = 1 (∀ i = 1 , 2 , . . . , n). For

obtaining the upper bound of (ki,s), the individual solution from the economic order quantity formula (Ti (in))

and Tmin can be used [2]:

Ti (in)=

(
2 (S+si)

hi

) 1
2

(22)

ki (max)=

⌈
Ti (in)

Tmin

⌉
(23)

Here, ⌈.⌉ denotes the upper-entire function.

• Representation (solution encoding)

The good representation of a solution is an important aspect of the development of a GA [2]. In our proposed

GA, a chromosome or a solution consists of n genes that represent n integers (ki,s)

• Initial population

The population is introduced using a random number generator, which produces n integer values between

ki (min) and ki (max).

• Fitness value

The fitness value is the same as the final objective function of the model. For evaluating each chromosome in

the population, at first the optimal basic cycle time (T) is determined for each chromosome (k1 ,k2 , . . . , kn)

using Eq. (17), and then the total relevant objective function is computed for a given (T, k1 , k2 , . . . , kn) using

Eq. (15).

In this equation, TCmaxTCmin , TIImax, T IImin are obtained from the running of the GA with separate

fitness functions equal to each of these objective functions.

• Reproduction (selection strategies)

A roulette-wheel selection mechanism is used for selecting individuals for reproduction. In this method, the

probability of the ith chromosome with fitness value TCF
′

i for selection as a parent is
TCF

′
i∑

i

TCF
′
i

.

• Crossover and mutation

Offspring are produced from parents that are selected from the previous generation with random-point crossover.

This operator acts with probability pc . It selects a random number of chromosomes from 2 parents with the

same locations and exchanges them.

After the production of offspring, the mutation operator exchanges each chromosome with relatively low

probability pm . The value of each chromosome changes to a random value between ki (min) and ki (max)
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6. Replacement (survive selection)

After generating new offspring, the roulette-wheel mechanism is used for selecting a fixed number of parents and

offspring for the next generation. This fixed number is equal to a predefined population size. In this mechanism,

solutions with higher fitness functions have a higher chance for selection for the next generation.

• Termination condition

The stopping criterion of the proposed algorithm is when no improvements are obtained in 50 generations.

6.1. Case 2: Obtaining a subset of POSs

In this case, we decide to obtain a subset of POSs. For this purpose, we develop the strength Pareto evolutionary

algorithm (SPEA-II). This algorithm is one of the most powerful types of multiobjective GAs, which use an

external archive to save nondominated solutions obtained so far in the search [18,19]. For developing the SPEA-

II algorithm, we use variable bounds, an initial population, and crossover, mutation, and termination conditions

that are the same as in the first case. The representation and the procedure of this algorithm are as follows:

• Representation

In our proposed SPEA-II, an individual consists of n + 1 genes, among which the first n genes show the values

of K i,s and the last gene represents the basic cycle time (T).

• Procedure of SPEA-II [18,19]

NE : The maximum size of the nondominated archive, E.

NP : The population size.

K: Parameter for density calculation k =
√
NE+NP .

Step 1: Initialization: randomly generate an initial solution P0 and set E0 = ∞ .

Step 2: Fitness assignment: calculate fitness values of individuals in Pt∪Et as follows:

Step 2-1: r (x, t)=
∑

y ∈Pt∪Et

y ≻ x

s(y, t), where s(y,t) is the number of solutions in Pt∪Et dominated by

solution y.

Step 2-2: Calculate the density as m (x, t)=(σk
x +1)

−1
, where σk

x is the distance between solution x

and the k th nearest neighbor.

Step 2-3: Assign a fitness value as f(x,t) = r(x,t) + m(x,t).

Step 3: Environmental selection: copy all nondominated solutions in Pt∪Et to E t+1 . Two cases are

possible:

Case 1: If |Et+1|>NE , then truncate |Et+1| −NE solutions by iteratively removing solutions with the

maximum σk
x distances. Break any tie by examining σl for l = k- 1,. . . , 1 sequentially.

Case 2: If |Et+1| ≤NE , copy the best NE− |Et+1| dominated solutions according to their fitness values

from Pt∪Et to Et+1 .

Step 4: Termination: if the stopping criterion is satisfied, stop and return nondominated solutions

in Et+1 .

1346



YOUSEFI and SADJADI/Turk J Elec Eng & Comp Sci

Step 5: Mating selection: perform binary tournament selection with replacement on Et+1 in order to

fill the mating pool.

Step 6: Variation: apply crossover and mutation operators to the mating pool to create Np offspring

solutions, copy offspring to P t + 1, t = t + 1, and go to step 2.

6.2. Developing an algorithm from the hybrid RAND and GA (RG method)

The results found for various combinatorial optimization problems have shown that the combinations of different

algorithms are very powerful. Thus, the hybrid of the M-RANDmethod as a good heuristic approach and the GA

or SPEA-II as a good metaheuristic approach for solving a multiobjective JRP is used. For this hybridization,

the main algorithm for case 1 is the GA and for case 2 is the SPEA-II, where the main components are the

same as described in Section 5.2, except for the mechanism of generating the initial population.

For generating an initial population with a predefined population size in the GA method, n integer values

between ki (min) and ki (max) should be produced. However, in this hybrid method, at first, the M-RAND

method runs and introduces the best solutions, and then the roulette-wheel mechanism is used for introducing

n random numbers for each individual.

The numbers that exist in the RAND solutions have more chance of selection at this stage. Thus, the

initial solutions with high probability are similar to the optimal RAND solutions.

7. Results and discussion

To test the performances of the proposed algorithms, some problems are randomly generated. Each instance

consists of 6 parameters, summarized in Table 1. Moreover, the parameters of each algorithm are shown in

Table 2 [2]. We coded all of the algorithms in Microsoft Visual Basic 6.5. The performances of the proposed

algorithms are analyzed in 3 parts.

Table 1. Instance parameter values.

Parameter Range
Demand Di [100, 100,000]
Minor ordering cost si [0.5, 5]
Holding cost [0.2, 3]
Number of products 10, 20, 30, 50
Major ordering cost S 5, 10, 15, 20
Cost of item ci 1

Table 2. Parameter values of the algorithms.

Parameter Value Algorithm
Number of spaced values of T(m) 10 M-RAND and RG
Population size 100 GA and SPEA-II and RG
Probability of crossover 0.6 GA and SPEA-II and RG
Probability of mutation 0.02 GA and SPEA-II and RG
Nondominated archive size 12 SPEA-II and RG
w1 (weight of TC) 0.3, 0.7, 0.5, 1 M-RAND, GA, and RG
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7.1. First comparison part

In the first part of the comparisons, we suppose that the DM needs a single optimal solution instead of the set

of POSs and proposes the weights of the objective functions. Thus, in this section, a GA according to case 1 of

Section 5.2 is developed. Next, the performances of the algorithms for obtaining a single optimal solution are

observed and compared. In this section, we compare the results of the 3 algorithms with each other and with

the result of the RAND and GA methods in the literature [2].

For each value of w1 and w2 , 1600 randomly produced problems are solved by the 3 algorithms.

Table 3 shows the results for w1 = 0.7, for instance. In Table 3, for each value of S and n, 100 prob-

lems are solved. Columns Max-i and Avg-i are the maximum and average of improvement, i.e. 100 ×
(Better solution−Theworst solution)

Better solution ), respectively. As shown in Table 3, for example, for n = 20 and S = 5, for

4 problems of 100 randomly produced problems, the GA provides a better solution than the M-RAND and

RG, with an average improvement of 0.13%, and for 74 problems, the RG provides a better solution than the

M-RAND and GA, with an average improvement of 0.16%. Moreover, for 22 problems, the RG and GA provide

a solution that is the same, but better than the M-RAND solution, with an average improvement of 0.23%.

From Table 3 we can also see that, generally, the RG in 71.75%, GA in 26.75%, and GA in 1.5% of problems

provides a better solution than the other(s). In conclusion, it can be seen that the RG is superior to the other

algorithms, especially for larger values of S and n. For smaller values of S and n, the RG and GA show relatively

similar performance, but both outperform the M-RAND. A summary of the computational results for 4 values

of w1 and w2 are shown in Table 4, where it is seen that the RG is superior to the other 2 algorithms, and

for 80% (57.71% + 15.1% + 7.4%) of the problems, it provides the best solution. It can also be confirmed that

the RG has better performance for small values of w1 . For w1 = 1, the classic JRP is solved and, as shown

in 64% of the problems, all 3 algorithms have similar performances. In 22% of the problems, the M-RAND

and RG provide the same solution and outperform the GA. Khouja [2] showed that RAND has an impressive

performance and identifies the optimal solution for approximately 83% of problems. Thus, it can be said that

the proposed algorithms deliver the optimal solution for at least (64% + 22%) × 83% = approximately 71% of

problems.

7.2. Second comparison part

In this section, we compare the performances of the algorithms with each other for obtaining a set of POSs. For

this aim, according to case 2 of Section 5.2, the SPEA-II algorithm was developed. For each value of 16 groups

of S and n, 100 problems are randomly generated. For instance, 4 randomly generated problems with n = 10, S

= 5; n = 10, S = 20; n = 50, S = 5; and n = 50, S = 20 are solved to show the performances and outputs of the

algorithms. The results, i.e. POSs, are shown in Figures 2–5, where it is seen that the M-RAND gives a higher

number of POSs than the RG and GA. However, the diversity of solutions in the RG and SPEA-II is larger

than in the M-RAND. Obviously, we can aggregate the POSs of the 3 algorithms and ask the DM to choose

the most utilized solutions from these aggregated solutions. The results of solving the 1600 randomly generated

problems by the proposed algorithms are summarized in Table 5. For each value of S and n, i.e. for each row

of Table 5, 100 randomized problems are produced and solved by each algorithm. In each row, by solving each

problem, some POSs are obtained. First, for each problem of all 100 problems and with each algorithm, these

values are calculated: Avg (TCI), Avg (TII), and Avg (time). Next, for each problem, the minimums of the

above values between the 3 algorithms are calculated, and then the columns of Table 5 are calculated.
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Table 3. Results of the 3 algorithms for w1 = 0.7.

n S
GA1 RG2 GA = RG > M-RAND3

% Max-i Avg-i % Max-i Avg-i % Max-i Avg-i
10 5 1 0.14 0.14 41 0.22 0.14 58 0.58 0.23
10 10 3 0.14 0.11 34 0.13 0.09 63 0.35 0.18
10 15 6 0.13 0.09 23 0.13 0.08 71 0.23 0.14
10 20 2 0.13 0.11 27 0.12 0.08 71 0.22 0.12
20 5 4 0.15 0.13 74 0.33 0.16 22 0.33 0.23
20 10 1 0.19 0.19 79 0.20 0.13 20 0.29 0.17
20 15 1 0.07 0.07 83 0.17 0.11 16 0.21 0.14
20 20 0 0.00 0.00 82 0.17 0.10 18 0.16 0.13
30 5 0 0.00 0.00 84 0.24 0.15 16 0.42 0.26
30 10 0 0.00 0.00 96 0.22 0.14 4 0.21 0.17
30 15 0 0.00 0.00 99 0.21 0.13 1 0.16 0.16
30 20 0 0.00 0.00 95 0.22 0.12 5 0.15 0.11
50 5 5 0.17 0.17 53 0.23 0.17 42 0.37 0.28
50 10 0 0.00 0.00 82 0.21 0.14 18 0.24 0.20
50 15 1 0.09 0.09 96 0.19 0.13 3 0.21 0.18
50 20 0 0.00 0.00 100 0.18 0.12 0 0.00 0.00
Max 6 0.19 0.19 100 0.33 0.17 71 0.58 0.28
Avg 1.5 0.07 0.07 71.75 0.20 0.12 26.75 0.26 0.17
1The GA is better than the M-RAND and RG.
2The RG is better than the M-RAND and GA.
3The GA is equal to RG and both are better than M-RAND.

Table 4. Comparison of the 3 algorithms.

w1 = 1 w1 = 0.7 w1 = 0.5 w1 = 0.3 Total
Max Avg Max Avg Max Avg Max Avg Max Avg

M-RAND = GA = RG1 % 96 64 0 0 17 3 17 3 96 17

GA2

% 32 8.1 6.0 1.5 0 0 0 0 32.0 2.4
Max-i 0.1 0 0.2 0.1 0 0 0 0 0.2 0
Avg-i 0 0 0.2 0.1 0 0 0 0 0.2 0

RG3

% 8.0 1.9 100.0 71.8 99.0 78.6 99.0 78.6 100.0 57.7
Max-i 0.1 0 0.3 0.2 0.2 0.1 0.2 0.1 0.3 0.1
Avg-i 0.1 0 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1

GA = RG > M-RAND4

% 23.0 4.8 71.0 26.8 58.0 14.3 58.0 14.3 71.0 15.1
Max-i 0.3 0.1 0.6 0.3 0.2 0.1 0.2 0.1 0.6 0.1
Avg-i 0.1 0 0.3 0.2 0.1 0 0.1 0.0 0.3 0.1

M-RAND = RG > GA5

% 45.0 21.2 0 0 9.0 4.2 9.0 4.2 45.0 7.4
Max-i 0.2 0.1 0 0 0.2 0.1 0.2 0.1 0.2 0.1
Avg-i 0.1 0.0 0 0 0.1 0.1 0.1 0.1 0.1 0

1The 3 algorithms give the same solution.
2The GA is better than the M-RAND and RG.
3The RG is better than the M-RAND and GA.
4The GA and RG are better than the M-RAND.
5The M-RAND and RG are better than the GA.

As can be seen from columns 3–5 of Table 5, for TCI, the M-RAND provides minimum values and the

SPEA-II and RG show relatively the same performance. Columns 6–8 show that for TII, the SPEA-II and

M-RAND have relatively the same performance, and the RG outperforms them. From columns 9–11, it is
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observed that the M-RAND has minimum time but the RG and SPEA-II have relatively the same performance,

and for larger problems, the RG is faster than the SPEA-II. Columns 12–14 show that the number of POSs

in the RG and SPEA-II is equal but the number of POSs in the M-RAND is larger than those in the GA and

SPEA-II.
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Figure 2. POSs of a randomized problem with n = 10,

S = 5.

Figure 3. POSs of a randomized problem with n = 10,

S = 20.
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Figure 4. POSs of a randomized problem with n = 50,

S = 5.

Figure 5. POSs of a randomized problem with n = 50,

S = 20.

7.3. Third comparison part

In this part, we make a comparison of our results with the existing results in the literature, because all of the

JRP models have only one objective function. We suppose that the value of the second objective function, i.e.

TII, is equal to 0. Next, the obtained model is solved by the 3 algorithms and the results are then compared with

the RAND method [15]. Table 6 shows the results, where it is seen in column 3, that previous tests (except for

n = 50, for which no results exist in the literature) show that the RAND method delivers the optimal solution

for approximately 83% of problems. As columns 4 and 6 show, the M-RAND reaches a solution with the same

or better objective function (TCI) than the GA or RG for 51.2% of problems and the average percentage saving

is 8.5%. Columns 6 and 7 show that the SPEA-II is not outperformed by the M-RAND and RG for 28.9% of

problems, and that the average percentage saving in TCI provided by the GA is 10.1%. As shown in columns 8

and 9, the RG performs better than or equal to the other algorithms for 19.9% of problems. In these problems,

the RG provides 4.6% of the average percentage saving in TCI. In conclusion, we can say that our proposed

algorithms perform well relative to the RAND method.
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Table 6. Comparison of the performances of the 3 algorithms with the RAND.

n S

The best algorithm
% RAND M-RAND SPEA-II RG
optimal Aver. Aver. Aver.
m = 10 % number % improv. % number % improv. % number % improv.

10

5 95.2 50.6 11.5 39.7 18.8 9.6 2.7
10 98.1 39.0 20.0 31.9 4.3 29.1 2.1
15 99.5 68.7 12.5 26.3 9.6 4.9 0.6
20 99.8 52.3 8.6 28.5 9.6 19.2 8.1

20

5 76.2 31.8 6.5 40.9 8.3 27.3 1.3
10 84.8 55.5 8.5 19.7 6.7 24.8 6.3
15 88.2 46.2 4.5 25.0 4.5 28.8 10.0
20 91.1 62.3 8.2 22.4 10.8 15.3 3.8

30

5 53.5 49.1 5.6 38.4 6.0 12.6 3.1
10 65.5 40.8 6.0 25.7 5.7 33.4 1.2
15 73.8 56.9 6.6 22.0 7.7 21.2 5.8
20 75.3 61.2 3.3 26.6 29.5 12.2 9.7

Maximum 99.8 68.7 20.0 40.9 29.5 33.4 10.0
Average 83.4 51.2 8.5 28.9 10.1 19.9 4.6

8. Conclusion

In this paper, a multiobjective JRP was developed. The shortcomings of previous models in the literature,

problems of multiobjective inventory models, were reviewed and a new improved model was presented. As

our proposed model is NP-hard, 3 new algorithms, the M-RAND, multiobjective GA, and RG, were developed

to solve it. To validate these algorithms, some test problems were designed and solved. The comparison of

the results showed that the proposed algorithms are able to find near optimal solutions for the problems. The

proposed model has no constraints, such as space or investment, which can be added to increase its applicability.

Moreover, it seems that using direct grouping replaces the indirect grouping that is used in this research, which

could be another area of work for future researches. Moreover, multiobjective models of the stochastic joint

replenishment problem or dynamic-demand joint replenishment problem can be developed and solved for future

researches. Finally, the use of other solving methods, such as population-based methods with more convergence

speed or less computational time, can provide a good opportunity for future study. As an example, the PSO

algorithm modified by Özkaya and Güneş [20] can be used for solving the multiobjective JRP.
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