
Turk J Elec Eng & Comp Sci

(2014) 22: 1367 – 1381

c⃝ TÜBİTAK
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Abstract:In this paper, a novel fuzzy system-based method for speckle noise removal is proposed. The proposed method

consists of a fuzzy inference system, an edge detection and dilation unit, and an image combiner. The fuzzy inference

system includes 5 inputs and 1 output, and it is responsible for filtering the speckle noisy image. The inputs of the fuzzy

system consist of the center pixel of the filtering window and its 2 horizontal and vertical neighbors. The edge detection

and dilation unit is used for classifying the uniform areas and nonuniform image regions such as edges. The image

combiner unites the output images filtered 1 and 2 times according to the information coming from the edge detection

and dilation unit. The training phase of the fuzzy inference system is implemented using the clonal selection optimization

algorithm with appropriate training data. The performance of the proposed method is compared with popular speckle

noise removal filters available in the literature by performing extensive simulations. The experimental results show that

the proposed method can significantly reduce the speckle noise from digital images while preserving edges, textures, and

valuable details.
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1. Introduction

In many imaging systems, acquired images are corrupted since they are affected by various corruptive factors.

Noise is the most common corruptive factor and causes undesirable changes of the pixel values in various

amounts or variances. There are different kinds of noise models in the field of signal and image processing to

model and study the effects of real noise. One of those models is the speckle noise model, which is a locally

correlated multiplicative noise. In this model, the image quality is considerably degraded since the pixel values

in the image are multiplied with the noise components. The basic properties of the speckle noise were defined

by Goodman [1] and a general model for the speckle noise was presented by Jain [2]. Many imaging systems,

such as synthetic aperture radar (SAR), ultrasound, or laser, suffer from speckle noise. In such systems, speckle

noise inherently occurs as a result of the interference of the reflected signal by object surface. Almost all pixels

in the acquired image are affected by the speckle noise and this effect causes a freckled appearance and low

resolution quality. The aim of a speckle noise reduction filter is to strongly smooth the uniform areas without

losing useful information in the nonuniform areas (i.e. edges) of the input image [3].

Many methods have been proposed in the literature to reduce the speckle noise in digital images. Some

of these methods use local statistics, such as the Lee minimum mean square error (MSE) filter (Lee MMSEF)

[4], Frost filter (FROSTF) [5], and Kuan filter [6,7]. The concept of the local variance and mean proposed
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by Wallis [8] was used in the Lee MMSEF for additive and multiplicative noise removal. The Kuan filter is

a general form of the Lee MMSEF. The only difference between the Kuan filter and the Lee MMSEF is the

weighting function, which is a scaling factor of the difference between the center pixel and the mean of the

filtering window. Improved results are obtained through these filters by adding the scaled value to the mean

of the filtering window. In the FROSTF, averaging or all-pass filter operation is achieved by an exponential

convolution kernel that can change its behavior between the average filter and the identity filter. While the

FROSTF acts as a mean filter in uniform areas by a low coefficient value, it acts as an all-pass filter with a high

coefficient value in the nonuniform areas to preserve edge features.

An extended version of the Lee MMSE and the FROSTFs proposed by Lopez et al. consisted of 3 cases

with different thresholds [9,10]. In this method, mean filtering is applied when the local rate of statistics is

below a lower threshold and all-pass filtering is applied when this statistic is above a higher threshold. However,

the method acts as standard Lee MMSE and/or FROSTF when the local rate of statistics is between these 2

thresholds.

Another method for speckle noise removal was presented by Perona and Malik [11], which used the

anisotropic diffusion filter (ADF) for smoothing the image. In this method, different diffusion rates are used,

depending on the image regions, in order to restrict diffusion on the edges and preserve image details. Since

the diffusion coefficient is small in the vicinity of the edges, the ADF acts as an all-pass filter and preserves

image details. On the contrary, the diffusion coefficient is large for the other areas; therefore, the ADF acts as

a Gaussian filter for smoothing. The anisotropic diffusion approach was improved by Yu and Acton [3]. In this

method, called the speckle-reducing ADF (SRADF), the diffusion coefficient is readjusted in each loop according

to current gradient and current local statistics, as in the Lee MMSEF. The deficiency of the anisotropic diffusion

approach for multiplicative speckle noise is successfully removed by this method.

An extended form of the SRADF was presented by Krissian et al. [12] that combined a flux-based matrix

diffusion method [13,14] and the detail-preserving anisotropic diffusion method proposed by Aja-Fernandez et

al. [15]. In this method, the matrix diffusion approach is used instead of scalar diffusion in order to enable

multilevel filtering.

The recently proposed Lee improved sigma filter (Lee ISF) [16] for speckle noise removal in SAR data is

actually a modified form of the sigma filter that was previously presented by Lee [17,18]. In the simple sigma

filter, almost all pixels in the local region are included within a 2-sigma range from its mean, while the 2-sigma

range is readjusted in the Lee ISF to maintain the mean value after pixel selection, and then the Lee MMSEF

is applied to the filtering window with new variance and mean values.

In recent years, some fuzzy logic-based methods have been used for speckle noise removal. One of these

methods was proposed by Puvanathasan et al., in which the fuzzy anisotropic diffusion method was used to

adjust the diffusion coefficients with type-2 fuzzy reasoning [19]. In this method, a big diffusion rate is used in

the uniform areas and the diffusion rate is reduced for nonuniform areas (e.g., edges) since the difference between

the neighbor pixel values is large. In another work by Puvanathasan et al., type-2 fuzzy reasoning approaches

were used for the soft threshold of wavelet coefficients [20]. Another fuzzy logic-supplemented approach for

speckle noise removal was presented by Zhang et al. [21]. In this approach, the normalized image was mapped

to the fuzzy domain using maximum fuzzy entropy and then the fuzzy fractional anisotropic diffusion approach

was used for the fine tuning process. Fuzzy logic-based methods have also been successfully applied for impulse

noise removal [22–27].

Many other recent despeckling methods have been effectively used in different ways to remove speckle
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noise from digital images in the literature [28–33]. An algorithm based on multiscale curvelet analysis was used

in [28] for speckle noise reduction in SAR images. In [29], a nonlinear diffusion filter with anisotropic behavior

was used for denoising speckled images. A hybrid technique with anisotropic diffusion was used in [30]. A

combination of the Daubechies–Wiener methods was used in the hybrid technique for speckle removal from

ultrasound images. To suppress the speckle effect in the optical coherence tomography images, a 2-dimensional

CCD camera was used in [31] for a single lateral point from multiple spectral interference data. An algorithm

based on the 2-sided generalized gamma distribution model was used in [32] for speckle noise removal from SAR

images. In [33], some prominent denoising methods for ultrasound enhancement were classified as preprocessing

and postprocessing and were examined for performance analysis.

In this paper, a new fuzzy system-based method for speckle noise removal is proposed. With this method,

an efficient speckle noise removal based on a type-1 fuzzy inference system is obtained without any diffusion

or image transform approach. The remainder of the paper is as follows. Some of the popular speckle noise

removal filters available in the literature are mentioned in Section 2. These filters are used as competing filters

to evaluate the performance of the proposed filter. The fuzzy inference system and optimization algorithm

used in the proposed method are mentioned in Sections 3 and 4, respectively. The construction, training, and

implementation of the proposed method are explained in Section 5. The results of the filtering experiments

performed to evaluate the performance of the proposed method and competing operators are reported and

discussed in Section 6. The discussion and conclusion are presented in Section 7.

2. Available methods in the literature

The most recognized speckle filters in the literature are probably the Lee MMSEF [4], FROSTF [5], ADF [11],

SRADF [3], and Lee ISF [16]. These are explained briefly below.

2.1. Lee MMSEF

This filter uses local statistics and the minimum MSE approach to reduce speckle noise. Improved data are

obtained by the following formulae:
⌢

I p = Im + ω(Ip − Im), (1)

ω = 1− (CI/CW )2, (2)

where Ip is the center pixel value,
⌢

I p is the improved center pixel value, Im is the mean value of the filter

window, ω is the weighting coefficient determined by Eq. (2), CI is the ratio of the standard deviation and

mean of the uniform areas of the input image, and CW is the ratio of standard deviation and mean of the filter

window. For uniform areas, ω converges to 0; hence, the filter output approaches the mean of the filtering

window. In contrast to the previous case, ω converges to 1 for nonuniform areas. Therefore, the value of the

center pixel does not greatly change and the edges remain unchanged.

2.2. Lee ISF

This filter attempts to avoid some of the drawbacks of the simple sigma filter [17,18] by using MMSE filter

adaptation. First, the center pixel value of the 3 × 3 input window is estimated with a MMSE filter to

determine the new sigma range. Next, the pixels within the new sigma range in a 9 × 9 filtering window are

selected, and the new variance and mean values for the selected pixels in the filtering window are computed.

Finally, the value of the center pixel is computed using the Lee MMSEF approach again.
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2.3. FROSTF

This filter uses a convolution kernel that can smooth various regions of an image by using local statistics. The

filter output is obtained by the following equations:

⌢

I p =

∑
n∈Wp

εnIn∑
n∈Wp

εn
, (3)

εn = exp(−DC2
W dn), (4)

where In is the nth pixel value of the filtering window, D is the damping factor, and dn are distances between

the center pixel and the other pixels of the window. The value of the damping factor is selected so that the

DC W product converges to 0 for uniform areas and diverges from 0 for nonuniform areas.

2.4. ADF

This filter uses a divergence operator to smooth the image. Smoothing is controlled by a coefficient that is

varied in connection with the image gradient for preserving image details. The anisotropic diffusion proposed

by Perona and Malik [11] is explained with the following equations:

{
∂I/∂t = div [c(|∇I|)∇I]
I(t = 0) = I0

, (5)

c(a) = 1/(1 + a/κ)2 or c(a) = exp[−(a/κ)2], (6)

where div is the divergence operator, | . | denotes the magnitude, c(a) is the diffusion coefficient, ∇ is the

gradient operator, I0 is the initial image, and I is the improved output image.

2.5. SRADF

This filter combines the advantages of the classic statistical speckle filters and the anisotropic diffusion method

by applying the instant variation calculation to anisotropic diffusion method for speckle noise removal. Given

an original noisy image I0(x, y), an improved output image I(x, y; t) is obtained by the following equations:

{
∂I(x, y; t)/∂t = div [c(q)∇I(x, y; t)]
I(x, y; 0) = I0(x, y)

, (7)

c(q) = 1/(1 + [q2(x, y; t)− q20(t)] / [q
2
0(t)(1 + q20(t))]), (8)

q20 = var[i(t)]/ im(t)2, (9)

where c(q)is the diffusion coefficient andq(x, y; t), which is the instantaneous coefficient of variation in the

SRADF, is an edge detection operator. q(x, y; t) takes high values at the edges and low values in uniform areas.

The speckle scale function q0(t)controls the amount of smoothing in the SRADF. var[i(t)] and im(t) are the

intensity variance and mean of the uniform area at iteration t , respectively.
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3. Fuzzy inference system

The fuzzy inference system used in the proposed method is a first-order Sugeno fuzzy model with 5 inputs and

1 output [34]. The type of the antecedent membership functions of the fuzzy system are chosen as generalized

bell, whereas the type of consequent membership functions are chosen as linear. The rule base of the fuzzy

system contains 10 fuzzy rules, as listed below.

1. if (X1 ∈ M11)&(X2 ∈ M12)&(X3 ∈ M13)&(X4 ∈ M14)&(X5 ∈ M15)
then Q1 = d11X1 + d12X2 + d13X3 + d14X4 + d15X5 + d16

2. if (X1 ∈ M21)&(X2 ∈ M22)&(X3 ∈ M23)&(X4 ∈ M24)&(X5 ∈ M25)
then Q2 = d21X1 + d22X2 + d23X3 + d24X4 + d25X5 + d26

3. if (X1 ∈ M31)&(X2 ∈ M32)&(X3 ∈ M33)&(X4 ∈ M34)&(X5 ∈ M35)
then Q3 = d31X1 + d32X2 + d33X3 + d34X4 + d35X5 + d36

...
...

...

10. if (X1 ∈ M101)&(X2 ∈ M102)&(X3 ∈ M103)&(X4 ∈ M104)&(X5 ∈ M105)
then Q10 = d101X1 + d102X2 + d103X3 + d104X4 + d105X5 + d106

,

Here, XJ are inputs of the fuzzy system, Qk denotes the consequent membership function of the k th rule, and

Mi,j denotes the ith antecedent membership function of the j th input. The generalized bell-type membership

function, which is used for input fuzzification, is described as follows:

Mi,j(x) =
1

1 +
∣∣∣x−ai,j

bi,j

∣∣∣ 2ci,j
i = 1, .., 10 and j = 1, .., 5. (10)

Parameters a , b , c , and d determine the shape of the membership functions. These parameters are optimized

by the training process, which will be discussed later.

The output of the fuzzy system is obtained by calculation of the weighted average of the individual rule

outputs. The weighting factor of each rule ωk is calculated by producing the memberships of the inputs. For this

purpose, input values are first converted to fuzzy membership values by using antecedent membership functions.

Next, the AND (&) operator, which corresponds to the multiplication, is applied to these membership values.

Hence, the weighting factor of each rule is calculated by:

ωk = Mk1(X1)Mk2(X2)Mk3(X3)Mk4(X4)Mk5(X5) =
5∏

j=1

Mkj(Xj). (11)

After obtaining the weighting factors, the output of the fuzzy system is calculated by the weighted average of

the individual rule outputs as follows:

Y =

∑10
k=1 ωkQk∑10
k=1 ωk

. (12)

4. The clonal selection optimization algorithm

The clonal selection optimization algorithm (CSOA) was inspired by the clonal selection principle of the human

immune system [35]. It searches for the global optimum without getting stuck at any local optimum. The CSOA
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is especially successful in optimization problems that have too many parameters. Therefore, it has been used

in many engineering problems in practical applications. The block diagram of the CSOA is shown in Figure 1.

Initial 

Population 
Evaluation 

& Selection 

Cloning & 

Mutation 
Evaluation 

& Selection

Updating of 

Population 

 

Terminating 

Condition 

Result  

Solution

TRUE

FALSE

Figure 1. Block diagram of the CSOA.

In the CSOA, the initial population N is produced randomly. Each possible solution is represented by a

cell and the problem for the algorithm is represented by an antigen. The candidate solutions in the population,

which are represented by vectors consisting of real numbers, are sorted according to their fitness values and then

the best n candidates are cloned proportionally with the fitness value. The number of the clones belonging to

each candidate is computed as follows:

Ci = round

(
βN

i

)
, (13)

where β is the scaling factor and i is the sequence number of the best n candidates. The candidate with

a better fitness value is copied a higher number of times, while the candidate with a worse fitness value is

copied less. The mutation is also applied to the clones depending on the fitness value in such a manner that

the candidate with a better fitness value is less mutated and the candidate with a worse fitness value is more
mutated. Finally, the clones are evaluated according to the fitness value and the best clones are included in the

next generation. This loop is continued until the terminating condition is reached.

5. The proposed method

In the previously mentioned fuzzy logic-based methods, a fuzzy inference system is usually used as a part of

other specific methods, such as the diffusion or wavelet transform approaches. In these approaches, a fuzzy

inference system is commonly used for coefficient adjusting. However, a standalone fuzzy inference system can

be used as a noise filter for digital images provided that the appropriate training datasets that are obtained

from the training images are used [22–27]. Once noisy training image data are applied as input to the fuzzy

inference system, the difference between the fuzzy inference system output and the desired output (noise-free

training image data) can be made minimal by means of an optimization algorithm. With the help of a trained

fuzzy inference system, the noise-free image can be obtained from a noisy image when the difference is close

to 0, i.e. appropriate fuzzy system parameters are accurately found by an optimization algorithm. Finding

optimal fuzzy system parameters is very difficult if not impossible. However, small difference values can also

provide sufficiently optimal results in many applications.
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5.1. Training of the fuzzy inference system

The relation between the fuzzy inference system’s input and output is determined by membership functions

that are used for input fuzzification. In the training phase of the fuzzy inference system, the parameters of the

fuzzy rule set membership functions are optimized with the training data. The fuzzy system parameters in the

proposed fuzzy filter are optimized by the CSOA with a rule-based style, where the parameters of the fuzzy

system are separated according to the rules and only the parameters belonging to the current rule are optimized

in each epoch [26]. The training setup is shown in Figure 2 and the output of the fuzzy system converges to

the original noise-free training image when the training is done.

 

Fuzzy  

System 

Optimization 

Algorithm 

Training 

Error 

+
_Noisy 

Training 

Image 

Noise-free 

Training Image 

Figure 2. Training of the fuzzy system.

The fuzzy inference system used in the proposed fuzzy filter has 5 inputs and 1 output. The fuzzy rule

base includes 10 rules, and the number of rules in the fuzzy system rule base is chosen heuristically and verified

experimentally; nevertheless, it can be greater or less than 10. On the other hand, the experimental results

indicate that increasing the number of rules slightly improves the performance of the proposed fuzzy filter but

also increases the training duration as well as the system complexity. Therefore, the number of rules should be

carefully selected to observe a balance between the performance and the system complexity.

The fuzzy filter-based methods were successfully used for impulse noise removal under various digital

imaging conditions [22–27]. In a digital image, the impulse noise changes some pixel values to 0 or 255, while

all of the pixel values are changed by the speckle noise within a specific range depending on the noise intensity.

Therefore, the determination of appropriate training images is very important for forming a fuzzy-based filter

specifically for speckle noise. The training images must be designed to include both uniform areas and edges

with different gray-level values; hence, variously shaped artificial images can be used. The noisy training image

is obtained from a noise-free training image by adding speckle noise with specific noise intensity. When the

fuzzy inference system is trained with this pair of images, it can be used as a speckle noise removal operator for

any speckled image.

The training images used in this work are artificially generated on a computer and are shown in Figures

3a and 3b. The image in Figure 3a is the noise-free training image, which has a size of 120 × 120 pixels, and

each square box in this image has a size of 8 × 8 pixels with the same luminance value, which is a uniformly

distributed random integer number between 0 and 255. The noisy training image shown in Figure 3b is obtained

by corrupting the original noise-free training image by speckle noise with a variance of 0.04. This variance value

is not very critical for the fuzzy system training process; nevertheless, experimental observations indicate that
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the best filtering result is obtained when the noise variance of the noisy input image is close to the noise

variance of the noisy training image. Since it is impossible to know exactly the noise variance of the noisy image

in practice, the noise variance value of the noisy training image is determined experimentally without selecting

very low or high values.

Figure 3. a) Original noise-free training image. b) Noisy training image.

The training data used in the training phase are obtained from the training images by considering a

specific neighborhood arrangement. The specific pixel neighborhood in the filtering window of the proposed

fuzzy filter is shown in Figure 4a and its application to the fuzzy inference system is shown in Figure 4b. The

training input data (ITN ), which are applied to the fuzzy system as input, are obtained from the pixel luminance

values of the noisy training image, while the training output data (ITO), which are compared with the fuzzy

system output, are obtained from the noise-free training image pixel luminance values. The fuzzy inference

system used in the proposed method has 5 inputs and 1 output; therefore, 5 input values are acquired from the

noisy training image according to specific neighborhood arrangement and 1 desired output value is acquired

from the center pixel value of the filter window in the noise-free training image. Many different neighborhood

combinations are possible in the filtering window; however, extensive experiments indicate that the best filtering

performance is obtained by the proposed neighborhood arrangement in Figure 4a.

not used I(m-1,n)     not used 

I(m,n-1)     I(m,n)      I(m,n+1)     

not used I(m+1,n)     not used 

 

Fuzzy 

System 

ITN (m-1,n)  

ITN (m,n-1)  

ITN (m,n)     

ITN (m+1,n)  

ITN (m,n+1)  

ITO (m,n)  

Figure 4. a) Filtering window of the proposed fuzzy filter. b) Application of the filtering window to the fuzzy system.

5.2. The proposed fuzzy filter

A noise removal operation can generally be a problem in luminance transition areas and can lead to blurring

or edge distortion during the filtering process. The pixel values in uniform areas away from the edges are less

affected by the filtering process, whereas the pixel values in the vicinity of the edges are affected more. Since
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the edges include useful information, edge distortions make the understanding and interpretation of an image

more complicated. In a filtering process, the noise has to be removed from digital images by utilizing the edge

information for quality results; therefore, a denoising method has to be edge-sensitive.

The structure of the proposed fuzzy filter is shown in Figure 5. In fact, the application of the trained

fuzzy filter on the noisy input image for a one-time performance is sufficient for a reasonable speckle noise

removal; however, the proposed fuzzy filter is applied an additional time to improve the performance, especially

for the uniform areas of the noisy image. The use of the trained fuzzy system for a second time provides more

smoothening, which has useful effects for the uniform areas but leads to smoothing of the edges at the same

time. To protect the edges from this smoothing, the regions in the vicinity of the edges are detected by an edge

detection and dilation unit, and fuzzy system outputs are used for these regions in the restored image.

Fuzzy  

System 

Fuzzy  

System 

Edge Detection and 

Dilation 

Image Combining 

Noisy 

Image 

Restored Image

Selecting of 

uniform and 

nonuniform 

areas  

Image for 

uniform 

areas  

Image for 

nonuniform areas  

Figure 5. The proposed fuzzy filter.

5.2.1. The edge detection and dilation unit

The edges in any digital image can be found easily using any differential mask kernel. However, finding edges in a

noisy image is not easy, because the noise creates extra edges due to changing pixel values in the image. Since the

fuzzy filter used in the proposed method already removes the speckle noise, any simple edge detection approach

can be used for finding the edges. In the proposed method, the Sobel edge detector kernels, which are column

and row kernels, are found to be sufficient for detecting vertical and horizontal edges, respectively. The Sobel

method, which is one of the most common edge detection approaches, is based on the central difference in the

kernel [36]. In the uniform areas, the differential kernels give a 0 luminance value for the center pixel; however,

the luminance value approaches 255 in the vicinity of the edges. After the corresponding edge magnitudes of

all of the pixels in the input image are found, the edge image, where the pixel values can assume either 0 or

255, is obtained by applying a threshold to the edge image.

In the proposed method, the dilation operator is used for detecting the vicinity of the edges in the image.

The dilation process is gradually applied to the edge image twice, using a 3 × 3 mask for finding regions close

to edges, and the regions revealed after each dilation process are used to determine the transition area of the

pixel values of the restored image by means of the 2 filtered noisy image outputs.

5.2.2. The image combiner

The edge image and its dilated forms are used to determine the filtered noisy image output (fuzzy system

output) that will be used for the current pixel in the restored image. The edge regions in the restored image

are obtained from the once-filtered noisy image output, while the areas remaining after edge dilation in the
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restored image are filled with the twice-filtered noisy image output. The pixel values of the dilated regions

outside of these areas are computed by averaging of the once- and twice-filtered noisy image outputs. The

contribution of the once-filtered noisy image output is more in the first dilated region, whereas the contribution

of the twice-filtered noisy image output is more in the second dilated region. Experimental results indicate that

performance of the fuzzy filter is significantly increased with this approach.

6. Results

The proposed fuzzy filter is tested on various speckled images, which are generated by corrupting popular test

images (Lena, Bridge, and Boats) in the literature with multiplicative noise. This type of corruption affects

the image in such a manner that uniformly distributed random values with a zero mean and specific variance

are multiplied by pixel values of the original noise-free image and then the product values are added to the

noise-free image pixel values. In this work, 3 different test images are used and each of them is corrupted by

speckle noise with 3 different intensities of variation to obtain speckled noisy test images.

Comparisons are made between the proposed fuzzy filter method and other state-of-the-art methods,

including the Lee MMSEF, FROSTF, ADF, SRADF, and Lee ISF, plus 2 classical methods including the mean

filter (MF) and the median filter (MEDF). The main criterion in making comparisons between speckle noise

filters is that the edges and other details should be preserved during the noise removal process. The comparisons

are based on the MSE calculated for the output images of the competing operators, which is defined for 2D

gray-scale images as follows:

MSE =
1

XY

X∑
x=1

Y∑
y=1

(I(x, y)−
⌢

I (x, y))2, (14)

where X and Y are the size of the image, x and y are the pixel positions in the image, and I and
⌢

I denote

the original noise-free image and the restored image, respectively.

Protection of the edges and details in a noisy image is very critical for recognition of the objects in the

image that contain useful information for many applications. Some of the noise filters, such as MF and MEDF,

can slightly reduce the speckle noise effect, but the edges and details are also destroyed in the filtered output

images. The Lee ISF, which is proposed for removing the speckle noise in SAR data, is very successful for SAR

data, but its performance is quite dependent on the number of looks and the noise variation. The Lee MMSEF

and the FROSTF can reduce speckle effect provided that appropriate filter coefficients are selected according

to noisy images. The coefficient in the Lee MMSEF represents the ratio between the variation and mean of the

uniform areas in the image, while the coefficient in the FROSTF represents the damping factor. On the other

hand, a coefficient value that works very well for a given noisy image may not yield satisfying results for another

noisy image. Hence, coefficient adjustment may not be sufficient alone for obtaining good results. The ADF

and the SRADF can significantly reduce speckle noise using the anisotropic diffusion technique. The SRADF

is similar to the ADF; nevertheless, in the SRADF, a coefficient of the variation is used, as in the Lee MMSEF.

In both methods, appropriate filter coefficients should be accurately determined according to the noisy image

for maximum filtering performance.

In this work, various neighborhood topologies and various training images are examined for the best

filtering performance and the proposed neighborhood topologies and training images are produced for obtaining

sufficient results. However, the performance of the fuzzy filter can be increased depending on the training image

and/or neighborhood topologies in the filtering window. In addition, selection of the optimization algorithm

can be very critical for the fuzzy system parameter optimization in the training phase. The maximum filtering
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performance can be obtained by finding the optimum fuzzy system parameter values with the appropriate

optimization algorithm considering the training data.

The MSE values for the outputs of the competing operators are obtained by extensive experiments and

are listed in Table 1 for test images with speckle noise variances (σ) of 0.01, 0.04, and 0.07. The averaged MSE

values of the filter outputs with varying noise intensities are listed in Table 2. The best filtering performance

is exhibited by the proposed method for various images for various noise intensities. For a visual evaluation,

Figures 6a–6j show the filter outputs of the operators for the Lena image corrupted by a 0.05 variation in the

noise intensity. This figure also confirms the results presented in the tables and demonstrates that the proposed

operator exhibits superior filtering performance over competing operators from the literature.

(a) (b)

(c) (d)

Figure 6. a) Original Lena image. b) Speckled Lena image with a 0.05 variation in the noise intensity. c) Output of

the MF. d) Output of the MEDF.
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(e) (f)

(g) (h)

(i) (j)

Figure 6. e) Output of the Lee MMSEF. f) Output of the Lee ISF. g) Output of the FROSTF. h) Output of the ADF.

i) Output of the SRADF. j) Output of the proposed filter.
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Table 1. MSE values of the operators for the Lena, Bridge, and Boats images corrupted by speckle noise with variations

of 0.01, 0.04, and 0.07 in the noise intensities.

Lena Bridge Boats

Operators σ = 0.01 σ = 0.04 σ = 0.07 σ = 0.01 σ = 0.04 σ = 0.07 σ = 0.01 σ = 0.04 σ = 0.07

Noisy image 120.1 471.8 808.6 153.2 581.6 984.9 191.5 766.0 1325

MF 134.4 171.3 206.6 199.2 251.3 298.4 179.2 237.2 296.1

MEDF 125.7 231.3 338.0 202.6 332.2 451.2 186.5 353.9 525.5

Lee MMSEF 256.9 153.5 263.3 455.1 287.3 420.4 483.8 233.4 380.7

Lee ISF 332.8 146.3 362.6 346.6 282.4 538.4 653.2 213.6 571.2

FROSTF 117.5 154.0 190.0 187.2 237.7 284.5 163.9 220.7 280.9

ADF 173.3 178.9 189.7 293.4 297.1 310.8 222.8 229.5 249.7

SRADF 127.3 130.0 131.9 358.6 364.2 367.8 233.9 230.8 229.4

Proposed FF 75.4 97.0 130.6 192.7 202.7 250.1 137.9 165.8 216.3

Table 2. Average MSE values of the operators’ outputs for all of the speckle noisy test images with variations of 0.01,

0.04, and 0.07 in the noise intensities.

Methods
Average MSE values of the 3 images

Total average
σ = 0.01 σ = 0.04 σ = 0.07

Noisy image 154.9 606.4 1039.0 600.1
MF 170.9 219.9 267.0 219.2
MEDF 171.6 305.8 438.2 305.2
Lee MMSEF 398.6 224.7 354.8 326.0
Lee ISF 444.2 214.1 490.7 383.0
FROSTF 156.2 204.1 251.8 204.0
ADF 229.8 235.1 250.1 238.3
SRADF 239.9 241.6 243.0 241.5
Proposed FF 135.3 155.1 199.0 163.1

7. Conclusion

A novel fuzzy filter for speckle noise removal based on a fuzzy inference system has been presented. The proposed

fuzzy filter significantly removes speckle noise while effectively preserving the edges. The main advantage of

the proposed filter is that it assumes no predetermined coefficient values, unlike most other operators in the

literature. It has been concluded that the proposed filter significantly reduces speckle noise from images while

preserving edges and it can be used as an effective tool for speckle noise removal.
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