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Abstract: The steady-state equivalent circuit parameters of an induction motor can be estimated using the operation

characteristics that are provided by manufacturers. The characteristics of the motor used in estimation methods are

the starting, maximum, and nominal torque values; the power factor; and efficiency. The operation characteristics of

a motor given in data sheets are generally based on design parameters and are not suitable with real values. For this

reason, in this paper, the data used in the parameter estimation for induction motors are taken from the literature.

Using an optimization method for parameter estimation is useful for comparing the manufacturer values and values at

the end of estimation, as well as minimizing the error in between. There are many methods in the literature for the

parameter estimation of induction motors. In this study, the estimation is made using the charged system search (CSS),

differential evolution algorithm (DEA), particle swarm optimization, and genetic algorithm optimization techniques. The

CSS algorithm is first applied for estimation of the parameters of an induction motor. The results obtained from all of

the methods show that the CSS algorithm is suitable with the DEA. From the obtained results, it is understood that

an exact approach can be made to equivalent circuit parameters in case the values given by the manufacturer model the

motor properly.

Key words: Induction motor, exact equivalent circuit parameters, torque values, charged system search, differential

evolution algorithm, particle swarm optimization, genetic algorithm

1. Introduction

Induction motors have important problems, such as transient and quasi-steady-state stability. To solve the

steady-state stability problems of an induction motor, equivalent circuit parameters are required. These param-

eters are the resistances and reactances of the stator and rotor, including magnetizing branches. Estimation of

these parameters is particularly essential in determining their effects on motor performance. The main diffi-

culty in constructing an accurate motor model is the unavailability of manufacturer data for estimation. Hence,

explicit representation of induction motor models is not given in various applications. In the conventional

techniques, estimation of the induction motor parameters is based on no-load and blocked-rotor tests [1].

Aside from the conventional technique, there are 2 different approaches for parameter estimation, which

are online and offline techniques. The former uses the Kalman filter [2] and least square techniques [3]. The

latter is offline [4] curve generation for the experimentally measured data. Recently, artificial neural networks
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and various evolutionary algorithms were used with both online and offline methods. In the literature, Wishart

and Harley [5] experimented with a method that uses artificial neural networks for induction motor parameter

estimation in current and speed control [6]. Linear techniques based on dynamic model and neuro-fuzzy methods

are also proposed for the estimation of induction motor parameters [7,8]. In [9–11], the estimation of the stator

resistance, transient inductance, and rotor resistance online were discussed. An interesting approach for tuning

the rotor resistance was proposed in [12] based on model reference adaptive system schemes [13]. Since some of

the above approaches require a derivative of the function, which is not always available or may be difficult to

calculate, deterministic approaches often cannot find optimal solutions [1].

Recently, in solving induction motor parameter estimation problems, some new global optimization

techniques, such as the evolutionary algorithm [14], genetic algorithm (GA) [15,16], differential evolution [17],

particle swarm optimization (PSO) [18], ant colony optimization [19], harmony search (HS) [20] and big bang-big

crunch [21], hybrid GA [22], and dynamic encoding algorithm for search [23], were proposed [1]. Moreover, the

charged system search (CSS) is the most recent metaheuristic algorithm, which utilizes the Newtonian motion

law in additional to electrical physics laws to direct the agents in order to recognize the optimum locations [24].

In this study, the CSS, differential evolution algorithm (DEA), PSO, and GA techniques were applied to

estimate induction motor parameters. In the implementation of the techniques, 2 different induction motors,

the squirrel-cage rotor and wound-rotor, are used. The 30-kW wound-rotor induction motor parameters are

taken from [25] and the 37-kW squirrel-cage induction motor parameters are taken from [6].

In the literature, the CSS algorithm is generally used in civil engineering problems. There is no study

where the CSS algorithm was applied for the estimation of induction motor equivalent circuit parameters based

on torque values (Tst ,Tmax , andTn). As a preliminary work, in this study, the CSS algorithm was applied to

estimate induction motor parameters.

2. Optimization techniques

2.1. Charged system search

Kaveh and Talatahari proposed the CSS algorithm [24,26]. The use of this algorithm is growing and its

application is extending to various optimization problems [27–35]. A typical algorithm for the CSS is shown in

Figure 1.

The CSS algorithm depends on Coulomb and Gauss laws and movement governing the motion laws of

Newtonian mechanics. This algorithm can be considered as a multiagent approach, where each agent is a

charged particle (CP). Each CP is assumed as a sphere with radius a and a proper charge density, and can be

expressed as follows [30]:

qi =
fit(i)− fitworst

fitbest − fitworst
, i = 1, 2, 3, ..., N. (1)

Here, fit best and fit worst are the best and worst fitness values of all of the particles, fit(i) is the fitness of agent

i , and N is the total number of CPs. The initial positions of the CPs in search space are determined randomly

and Eq. (2) is used for determination.

x
(o)
i,j = xi,min + randij .(xi,max − xi,min), i = 1, 2, 3, ..., N (2)

Here, x
(0)
i,j , determines the initial value of variable number i for CP number j , xi,min and xi,max are the

minimum and maximum allowed values for variable number I , and rand ij is a randomly generated number
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Figure 1. Flowchart of the CSS [27].

within the interval (0,1). The initial velocities of the CPs are taken as below:

v
(o)
i,j = 0, i = 1, 2, 3, ..., N. (3)

Each CP applies a force on the other CPs according to Coulomb’s law. The magnitude of this force is

proportional with the distance between the CPs for the CP within the sphere, while it is inversely proportional
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with the square of the distance between the particles for a located CP outside of the sphere. These forces may

come out as attracting or repelling and can be found with the ar ij force parameter, defined as below:

ar ij =

{
+1 kt < randij
−1 kt > randij

. (4)

The +1 value in Eq. (4) shows that the force is attracting and the –1 value shows that the force is repelling,

and kt is the parameter controlling the effect of the force type. Usually, the force coming out as attracting

gathers the CPs in a certain area within the search area, while the repelling force tries to distribute the CPs.

As a result, the force can be defined as below:

Fj =
∑
i,i̸=j

(
qi
a3

rij .i1 +
qi
r2ij

.i2

)
.arij .pij . (Xi −Xj)

⟨ j = 1, 2, 3, ..., N
i1 = 1, i2 = 0 ⇔ rij < a
i1 = 0, i2 = 1 ⇔ rij ≥ a

. (5)

Here, F j is the force value acting on the j th CP and rij is the distance between 2 CPs, defined as follows:

rij =
∥Xi −Xj∥

∥(Xi −Xj) /2−Xbest∥+ ε
. (6)

Here, X iand X j are the positions of CPs i and j , respectively; X best is the position of the best current CP;

and ε is a small positive number taken to prevent singularity. pij determines the moving possibility of each

CP to the others, as below:

pij =

{
1 fit(i)−fitbest

fit(j)−fit(i) > rand ∨ fit(i) > fit(j)

0 else
. (7)

As a result, the forces coming out and the motion laws determine the new CP positions. At this stage, each CP

moves toward its new position under the effect of the forces and its previous velocity, as below:

Xj,new = randj1.ka.
Fj

mj
.∆t2 + randj2.kv.Vj,old.∆t+Xj,old, (8)

Vj,new =
Xj,new −Xj,old

∆t
. (9)

Here, ka is the acceleration coefficient, kv is the velocity coefficient controlling the influence of the previous

velocity, and rand j1 and rand j2 are 2 random numbers distributed to the sequence uniformly within the interval

(0,1). If each CP moves out of the CP search space, its position is corrected by a handling approach based on

HS. Moreover, the charged memory is used for recording the best results.

2.2. Differential evolution algorithm

The DEA is a heuristic optimization technique depending on the GA in the means of operation. It was developed

by Storn and Price in 1995 [36]. Specifically, in problems where continuous data are in question, it gives efficient

results. A new individual is obtained by putting chromosomes into the operators one by one (not operating

depending on population). During this operation, mutation and crossover operators are used. If the convenience

of the new individual is better than that of the old one, the old individual is conveyed to the next generation

[37]. The flowchart of the algorithm is given in Figure 2 [38].
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Figure 2. Flowchart of the DEA.

The parameters used in the DEA are population size NP, number of variables (number of genes) D ,

generation (1, 2, 3,. . . ., gmax)g , crossover rate CR, and scaling factor F [38].

The operation steps of the DEA are creation of the initial population, mutation, crossover, and selection.

The conduction of these operations is explained below [39–45].

2.2.1. Creation of the initial population

In order to produce new chromosomes in the DEA, 3 chromosomes, with the exception of the corresponding

chromosome, are needed. Therefore, the population size should be greater than 3 (NP > 3). The production

of the initial population, consisting of NP pieces of chromosomes with D dimensions, is found using Eq. (10).

xj,i,g=0 = x
(l)
j + randj [0, 1].(x

(u)
j − x

(l)
j ) (10)

Here, xj,i,g is the j parameter of the i chromosome in the g generation, and (x
(l)
j , x

(u)
j )shows the lower and

upper values of the variables.

2.2.2. Mutation

Mutation is making random changes to the chromosome genes. In the DEA, 3 chromosomes that are different

from each other and the weighted difference chromosome are selected for mutation (r1 ,r2 , r3). The difference
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of the first 2 is taken and is multiplied by F . In general, F is valued at between 0 and 2. The weighted

difference chromosome and third chromosome are added.

nj,i,g+1 = xj,r3,g + F.(xj,r1,g − xj,r2,g) (11)

Here, nj,i,g+1 is the intermediate chromosome exposed to the g + 1 mutation and crossing, and r1,2,3 ∈
{1, 2, 3, . . . , NP} r1 ̸= r2 ̸= r3 ̸= iare the randomly chosen chromosomes that will be used for new chromosome

generation.

2.2.3. Crossover

The different chromosomes produced by the mutation and the xi,g chromosome are used to produce a new

chromosome (ui,g+1). Genes for the trial are selected from different chromosomes with CR possibilities and

from the corresponding chromosome with (1 – CR) possibility. The j = jrand condition is used for guaranteeing

at least one gene to be taken from the recently produced chromosome. The randomly selected gene in the

j = jrand point is selected from nj,i,g+1 without taking the CR value into consideration.

xj,u,g+1 =

{
xj,n,g+1 If rand[0, 1] ≤ CRor j = jrand
xj,i,g otherwise

}
(12)

2.2.4. Fitness function

Using the mutation and crossover, 3 chromosomes are used together with the target chromosome; a new (trial)

chromosome is obtained. The chromosome that will be conveyed to the new generation (g = g+1) is determined

by looking at the suitability value. The fitness function of the target chromosome is already known. The

objection function value of the problem is calculated as a suitability function.

2.2.5. Selection

The highly suitable chromosome is conveyed to the next generation. The cycle continues until (g = gmax) and,

when the cycle becomes gmax , the current best individual is taken as the solution.

xi,g+1 =

{
xu,g+1 If f(xu,g+1) ≤ f(xi,g+1)
xi,g else

}
(13)

2.2.6. Stopping criterion

The aim is continuously acquiring chromosomes with better suitability values and having the optimum value (or

getting close). This cycle is continued until g = gmax and stopping the algorithm depends on the determined

maximum iteration number.

The GA and PSO process algorithms, which are used for parameter estimation, were taken, respectively,

from [46] and [47], and the parameter estimation of the induction motor was done using the formulas therein.

3. Problem formulation

The actual values of the starting torque Tst (act), maximum torque Tmax (act), and nominal torque Tn (act) are

used to estimate the stator resistance and leakage reactance (R1 ,X1), rotor resistance and leakage reactance

(R2 , X2), and magnetizing reactance (Xm) parameters. The actual values are the literature values of the

motors. The induction motor one-phase exact equivalent circuit model is shown in Figure 3.
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Figure 3. One-phase exact equivalent circuit model.

The torque functions [Tn (cal),Tst (cal), and Tmax (cal)] can be written as follows [48]:

Tn (cal) =
KR2

s
[(
Rth + R2

s

)2
+X2

] , (14)

Tst (cal) =
KR2

(Rth +R2)
2
+X2

, (15)

Tmax (cal) =
K

2
[
Rth +

√
R2

th +X2
] . (16)

Here, Tn (cal),Tst (cal), andTmax (cal) stand for the nominal, starting, and maximum torques, respectively, with

the following set of equations:

K =
3V 2

th

ωs
, Vth =

Xm

X1 +Xm
Vph, Rth =

Xm

X1 +Xm
R1, Xth =

Xm

X1 +Xm
X1, X = X2 +Xth. (17)

Here, Vth , Rth , and Xth are the Thevenin voltage, resistance, and reactance, respectively. K is the constant

coefficient, ωs is the angular velocity, s is the slip, and Vph is the supply voltage. The fitness value of each of

the motor torque equations is given in Eq. (18).

E1 =

∣∣∣∣Tn(act)− Tn(cal)

Tn(act)

∣∣∣∣
E2 =

∣∣∣∣Tst(act)− Tst(cal)

Tst(act)

∣∣∣∣ (18)

E3 =

∣∣∣∣Tmax(act)− Tmax(cal)

Tmax(act)

∣∣∣∣
Here, E1 , E2 , and E3 show the error in the nominal torque, error in the starting torque, and error in the

maximum torque, respectively. The total error (ET ) is given in Eq. (19).

ET = |E1 + E2 + E3| (19)

The specifications of the motors used in the modeling are given in Table 1.
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Table 1. Specifications of the motors.

Specifications Motor 1 Motor 2
Nominal power (kW) 30 37
Nominal voltage (V) 460 460
Nominal frequency (Hz) 60 60
Number of poles 4 4
Nominal speed (rpm) 1740 1705
Cage type Wound-rotor Squirrel-cage

In all of the methods, at the beginning of the estimation process, the equivalent circuit parameter values

are assigned randomly. Error values are checked at every iteration and the minimum error values are obtained

by keeping the best parameter values. The equivalent circuit parameters of the 2 motors obtained with the 4

methods and actual values of these parameters are given in Table 2. The actual torque values and calculated

torque values are shown in Table 3.

Table 2. Comparison of CSS, DEA, PSO, and GA equivalent circuit parameter results with the actual values for motors

1 and 2.

CSS
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

R1 0.25 0.2449278895 2.028844 0.087 0.082946564751 4.659120
R2 0.2 0.1894845257 5.257737 0.228 0.221580835077 2.815423
X 1 0.9532414585 4.675854 0.604 0.606414293453 0.399717
Xm 30 9.1881489419 69.372836 13.08 13.730553467747 4.973650

DEA
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

R1 0.25 0.2486516245 0.539350 0.087 0.0835084377 4.013289
R2 0.2 0.1952899383 2.355030 0.228 0.2241465675 1.690101
X 1 0.9866666553 1.333334 0.604 0.6070739183 0.508926
Xm 30 33.888837422 12.962791 13.08 13.0812247645 0.009363

PSO
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

R1 0.25 0.2451853615 1.9258554 0.087 0.0839569063 3.497808
R2 0.2 0.1898968813 5.05155935 0.228 0.2264489983 0.680263
X 1 0.9570055972 4.29944028 0.604 0.6092982790 0.877198
Xm 30 10.9932328108 63.35589063 13.08 13.1422295778 0.475761

GA
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

R1 0.25 0.253165663877 1.26626555 0.087 0.0861628266 0.962268
R2 0.2 0.202805246167 1.40262308 0.228 0.2375407538 4.184541
X 1 1.00624377900 0.62437790 0.604 0.6296539100 4.247336
Xm 30 14.749359845505 50.83546718 13.08 15.0626354814 15.15776
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Table 3. Comparison of CSS, DEA, PSO, and GA torque results with the actual values for motors 1 and 2.

CSS
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

Tst 163.11 163.1099999558 2.708356e-8 529.708 529.7080887509 1.675470e-5
Tmax 431.68 431.6800000193 4.486425e-9 773.987 773.9868719304 1.654673e-5
Tn 185.20 185.1999999592 2.198434e-8 234.55 234.5501880796 8.018743e-5

DEA
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

Tst 163.11 163.1099999996 2.452332e-10 529.708 529.7079528896 8.893638e-6
Tmax 431.68 431.6800000121 2.803928e-11 773.987 773.9869326887 8.696692e-6
Tn 185.20 185.2000000001 8.153347e-11 234.55 234.5497933898 8.808789e-5

PSO
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

Tst 163.11 163.1065040937 2.143281e-3 529.708 529.7043502484 6.890119e-4
Tmax 431.68 431.6801038641 2.406043e-5 773.987 773.9652578505 2.809110e-3
Tn 185.20 185.2026973711 1.456463e-3 234.55 234.5535738994 1.523726e-3

GA
Motor 1 Motor 2

Parameters
Actual

Estimation values Error (%)
Actual

Estimation values Error (%)
values values

Tst 163.11 163.089203340828 12.75008e-3 529.708 529.7145521087 1.236928e-3
Tmax 431.68 431.690235169530 2.371008e-3 773.987 773.9774822166 1.229708e-3
Tn 185.20 185.191088011981 4.812088e-3 234.55 234.5654525646 6.588175e-3

When the results obtained for both motors are examined, it is seen that the error values of the equivalent

circuit parameters are at acceptable levels. Here, compared with the other parameters, the error values of the

Xm parameter are greater. However, the Xm value has no direct effect on the torque formulation. Thus, the

error values of theXm parameter can be ignored.

When examined in terms of the torque calculation, it is seen that the DEA obtains the best result. The

torque values obtained by the CSS are close to those of the DEA. The biggest error values are obtained from

the GA method.

The change of fitness values according to the iteration is shown in Figures 4 and 5 for motors 1 and 2,

respectively.

When Figure 4 is examined, it is seen that the DEA method converges at the smallest iteration number.

After the DEA, the CSS algorithm has the best convergence value for motor 1. It is seen that the PSO algorithm

converges at the 125th iteration. However, it is seen that the GA is not able to reach the convergence values.

When Figure 5 is examined, it is seen that the DEA again has the best convergence. It is seen that the

CSS algorithm similarly converges to the motor 2 value at the 55th iteration, and the PSO algorithm converges

at the 130th iteration. It is also seen that the GA does not converge.
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Figure 4. Iteration number versus the fitness value for motor 1.

Figure 5. Iteration number versus the fitness value for motor 2.

The slip-torque curves drawn depending on the parameters found by the actual torque values and

estimation values are shown in Figures 6 and 7. When examined in terms of the minimum error values,

the 4 methods are seen to have caught the actual values with very small differences.

The total error values that occurred in the torque values for motor 1 for each method are shown in

Figure 8.
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Figure 6. Slip versus torque for motor 1. Figure 7. Slip versus the torque for motor 2.
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When the total error values given for motor 1 are examined, it is seen that the values obtained by the

GA as a result of 31 operations are bigger than the values obtained by the other 3 methods. It is seen that the

maximum error value is obtained by the GA at the 30th operation, and the minimum error value is obtained

at the 8th operation. It is seen that, after the GA, the biggest error values are obtained by the PSO algorithm.

However, the lowest error values are obtained in the parameter estimation done by the DEA and CSS algorithm.

In the operations done by the 4 methods, the smallest error value is obtained by the DEA at its 19th operation.

However, it is seen that the examined CSS algorithm has values close to those of the DEA, which gives the

smallest error values.

The total error values that occurred in the torque values for motor 2 for each method are shown in

Figure 9.
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Figure 9. Distribution of the total error of the 4 methods for motor 2 (for torque values).
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When all of the error values given for motor 2 are examined, it is seen that the values are similar to the

distribution of total error obtained for motor 1. While the minimum error value is obtained from the DEA at
its 4th operation, the maximum error value is obtained by the GA at its 8th operation. The error value of the

CSS algorithm is close to that of the DEA.

The CPU times obtained by the 31 operations of the 4 methods are given in Figures 10 and 11. It is seen

that the GA has the longest solution time and the PSO has the shortest solution time. The solution times of

the 4 methods are seen to be less than 1 s for both motors.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

C
P

U
 t

im
e 

[s
]  

Number of trial

GA

DEA

CSS

PSO

Figure 10. Distribution of the CPU time of the 4 methods for motor 1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

C
P

U
 t

im
e 

[s
] 

 

Number of trial

GA

DEA

CSS

PSO

Figure 11. Distribution of the CPU time of the 4 methods for motor 2.

When Table 4 is examined, it is seen that the maximum total error value is obtained from the GA and

the total minimum error value is obtained from the DEA. The CSS algorithm gives the best results after the

DEA. When the standard deviation values are examined, the DEA and CSS algorithm have the lowest standard

deviation at 31 operations.

Table 4. Comparison of the CSS performance with other the methods for motor 1 (for torque values).

Methods Maximum error Average error Minimum error
Standard
deviation

CSS 0.000017208796 0.000005448508 0.000000053554 4.85183e-06
DEA 0.000000193725 0.000000082610 0.000000003131 6.13198e-08
PSO 0.042305520373 0.024503987984 0.003623805767 0.010199809
GA 0.284213252677 0.106073346508 0.019933179330 0.070428281
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The equivalent circuit parameters and average percent error values obtained by the DEA and GA in [6]

are given comparatively in Table 5, with the values found by the CSS algorithm in this study.

Table 5. Comparison of the equivalent circuit parameters (DEA, GA, and CSS).

Reference values [6] Present study’s values
DEA GA CSS

Parameters
Actual Estimation Error Estimation Error Estimation Error
values values (%) values (%) values (%)

R1 0.087 0.087 0 0.084 3.448 0.082. . . 4.659. . .
R2 0.228 0.238 4.385 0.239 4.824 0.221. . . 2.815. . .
X 0.604 0.631 4.470 0.633 4.801 0.606. . . 0.399. . .
Xm 13.08 13.291 1.163 13.304 1.712 13.730. . . 4.973. . .
Average error 2.617 3.696 3.211

The error value found by the CSS is seen to converge to the average error value found by the DEA method

used in [6]; however, it is seen to converge with a better result than that found by the GA.

When the torque values in Table 6 are considered, the error values found by the CSS are seen to give

better results than those found by the DEA and GA.

Table 6. Comparison of the torque values (DEA, GA, and CSS).

Reference values [6] Present study’s values
DEA GA CSS

Parameters
Actual Estimation Error Estimation Error Estimation Error
values values (%) values (%) values (%)

Tst 529.708 531.659 0.368 530.635 0.175 529.708 1.675e-5
Tmax 773.987 776.352 0.305 777.149 0.408 773.986 1.654e-5
Tn 234.55 234.863 0.133 235.076 0.224 234.550 8.018e-5
Average error 0.268 0.269 3.782e-5

4. Conclusion

In this study, the CSS algorithm for estimation of the equivalent circuit parameters of an induction motor was

applied for the first time in the literature. The obtained results were compared with the DEA, PSO, and GA

for 2 different motors. The known equivalent circuit parameters and slip-torque characteristics of wound-rotor

motor were obtained from [25] and the required values were taken from these characteristics. For the squirrel-

cage motor, the equivalent circuit parameters were obtained from [6]. The reason for using the literature data

is that the catalog values given by the manufacturer cannot model the motor properly. It is not possible to

obtain convergence from the motor catalog values of various manufacturers.

For motor 1, the CSS algorithm and DEA converge faster than the other algorithms. For motor 2,

the CSS algorithm catches the optimum point at 55 iterations and the DEA catches the optimum point at

40 iterations. As seen from Figures 6 and 7, the estimated equivalent circuit parameters exactly model the

slip-torque characteristics of both motors. From the obtained results, it is observed that if manufacturers give

the exact values for motors, the CSS algorithm can estimate the equivalent circuit parameters properly.

This study shows hopeful results that the CSS algorithm can be used to estimate the parameters of other

types of electrical machines as well.
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[46] C. Yaşar, S. Özyön, “Solution to scalarized environmental economic power dispatch problem by using genetic

algorithm”, Electrical Power and Energy Systems, Vol. 38, pp. 54–62, 2012.

[47] S. Özyön, C. Yaşar, H. Temurtaş, “Particle swarm optimization algorithm for the solution of nonconvex economic

dispatch problem with valve point effect”, 7th International Conference on Electrical and Electronics Engineering,

pp. 101–105, 2011.

[48] M. Ojaghi, M. Mardani, “Parameter estimation of induction motor using shuffled frog leaping and imperialistic

competitive algorithms”, 26th International Power System Conference, pp. 1–9, 2011.

1192

http://dx.doi.org/10.1080/08839514.2011.534593
http://dx.doi.org/10.1080/08839514.2011.534593
http://dx.doi.org/10.1016/j.camwa.2011.01.029
http://dx.doi.org/10.1016/j.camwa.2011.01.029
http://dx.doi.org/10.1016/j.ijepes.2011.12.020
http://dx.doi.org/10.1016/j.ijepes.2011.12.020

	Introduction
	Optimization techniques
	Charged system search
	Differential evolution algorithm
	Creation of the initial population
	Mutation
	Crossover
	Fitness function
	Selection
	Stopping criterion


	Problem formulation
	Conclusion

