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Abstract: Power quality disturbances, including voltage sag, swell, harmonics, flicker, and notch, are one of the main

concerns for industries and electrical equipment. Among these disturbances, voltage sag, due to its irrecoverable economic

effects on industries, is particularly important. In this paper, the detection and classification of voltage sag sources

containing motor starting, short circuit, transformer energizing, and the reacceleration of motors after fault clearance

using the Hilbert–Huang transform (HHT) and support vector machine (SVM) are studied. A voltage sag waveform

includes several oscillating modes; for separating these oscillating modes, which are called intrinsic mode functions

(IMFs), empirical mode decomposition is used. Next, by applying the HHT to these IMFs, some required features of

each IMF are extracted. Finally, these features are given to the SVM for classification. The results of this classification

method as compared with other methods show the high efficiency of the proposed method.

Key words: Voltage sag classification, Hilbert–Huang transform, support vector machine, empirical mode decomposi-

tion, intrinsic mode function, power quality

1. Introduction

In recent years, because of an incremental use of voltage-sensitive equipment and power electronic devices,

power quality has become more remarkable. The first step for improving power quality is the detection of power

quality disturbances. For this purpose, a method is needed to extract and analyze the waveform information

and detect the type and cause of the disturbance. One of the most important power quality disturbances is

voltage sag, which is defined as a reduction of the root mean square (RMS) voltage of between 0.1 (p.u.) and

0.9 (p.u.) at the power frequency for a duration of half a cycle to 1 min [1]. The main causes of voltage sag are

short circuits, motor starting, transformer energizing, and the reacceleration of motors after a fault clearance.

The detection and classification of power quality disturbances have been studied in several papers. In

[2], power quality disturbances were classified using the wavelet transform and support vector machine (SVM).

The classification of power quality disturbances by applying the Stockwell transform (S-transform) and neural

networks was studied in [3]. Moreover, the advantages of the S-transform compared with the wavelet transform

were presented. Application of the Hilbert transform and neural networks for the detection of power quality

disturbances was described in [4]. In [5], the theoretical and practical aspects of different methods for the

definition, characterization, and classification of voltage sag and interruptions and their shortfalls were studied.
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Voltage sag classification using the Hilbert transform and neural networks was considered in [6]. In [7], voltage

sag causes were classified based on the generalized S-transform.

In [8], a method for the detection and classification of voltage sag disturbances based on the RMS voltage

was proposed. In this method, some characteristics of a voltage sag waveform, such as the amplitude of the

voltage sag, happening of the voltage jump at the end of the sag, balance of 3 phase voltages, and voltage swell

happening, are extracted from the RMS voltage. Next, based on these features, the voltage sags are classified.

A simple rule-based method for the detection and classification of the voltage sag, swell, and interruption

by applying the filter bank and adaptive filter was used in [9]. In this study, the actual recorded waveforms

were used. The classification of voltage sag causes using the wavelet transform and probabilistic neural network

was studied in [10]. In [11], voltage sags due to different types of short-circuit faults, including a 3-phase

fault, phase-to-phase fault, double-phase-to-ground fault, and single-phase-to-ground fault, were classified by

considering the transformer winding connection.

In this paper, the detection and classification of voltage sag sources based on the Hilbert-Huang transform

(HHT) and SVM is considered. In the first step, by applying empirical mode decomposition (EMD) to the

voltage sag waveform, the first 3 intrinsic mode functions (IMFs) are extracted. EMD is a technique that

is used for analyzing nonlinear and nonstationary signals [12]. IMFs are monocomponent signals that are

generated by the decomposition of a nonstationary signal. After extraction of the IMFs from the voltage sag

waveform, the HHT is applied to the first 3 IMFs to extract 3 features, including the standard deviation of the

magnitude, standard deviation of the phase, and energy distribution. Next, these features are given to the SVM

for classification. Four voltage sag sources are considered, containing short circuits, motor starting, transformer

energizing, and reacceleration of the induction motors after fault clearance. Moreover, the advantages and

disadvantages of the S-transform, wavelet transform, and Hilbert transform are compared in this paper and,

finally, the results of the classification using the HHT and SVM are compared with the wavelet transform and

neural networks. The high efficiency of the proposed method shows the value of this method.

2. Empirical mode decomposition

A nonlinear waveform can include several frequency components. EMD is the extraction of monocomponent

signals from a nonlinear and nonstationary signal. Every monocomponent signal that is extracted from a

nonstationary signal is called an IMF. Extraction of IMFs is implemented based on the sifting process, in

which the lowest frequency components are removed until the highest frequency component remains. A

monocomponent signal is an IMF if it satisfies the following conditions:

a) The number of zero-crossing points and the number of extrema should be equal or differ only by 1.

b) The local average at any point obtained by the local maxima and the local minima is equal to 0.

The stages of extracting IMFs from the original signal are as follows [13]:

1. Identifying the upper envelope of signal by connecting the local maxima.

2. Similar to the first stage, identifying the lower envelope of the signal by connecting the local minima.

3. Obtaining the mean value of the upper and lower envelopes, which is defined as m (t).

4. The difference between the main signal x (t) and the mean value of the envelopes m (t) is the first

component, which is represented in Eq. (1).

h1(t) = x(t)−m(t) (1)

5. If h1 (t) satisfies the 2 above conditions, it is known as the first IMF of the main signal x (t); otherwise,
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h1 (t) is considered as the original signal and stages 1 to 4 are repeated until h11 (t), according to Eq. (2), is

obtained:
h11(t) = h1(t)−m1(t). (2)

6. Stage 5 is repeated until h1k , according to Eq. (3), as the first IMF is obtained.

h1k(t) = h1(k−1)(t)−m1k(t) (3)

7. r1 (t) is a subtraction of the first IMF from the original signal, which is represented in Eq. (4).

r1(t) = x(t)− h1k(t) (4)

8. r1 (t) is considered as the original signal and steps 1 to 7 are repeated until the second IMF is obtained.

9. The above steps are repeated until n IMFs are obtained.

10. The decomposition procedure is stopped when rn (t) becomes a monocomponent signal and there

are no more IMFs for extraction.

The algorithm for extracting the IMFs from the original signal is shown in Figure 1.

Figure 1. Flow chart of the EMD process.

3. The HHT

The HHT is a combination of the EMD method and the Hilbert transform [14]. After applying the EMD

method and extracting the IMFs of a nonstationary signal, the Hilbert transform is used to obtain instanta-

neous frequency and instantaneous phase. The HHT is one of the best methods for analyzing nonlinear and

nonstationary signals in a time-frequency domain. Table 1 illustrates the comparison among the HHT, wavelet

transform, and Fourier transform [15,16]. It is obvious from Table 1 that the HHT is a powerful and reliable
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method for analyzing nonlinear and nonstationary signals because it is based on an adaptive basis. Instanta-

neous frequency is obtained by differentiation instead of convolution. Thus, there is no limitation because of

the uncertainty principle. This method is applicable for nonlinear and nonstationary signals. The outputs of

this method are in the time-frequency-energy space and instantaneous phase, frequency, and energy distribution

can be extracted as features of nonstationary signals.

Table 1. Comparison of the Fourier, wavelet, and Hilbert transform characteristics.

Fourier Wavelet Hilbert
Basis A priori A priori Adaptive

Frequency

Convolution: Convolution: Differentiation:
global regional local,
uncertainty uncertainty certainty

Presentation
Energy- Energy-time- Energy-time-
frequency frequency frequency

Nonlinear No No Yes
Nonstationary No Yes Yes

Feature extraction No
Discrete: no;

Yes
continuous: yes

Theoretical base Theory complete Theory complete Empirical

For obtaining an instantaneous phase, real and imaginary parts of the signal are required. The Hilbert

transform converts a real-time domain signal, such as x (t), to another real-time domain signal, such as x̂(t)[17].

Thus, z (t), which is defined in Eq. (5), is used for analyzing:

z(t) = x(t) + jx̂(t). (5)

The Hilbert transform of a continuous signal x (t) is obtained from Eq. (6), as follows:

x̂(t) = H [x(t)] =

x∫
−x

x(u)

π(t− u)
du, (6)

where x̂(t) is the Hilbert transform of signal x (t), which is a convolution of signal x (t) and 1
πt , as in Eq. (7):

x̂(t) = x(t) ∗ ( 1
πt

). (7)

The instantaneous phase and amplitude of signal x (t) can be obtained from Eq. (5), as follows:

A(t) =
[
x2(t) + jx̂2(t)

] 1
2 , (8)

θ(t) = tan−1

[
x̂(t)

x(t)

]
, (9)

f0 =
1

2πt
tan−1

[
x̂(t)

x(t)

]
, (10)

where A(t) is the amplitude of the signal, θ(t) is the instantaneous phase, and f0 is the instantaneous frequency.
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4. Extraction of the required features by applying the Hilbert transform on the IMFs

After obtaining the IMFs of the signal using the EMD method, in the next step, the required features should be

extracted from the IMFs. In this study, the features of the first 3 IMFs are extracted because the most frequency

content of a signal is in these 3 IMFs and these features are sufficient for the detection and classification of

voltage sag sources. These features include the energy distribution, standard deviation of the amplitude, and

standard deviation of the phase. Therefore, there are 3 features for each IMF and a total of 9 features for the

3 IMFs of a voltage sag signal, which are used for classification.

5. Voltage sag sources and extraction of their features

5.1. Short circuit as a source of voltage sag

Short circuits in the power system can be a source of voltage sag and cause some problems for customers. The

amount of voltage drop depends on the type of fault, distance between the fault and point of study, system

topology, and fault resistance. Moreover, the duration of the voltage sag depends on the protection systems.

Faults are divided into 2 categories, symmetric and asymmetric; therefore, depending on the type of fault, the

voltage drop in the 3 phases can be equal or unequal. In this study, symmetric faults are considered. The

voltage sags generated by this type of fault are rectangular. The voltage drops suddenly and remains at a

fixed value until the protection system operates. Figure 2 shows the waveform of the voltage sag caused by a

symmetrical 3-phase short circuit and its IMFs, which are obtained by the EMD method.
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Figure 2. Voltage sag generated by the 3-phase short circuit (a and b) and IMFs (c–g).

Some general characteristics of a voltage sag waveform, which is generated by a symmetric short circuit,

are as follows:

• Phase angle of the voltage varies due to this type of fault.

• There is no harmonic in the waveform.

• Voltage rapidly returns to the initial value.
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The numerical model of this type of voltage is shown in Eq. (11):

VA = [1− s(u1 − u2)] sin(2πf1t+ θA), (11)

where s is the magnitude of voltage sag, u1 and u2 are the step functions, θA is the phase angle, f1 is the

fundamental frequency, and t is the time. The range of t is 0 < t < duration with an interval of 1/fs , where fs

is the sampling frequency. The duration of the voltage sag can be determined by step functions (u1 and u2),

as shown in Eq. (12), where the step functions can be determined by t1 , the starting time, and t2 , the ending

time of the voltage sag.

un=

{
1 :∀t if t− tn > 0
0 : ∀t if t− tn < 0

}
(12)

5.2. Transformer energizing as a source of voltage sag

Transformer energizing or a voltage variation in the transformer terminals can cause transformer saturation.

Transformer saturation also generates voltage sag that is nonrectangular and contains harmonics. In Figure 3,

a voltage sag waveform due to transformer energizing, the RMS waveform, and its IMFs are shown.
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Figure 3. Voltage sag generated by transformer energizing (a and b) and IMFs (c–i).

The general characteristics of this voltage sag are:

• Asymmetrical voltage sag in the 3 phases.

• Low-voltage drop.
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• No phase-angle variation.

• There are harmonics in the waveform.

• Voltage slowly returns to the initial value.

The numerical model of this type of voltage sag is stated in Eq. (13):

VA = [1− s(u1.e
−α(t−t1))] sin(2πf1t+ θA), (13)

where t1 is the starting time of the voltage sag, e is the exponential function for modeling the voltage sag due

to transformer energizing, and α is the recovery rise rate.

5.3. Induction motor starting as a source of voltage sag

At the time of induction motor starting, the starting current is about 6 to 10 times that of the rated current.

This high current causes voltage sag in the power system. The depth of this voltage sag and its duration

depends on the size and features of the motor, strength of the power system at the point of motor connection,

and methods of motor starting. Figure 4 illustrates a voltage sag waveform and its IMFs caused by induction

motor starting. The maximum voltage drop due to motor starting is about 15% of the nominal voltage when

the phase shift is about –6.6◦ . This phase shift compared with the phase shift due to a short circuit (maximum:

–42.6) is very small.
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Figure 4. Voltage sag generated by induction motor starting (a and b) and IMFs (c–f).

The general features of this type of voltage sag are as follows:

• Symmetric voltage sag in the 3 phases.

• Low-depth voltage sag.

• Small phase shift.

• No harmonics.

• Voltage slowly returns to the initial value.
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The numerical model of this type of voltage is shown in Eq. (14) where Ms is the voltage sag motor

starting function, which is shown in Eq. (15), and Mr is the voltage sag recovery function, which can be

obtained from Eq. (16). e is the exponential function used for modeling the motor starting voltage sag. β is

the sag recovery rise rate, α is the sag decay rate, r is the ripple magnitude, fr is the ripple frequency, and ρ

is the ripple settling rate while the motor accelerates to its nominal speed.

VA = [1− s(Ms −Mr)] sin(2πf1t+ θA) (14)

Ms = u1(1− e−αt1) + u1(r sin(2πfrt1)e
−ρt1) (15)

Mr = u2(1− e−βt1) (16)

5.4. Reacceleration of motors after fault clearance as a source of voltage sag

This type of voltage sag is generated in an area of the system in which motors are the major load of the system

[18]. When a short circuit happens in the power system, the motor speed decreases. After fault clearance, the

motor should act similar to the normal condition, so the motor should accelerate. This acceleration generates

a voltage sag in the power system. When a fault occurs, the motor acts like a voltage source and prevents a

sudden voltage drop [19]. After fault clearance, the voltage slowly returns to the initial value. In Figure 5, the

waveform of this type of voltage sag and its IMFs are shown.
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Figure 5. Voltage sag generated by reacceleration of large motors after fault clearance (a and b) and IMFs (c–i).
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The general characteristics of this voltage sag are:

• Phase angle variation.

• No harmonics.

• Voltage slowly returns to the initial value.

The numerical model of this type of voltage sag is a combination of the numerical model of voltage sag due to

short circuit and voltage sag due to motor starting.

6. Classification using SVM

Using artificial neural networks for classification has several disadvantages [20]. As the first disadvantage, the

error function is multimodal, which includes many local minima. Thus, the learning process of this classifier

can face problems. Moreover, they require a large number of data for training.

SVM is another classifier that is used widely because it does not have the above disadvantages. SVM uses

a particular algorithm for maximizing the separating margin between 2 classes [21]. In the training process, a

set of data pairs are given to the SVM.

(xi, ci), for i = 1, 2, 3, . . . , p (17)

Here, xi are the input vectors and ci are the classes.

There are several activation functions that the SVM can use, such as sigmoid, linear, radial, and

polynomial. The separating hyperplane g (x) for the linear separable training pairs of 2 classes is stated

as in Eq. (18):

g(x) = wTx+ b = 0, (18)

where w is the weight and b is the bias.

The hyperplane in Eq. (18) will be optimum when the separating margin between 2 classes is maximum.

For achieving this purpose, Eq. (19) should be solved:

min
w

1

2
wTw, (19)

subject to:

di(w
Txi + b) ≥ 1. (20)

Eq. (19) is equal to minimizing the following Lagrange function:

J{w, b, α} =
1

2
(wTw)−

∑p

i=1
αi[di(w

Txi + b)− 1]. (21)

In Eq. (21), αi is a nonzero Lagrange coefficient.

The above objective function is valid if 2 classes are distributed linearly. Thus, if the distribution of 2

classes is nonlinear, a new objective function, as in Eq. (22), should be implemented.

min
1

2
wTw + C

p∑
i=1

ξi,ξi⟩0 (22)
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Subject to di(w
Tϕ(xi) + b) ≥ 1− ξi (23)

In the above equations, ξ is the fulfilling variable and C is the upper bound of α .

Vector xi is mapped into a higher dimensional space by function ϕ . The kernel function is defined as:

K(xi, xj) = ϕ(xi)
Tϕ(xj). Different kernel functions can be used. Some of the kernel functions used in this

paper are presented as follows:

1. Linear kernel:

K(xi, xj) = x
T
i xj . (24)

1. Polynomial kernel:

K(xi, xj) = (γx
T
i xj+r)

d
, γ > 0. (25)

1. Gaussian radial basis function (RBF) kernel:

K(xixj) = exp(−γ||xi−xj ||2), γ > 0. (26)

In the above functions, r, d, and γ are kernel parameters.

SVM finds the best separating margin between 2 classes by optimizing the above equations.

7. Results and discussion

In this paper, for the detection and classification of voltage sources in the power system, the EMD method is

used for obtaining the first 3 IMFs. Next, by applying the Hilbert transform on these 3 IMFs, the features

of each IMF, including the standard deviation of the amplitude, standard deviation of the phase, and energy

distribution, are obtained. In the next step, these features are given to the SVM for detection and classification

according to the source of the voltage sag. Figure 6 shows a diagram of the voltage sag classification using the

HHT and SVM. In this study, as shown in the previous section, 4 voltage sag sources are considered. These

sources include voltage sag caused by short circuit (S1), voltage sag caused by transformer energizing (S2),

voltage sag caused by motor starting (S3), and voltage sag caused by reacceleration of large motors after fault

clearance (S4).

Some of the information and parameters used in the simulation are as follows:

Fault: A symmetrical fault is considered. The starting and the ending time of the voltage sags are 0.016

s and 0.18 s, respectively. A 3-phase short circuit is applied to the power system network with different values

for the fault resistance. The simulation results of this study show that the phase shift due to the short circuit

varies between –13.8◦ and –42.6◦ .

Transformer: For generating this type of voltage sag, a 500-kV power system network, including a

500/375-kV double-winding transformer, is energized for simulating.

Motor: For this case, a 400-V power system network is chosen. The motor types and typical electrical

parameters of the induction motors used in this study for generating the voltage sag are presented in Table 2.

In addition, the schematic of the simulated system, to generate voltage sag due to motor starting, can be seen

in Figure 7. The maximum voltage drop due to motor starting is about 85% of the nominal voltage, where the

phase shift is about –6.6◦ .
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Figure 6. Diagram of the proposed classification method.

Table 2. Motor types and typical electrical parameters.

Motor types

150 HP, 10 kW, 

400 V, 50 Hz, 

1487 RPM 

100 HP, 75 kW, 400 

V, 50 Hz, 1484 RPM

50 HP, 37 kW, 

400 V, 50 Hz, 

1480 RPM

20 HP, 15 kW, 

400 V, 50 Hz, 

1460 RPM

10 HP, 7.5 kW, 

400 V, 50 Hz, 

1440 RPM

5.4 HP, 4 kW, 400 

V, 50 Hz, 1430 

RPM

Typical electrical parameters

Pole pairsFriction factor 

(N m s)

Inertia Mutual 

inductance 

(H)

Rotor 

inductance 

(H)

Rotor 

resistance 

(ohm)

Stator 

inductance 

(H)

Stator 

resistance 

(ohm)

20.0057520.020.20370.0059741.0830.0059741.115

Π Π

Figure 7. Schematic of simulated system for generating voltage sag due to motor starting.

All of the voltage sag waveforms from the 4 voltage sag sources are generated using MATLAB/Simulink

and mathematical models of the voltage sags are stated in Section 5. Using MATLAB/Simulink and the
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mathematical model of the voltage sag sources together helps to generate different types of voltage sags with

a wide range of variation in the depth, duration, etc. For each type, 145 sag waveforms are generated, from

which 45 sag waveforms are selected for training of the SVM and 100 sag waveforms are used for testing of the

SVM. Table 3 shows the results of the proposed classification method. For demonstrating the superiority of the

proposed method, the results of the proposed method are compared with the results of the classification method

using the wavelet transform with a probabilistic neural network (PNN) [10] and the results of classification using

a PNN and EMD. This comparison is given in Table 4. A comparison of the results of the proposed method,

which uses EMD and SVM, with the results of 2 other methods shows the high efficiency and better accuracy of

the proposed method. For obtaining this efficiency, different kernel functions, including linear, polynomial, and

Gaussian RBF, are used. These functions are presented in Section 6. The best efficiency (99.5%) is obtained

using the polynomial kernel function with these parameters: C = 100, d = 5.

Table 3. EMD and SVM classification method results.

EMD and SVM
S1 S2 S3 S4

Classification Overall
method efficiency (%) efficiency (%)
S1 100 0 0 0 100

99.5
S2 0 99 1 0 99
S3 0 0 100 0 100
S4 1 0 0 99 99

Table 4. Comparison of the results of the proposed method with EMD and a PNN, and a wavelet and a PNN.

EMD and SVM
S1 S2 S3 S4

Classification Overall
method efficiency (%) efficiency (%)
S1 100 0 0 0 100

99.5
S2 0 99 1 0 99
S3 0 0 100 0 100
S4 1 0 0 99 99
Wavelet and PNN method S1 S2 S3 S4
S1 50 0 0 NC 100

84.37S2 0 38 12 NC 76
S3 11 0 39 NC 78
EMD and PNN method S1 S2 S3 S4
S1 98 0 0 2 98

96.75
S2 0 92 8 0 92
S3 0 0 100 0 100
S4 1 0 2 97 97
NC: Not considered.

The efficiencies of using different kernel functions are presented in Table 5.

Table 5. Comparison of the results of using SVM with different kernel functions.

Correct rate of recognition (%)
Different kernel

Fault
Motor Transformer Motor Overall

functions starting energizing reacceleration efficiency (%)
Linear kernel 95 92 74 91 88
RBF kernel 98 97 96 99 97.5
Polynomial kernel 100 100 99 99 99.5
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In this study, another voltage sag source (S4), voltage sag due to reacceleration of large motors after

faults clearance, is considered, which was not considered in [10]. It is obvious from the results that the SVM is

stronger than the PNN for classifying voltage sag sources.

8. Conclusions

In this paper, a new method for the detection and classification of voltage sag sources was proposed. Four source

of voltage sag were considered, including a 3-phase short circuit, motor starting, transformer energizing, and

reacceleration of large motors after fault clearance. In the proposed method, the HHT and SVM were used for

classification. After obtaining the first 3 IMFs of each voltage sag waveform, 3 features from each IMF, including

the standard deviation of the amplitude, standard deviation of the phase, and energy distribution, were extracted

and these features were given to the SVM for classification. The results of the proposed classification method

were compared with 2 other methods: the wavelet transform with a PNN and EMD with a PNN. In addition,

for obtaining the highest efficiency, different kernel functions were used in the SVM. The obtained results from

the proposed method demonstrated the high efficiency, accuracy, and the superiority of the proposed method

for the classification of voltage sag sources.
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