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Abstract: Brain magnetic resonance imaging (MRI) images support important information about brain diseases for

physicians. Morphological alterations in brain tissues indicate the probable existence of a disease in many cases. Proper

estimation of these tissues, measuring their sizes, and analyzing their image patterns are parts of the diagnosis process.

Therefore, the interpretability and perceptibility level of the MRI image is valuable for physicians. In this paper, a new

image contrast enhancement algorithm based on linear combinations is presented. The proposed algorithm is focused on

improving the interpretability and perceptibility of the image information. An MRI image is presented to the algorithm,

which generates a set of images from this MRI image. After this step, the algorithm uses the linear combination

technique for combining the image set to generate a final image. Linear combination coefficients are generated using

the artificial bee colony algorithm. The algorithm is evaluated by 4 different global image enhancement evaluation

techniques: contrast improvement ratio (CIR), enhancement measurement error (EME), absolute mean brightness error

(AMBE), and peak-signal-to-noise ratio (PSNR). During the evaluation process, 2 case studies are performed. The first

case study is performed with 3 different image sets (T1, T2, and proton density) presented to the algorithm. These sets

are obtained from the Brainweb simulated MRI database. The algorithm shows the best performance on the T1 image

set with 5.844 CIR, 6.217 EME, 15.045 AMBE, and 22.150 dB PSNR scores as average values. The second case study is

also performed with 3 different image sets (T1-fast low-angle shot sequence, T1-magnetization-prepared rapid acquired

gradient-echoes (MP-RAGE), and T2) obtained from the The Multimedia Digital Archiving System public community

database. The algorithm performs best with the T1-MP-RAGE modality images with 6.983 CIR, 17.326 EME, 3.514

AMBE, and 30.157 dB PSNR scores as average values. In addition, this algorithm can be used for classification tasks

with proper linear combination coefficients, for instance, segmentation of the white matter regions in brain MRI images.

Key words: Image contrast enhancement, linear combination, artificial bee colony algorithm, image processing, MRI,

multiple sclerosis

1. Introduction

Magnetic resonance imaging (MRI) technology has become a vital tool for clinical diagnosis in recent years. MRI

technology is still advancing with new scanning and sequencing techniques. New innovations in this technology

brought new opportunities and new improvements in diagnosing techniques. MRI technology supports the early

diagnosis of many types of diseases, such as breast cancer, lung cancer, brain tumors, multiple sclerosis, and

neurological irregularities. MRI technology has a noninvasive nature; hence, diagnosis techniques based on

MRI are preferably applied to brain disease diagnosis. Various diseases appear as morphological alterations in
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brain tissues. In the diagnosis process, proper estimation of these tissues, measuring their sizes, or analyzing

their image patterns is crucial. Every diagnosis needs specific attention on specific regions of the brain image.

For instance, when diagnosing multiple sclerosis, white matter (WM) regions are important and need to be

examined more carefully. In some cases, the pattern of the cerebral cortex (CC) in the brain image needs to

be focused on. Therefore, MRI images are segmented into specific regions for intense analyses. In some cases,

unrelated regions in MRI images need to be removed, such as the skull, scalp, or fatty tissues. As a result,

segmenting images as accurately as possible is beneficial.

There is a large variety of brain image segmentation algorithms reported in the literature. These algo-

rithms can be categorized under methods based on intensity, atlas, region, probability, and hybrid methods [1–3].

These methods, especially the intensity- and region-based ones, have some difficulties due to inhomogeneity in

intensity values, artifacts, and noise [4]. During the segmentation process, the effects of noise and intensity

can cause overlaps on neighboring tissue classes. These overlaps induce erroneous segmentations [5]. Generally,

to overcome this kind of problem, segmentation algorithms are preceded by a preprocessing step that includes

image contrast enhancement algorithms. Image contrast enhancement is a common issue in image processing

and computer vision. The main purpose of image enhancement in medical image processing is to adapt or

improve the visual quality of images, for human eye sensitivity [6]. Moreover, improving the segmentation and

classification success in semiautomated or automated image analysis systems is beneficial.

Contrast enhancement techniques can be categorized into 2 types, spatial and frequency domain [7]. Some

of these techniques are defined as transformation functions, while others are defined as algorithms, including

qualitative and quantitative analysis of the source image. Spatial domain techniques are the most popular

techniques in image processing. Various spatial domain techniques are presented in the literature. Kabir et

al. developed a technique based on a mixture of global and local transformation functions [7]. Kosheleva et

al. modified the median filtering technique and developed the selective median filtering method [8]. Panetta

et al. used edge-preserving contrast enhancement [9]. Chen et al. studied an automatic method for optimized

image contrast enhancement [10]. Among these techniques, spatial bandpass filtering [11] and unsharp masking

(USM) [9] can also be counted.

The methods mentioned above are successful and powerful, but brain MRI images have special properties,

so not all techniques can reach the desired success rates. For instance, intensity levels of the skull affect the

entire image histogram. Hence, extra attention is required for image contrast enhancement tasks in brain MRI.

Another issue is the sequencing technique used to obtain a MRI image; for example, intensity values of specific

tissues vary among the proton density (PD), T1, or T2 sequences. Thereby, a technique can be successful in

the PD sequence but can also fail in the T2 sequence. To overcome these kinds of problems, specific contrast

enhancement techniques have been developed in the literature. Khademi et al. developed an automated contrast

enhancement technique that specifically works on fluid attenuated inversion recovery MRI [5]. Yang et al. used

local bi-histogram equalization (HE) [12] and Vidaurrazaga et al. developed a technique based on the linear

combination of wavelet coefficients [13].

This study aims to develop an adaptive technique for enhancing the contrast of the PD, T1, and T2

modality MRI images. The algorithm can be summarized in 3 main parts. First, the algorithm calculates

index values and coefficients such as the median value of the histogram and darkening coefficients of the MRI

image. Second, the algorithm generates 2 more images using these values. Next, some spatial filters are

applied on the generated images. Finally, the enhanced image is obtained by the linear combination of the

filtered images. Linear combination coefficients used by the algorithm are produced by the artificial bee colony
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(ABC) algorithm developed by Karaboğa et al. [14,15]. The success of the algorithm is evaluated by 4 global

contrast enhancement evaluation techniques: peak-signal-to-noise ratio (PSNR), enhancement measurement

error (EME), absolute mean brightness error (AMBE), and contrast improvement ratio (CIR).

2. Methodology

The proposed method is an algorithm based on histogram adaptation methods. This algorithm is named

the contrast enhancement using linear image combinations algorithm (CEULICA). It uses a grayscale image

represented by integer values as an input and performs 19 steps for generating an output with the same data

structure features. A flowchart of the algorithm is shown in Figure 1.

The original image presented to the algorithm is defined as g (x, y), and all images in the following

formulations are defined as 2-dimensional matrices. The algorithm starts with applying an USM operation to

the original image, as defined in Eqs. (1) and (2):

g (x, y) = f (x, y)− fsmooth(x, y), (1)

fsharp (x, y) = f (x, y) + kg(x, y), (2)

while k is a scaling constant between 0.2–0.7 (in this study 0.5 is preferred).

After this step, the algorithm calculates the median value of the sharpened image and calculates the

required constants as defined below:

The histogram of the sharpened image is defined as h(x), (3)

mh is the index of the median value of h(x), (4)

hl(x) is the lower values than mh in h(x), (5)

hu(x) is the higher values than mh in h(x), (6)

mu is the index of the median value of hu(x), (7)

ml is the index of the median value of hl(x), (8)

d (x, y) = fsharp (x, y)−ml, (9)

l (x, y) = fsharp (x, y) +mu, (10)

where d (x, y) is the darkened version of fsharp (x, y) and l (x, y) is the lightened version of fsharp (x, y). After

generating these versions of the original image, the algorithm uses these images and generates a new set of

images using linear combination techniques.

c1 (x, y) =∝1 fsharp (x, y)+ ∝2 d (x, y) (11)

c2 (x, y) =∝3 fsharp (x, y)+ ∝4 l (x, y) (12)

c3 (x, y) =∝5 c1 (x, y)+ ∝6 c2 (x, y) (13)

c4 (x, y) =∝7 c3 (x, y)+ ∝8 fsharp (x, y) (14)

c5 (x, y) = c4 (x, y)−ml (15)
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Figure 1. Flowchart of the algorithm.
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c6 (x, y) = median {c5 (x, y) , (x, y) ∈ w (16)

c7 (x, y) =∝9 c6 (x, y) (17)

c8 (x, y) = c7 (x, y) [ (top color) ∗
bottom color

255
] (18)

g (x, y) =∝10 c5 (x, y)+ ∝11 c8 (x, y) (19)

The final output image is represented as g(x, y), and w is the neighborhood of (x, y). The coefficients

{∝1 ∝2, . . . ∝11} are called as linear combination coefficients and they are produced by the ABC algorithm

[15]. The ABC algorithm is used for finding the optimum values of these coefficients in this study. While finding

the optimum values, the universal image quality index (UIQI) [16–18] value is used in the fitness function.

3. Generating the linear combination coefficient sets

The algorithm explained in the previous section requires 11 coefficients named linear combination coefficients

{∝1 ∝2, . . . ∝11} . These coefficients affect the quality of the final image, and so the values of these coefficients

must be computed appropriately. In this study, the coefficient finding task is handled as a ‘finding optimal

solution in a search space’ problem. The nature of the CEULICA requires an intense search of the coefficients,

because each coefficient affects the others and sometimes their values appear to be close. Thus, a search

algorithm based on neighborhood calculations is more suitable than other methods. The ABC algorithm is

preferred because of its precision and search capacities.

The ABC algorithm simulates the food search task in a bee colony. While executing the algorithm, there

are 3 types of bees. They are defined as employed bees, onlooker bees, and scout bees. Onlooker and scout

bees are also defined as unemployed bees, all food source positions are discovered by scout bees, and the nectar

of food sources is exploited by employed bees. Onlooker bees watch the employed bees to find the food sources

[15].

The general algorithmic structure of the ABC optimization approach is given as follows [15]:

Initialization phase

REPEAT

Employed bee phase

Onlooker bee phase

Scout bee phase

Memorize the best solution achieved so far

UNTIL (cycle = maximum cycle number or a maximum central processing unit time)

The algorithm needs a fitness function for evaluating the success of the function with the values found

after each search phase. The fitness function depends on the search task and it is generated specifically for the

problem.

In this study, linear combination coefficients are imitated as food sources for employed bees. A fitness

function for evaluating the adequacy of the coefficients is defined. The UIQI is used in the fitness function

[16–18]. The UIQI function is a general image enhancement measuring function defined as:

The UIQI is defined as follows [16–18]:

x = {xi |i = 1, 2, ..., N } and y = {yi |i = 1, 2, ..., N } , (20)
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Q =
4σxyxy

(σ2
x + σ2

y) [(x)
2 + (y)2]

, (21)

x =
1

N

N∑
i=1

xi, y =
1

N

N∑
i=1

yi, (22)

σ2
x =

1

N − 1

N∑
i=1

(xi − x)2, σ2
y =

1

N − 1

N∑
i=1

(yi − y)2, (23)

σ2
xy =

1

N − 1

N∑
i=1

(xi − x)(yi − y). (24)

A source image and an enhanced image are presented to the UIQI function as parameters. Next, the

UIQI function computes a value that is scaled between 0 and 1. In this scale, 0 means that the compared images

are completely different and 1 means that the compared images are identical. If the value is closer to 1, this

indicates that the enhancement is not sufficient. If the value is closer to 0, this indicates image lost information

during the enhancement process.

During the experimental evaluations of the algorithm, values between 0.45 and 0.55 are accepted as

optimum values. For obtaining the final value of the fitness function, the UIQI value is presented to a Gaussian

function for computing the fitness of the optimum solution candidates. The Gaussian function is defined as

follows:

f (x) =
1

σ
√
2π

e−(x−µ)2/(2σ2). (25)

The graphical representation of our fitness function is as in Figure 2.
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Figure 2. Graphical representation of the fitness function.

4. Brain image enhancements with the CEULICA

A magnetic resonance machine generates different types of images with different sequencing techniques. A MRI

sequence comprises radio frequencies and gradient pulses combined in an order to acquire data from the tissues

to form the image. There are many different sequencing techniques present in MRI technology. For example, the

1545
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T1, T2, PD, fast low-angle shot sequence (FLASH), and magnetization-prepared rapid acquired gradient-echoes

(MP-RAGE)can be counted.

Images obtained by MRI machines have different features depending on the sequencing techniques, and

so the image properties differ depending on the sequencing technique by which they are produced. For example,

Figures 3a–3c show the 86th coronal slice of the simulated multiple sclerosis MRI from the Brainweb database

[19–23], obtained with the T1, T2, and PD techniques, respectively. The histograms of the images are also

shown in Figures 3d–3f, respectively, where it is seen that the same slices from the same tissues with different

sequencing techniques have different properties.
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Figure 3. MRI images of the same slice: a) T1, b) T2, c) PD, d) histogram of T1, e) histogram of T2, and f) histogram

of the PD.
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In this study, the CEULICA needs different linear combination coefficients for different sequencing

techniques. For this purpose, different coefficient sets for different sequences are generated by the ABC

algorithm. After generating the coefficient sets, 2 case studies are performed with these sets. During the

case studies, all of the image slices in the databases are processed using the CEULICA for evaluating the

contrast enhancement performance of the algorithm. Next, the CEULICA generates a new enhanced image

dataset. The entire process is performed on the T1, T2, and PD images from the Brainweb database and T1-

MP-RAGE, T1-FLASH, and T2 modality images from the The Multimedia Digital Archiving System (MIDAS)

[24] database.

The algorithm uses different coefficient sets for different MR image modalities. The coefficient sets are

generated using the ABC algorithm is as follows:

Coefficient set for T1 (obtained from the Brainweb database), T1-MP-RAGE, and T1-FLASH (obtained

from the MIDAS database):

∝= {−1.3364, 0.1359, −0.7102, 0.2326, 0.2647, 2, −0.21608, 0.9881, 0.54097, −0.2644, 0.1186 }.

Coefficient set for T2 (obtained from the Brainweb and MIDAS databases):

∝= {−0.1211, 0.5576, −0.9834, −2, 1.4984, 0.5089, −0.2491, 1.3623, 0.5396, −0.7227, −0.4607}.

Coefficient set for the PD (obtained from the Brainweb database):

∝= {1.995,−1.093,−0.9758, 0.9074, 0.811,−0.4262, 1.0627,−0.0115,−1.0774,−1.7649, 1.649}.

Every set is specific for only the modality that they are generated for. In this paper, we only generate sets

for the T1, T2, and PD modalities, but more sets can be generated for different modalities. Coefficient sets

generated for the T1 images are also used for the T1-FLASH and T1-MP-RAGE modalities.

5. Experimental results

The main purpose of this study is developing a new image enhancing technique for improving image contrast

and helping segmentation tasks. The algorithm basically enhances the intensity level of tissues in brain MR

images, while reducing the intensity level of the background. In addition, this algorithm can also be used for

classification tasks with proper linear combination coefficients; for instance, segmentation of the WM regions in

brain MRI images.

During the evaluation process, 2 case studies are performed. The first case study is performed on the

Brainweb simulated brain image database [19]. The Brainweb database is a commonly used 3-dimensional

database provided online from the McConnell Brain Imaging Center of the Montreal Neurological Institute of

McGill University. The Brainweb database includes simulated MRI scans with 1-mm slice thickness, 3% noise,

and 20% nonuniformity of only 1 patient. The dataset includes T1 weighted, T2 weighted, and PD magnetic

resonance images subsets. Each subset contains 181 × 217 × 181 voxels. For evaluating the algorithm, 181

images (with 181 × 217 pixel resolution) are generated from every data subset. Each image among the 181

images is different from each other and so every image has different histogram properties. However, each image

displays the general properties of the subset they belong to.

The second case study is performed on the MIDAS designed database of MR brain images of healthy

volunteers [24]. Images are acquired on a 3T unit under standardized protocols. Images include T1 and T2
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acquired at 1 × 1 × 1 mm3 , magnetic resonance angiograpy acquired at 0.5 × 0.5 × 0.8 mm3 , and diffusion

tensor imaging using 6 directions and a voxel size of 2 × 2 × 2 mm3 . In this study, the T1-FLASH, T1-MP-

RAGE, and T2 sequences of the MIDAS database are used.

The algorithm’s performance is evaluated by 4 global image enhancement evaluation methods: the EME,

AMBE, PSNR [16–18], and CIR [5].

The evaluation methods can be formulized as follows:

EME [16–18] :

EME(f̂) = EMEΦ(f̂) =
1

k2

k∑
m=1

k∑
n=1

20 log2
max(f̂ [m, l])

min(f̂ [m, l])
. (26)

AMBE [16–18] :

AMBE = |E(X)− E(Y )| . (27)

CIR [5] :

CIR =

∑
(x,y)∈R |c (x, y)− c̃(x, y)|2∑

(x,y)∈R c (x, y)
2 . (28)

The CIR is defined as a percentage and c (x, y) and c̃(x, y) are the local contrast values before and after

enhancement, respectively. The local contrast value C (x, y) is computed as follows:

C (x, y) =
|p− a|
p+ a

, (29)

where p and a are the mean values of the center region (3 × 3) of the selected pixel and surrounding region

(7 × 7), respectively.

PSNR:

To compute the PSNR value, first the mean squared error must be calculated with the following equation:

MSE =

∑
M,N

[I1 (m,n)− I2 (m,n)]
2

M ·N
, (30)

where M and N are the number of rows and columns in the input images, respectively.

The PSNR value of an image is calculated by the following equation:

PSNR = 10 log10

(
R2

MSE

)
, (31)

where R is the maximum value that a pixel can get in the image. In this case, R is 255, which is the maximum

value that can be defined with 8 bits for the Brainweb database and 4096 for the MIDAS database because of
the 12-bit format of the database.

The values of these comparison criterions can be interpreted as follows:

Higher EME values indicate over enhancement and mean a local information loss. On the other hand, a

very low EME value indicates that hidden information, such as lesions, is not significantly enhanced [17].

For the AMBE, very low or the highest values indicate poor performance in contrast enhancement [17].
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The PSNR value compares the original image with the final image; the higher the PSNR value, the lower

the distortions in the image. In this study, the PSNR value is used to determine the effects of the compared

algorithms on noise in the MRI images.

The CIR defines the ratio of the enhancement between the original image and enhanced image; higher

values mean higher enhancement qualities [5].

Results generated by the evaluation algorithms depend on the dataset, in which the algorithms are applied

on; hence, the maximum, minimum, and optimum values are specific to the dataset.

Algorithms used in this comparison are the contrast limited adaptive HE (CLAHE), HE, and USM.

Formulas of CLAHE, HE, and USM methods are defined as follows:

Matrix form of the USM:

f(α) =
1

α+ 1

 −α α− 1 −α
α− 1 α+ 5 α− 1
−α α− 1 −α

 . (32)

CLAHE:

g = [gmax − gmin] p(f) + gmin, (33)

where gmax is the maximum pixel value, gmin is the minimum pixel value, g is the computed pixel value, and

p(f) is the cumulative probability distribution function.

HE:

pn =
number of pixels with intensity

total number of pixel
n = 0, 1, ..., L− 1. (34)

Histogram equalized image g will be defined by:

gi,j = floor ((L− 1)

fi,j∑
n=0

Pn. (35)

5.1. Case study 1

In case study 1, the performance of the CEULICA is evaluated with the Brainweb database. The slices in the

Brainweb datasets start from the front of the head, and a higher slice number means an interior brain slice from

the front to the end of the head.

Tables 1–3 represent the performance evaluation scores of the enhancement algorithms (CLAHE, HE,

USM, and CEULICA) with different sequencing techniques (T1, T2, and PD). The rows show the performance

scores of the enhancement algorithms and the columns show the different evaluation techniques (CIR, EME,

AMBE, and PSNR). The entire Brainweb database (181 slices) is processed by the enhancement algorithms.

Only a few slice numbers are shown in the tables for shortening the table size, but average values placed at

the end of the tables show the average scores of the evaluation techniques applied on all of the enhancement

algorithms.

Table 1 presents the enhancement comparisons of the Brainweb database with T1 modality, 1-mm slice

thickness, 3% noise, and 20% nonuniformity. The T1 data includes 181 images with 181 × 217 pixel resolution.

As seen in Table 1, the CEULICA is scored by 5.844 CIR, 6.217 EME, 15.045 AMBE, and 22.15 dB

PSNR as average values.
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Table 2 presents enhancement comparisons of the Brainweb database with T2 modality, 1-mm slice

thickness, 3% noise, and 20% nonuniformity. These data include 181 images with 181 × 217 pixel resolution.

As seen in Table 2, the CEULICA is scored by 4.736 CIR, 9.251 EME, 17.652 AMBE, and 12.68 dB

PSNR as average values.

Table 3 presents enhancement comparisons of the Brainweb database with PD modality, 1-mm slice

thickness, 3% noise, and 20% nonuniformity. These data include 181 images with 181 × 217 pixel resolution.

As seen in Table 3, the CEULICA is scored by 3.594 CIR, 4.871 EME, 16.209 AMBE, and 17.211 dB

PSNR as average values.

In Figure 4, the T1, T2, and PD versions of the 86th slice of the Brainweb database are shown in Figures

4a–4c, respectively, and the histograms of the enhanced images in Figures 4d–4f are shown in the same order.

5.2. Case study 2

In case study 2, the performance of the CEULICA was evaluated with the MIDAS database. For evaluation,

186 MRI scans are selected from the MIDAS database [24]. Table 4 represents information about every scan

obtained from the 97 volunteers. These scans are in the T1-FLASH, T1-MP-RAGE, and T2 modalities. Some

volunteers do not have some modality scans; thus 186 scans are investigated in this study. Every scan has a

different numbers of slices, and the total slice number of these 186 scans is 27,504. The images obtained from

the MIDAS database are in MetaImage format; thus images are represented as 12-bit integer values [24].

(a) (b) (c)
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(e)

Figure 4. MRI images of the same slice after enhancing with the CEULICA: a) T1, b) T2, c) PD, d) histogram of T1,

e) histogram of T2,
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(f)

Figure 4. MRI images of the same slice after enhancing with the CEULICA: f) histogram of the PD.

Tables 5–7 present our algorithm’s performance evaluation values with different sequencing techniques and

specific combination coefficients for the modalities, where rows show the performance scores of the algorithms

and columns show different evaluation algorithm scores.

The entire MIDAS database (186 files, 27,504 slices) is processed by the algorithms, but only a few results

are shown in the tables for shortening the table size. Average values placed at the end of the tables show the

average scores obtained with the entire evaluation process.

As seen in Table 5, the CEULICA is scored by 6.983 CIR, 17.326 EME, 3.514 AMBE, and 30.157 dB

PSNR as average values.

As seen in Table 6, the CEULICA is scored by 10.191 CIR, 12.82 EME, 2.884 AMBE and 30.948 dB

PSNR as average values.

As seen in Table 7, the CEULICA is scored by 2.705 CIR, 73.111 EME, 2.073 AMBE, and 20.24 dB

PSNR as average values.

The T1-MP-RAGE, T1-FLASH, and T2 versions of the 100th slice of the 28th volunteer in the MIDAS

database are shown in Figure 5.

The results shown in Tables 1–7 (case studies 1 and 2) present the enhancement performance of the

CEULICA, where it can be seen that the evaluation scores of the CEULICA are neither the highest nor the

lowest values, which is a desired result showing the success of the algorithm. The CEULICA’s performance

with the PD images is not sufficient among the other subsets. In case study 1, the algorithm achieves a

lower PSNR score than the USM algorithm in all of the evaluations, which means that the USM algorithm

suppresses the noise more successfully than the CEULICA with the Brainweb database. In contrast, in case

study 2, the algorithm achieved a higher PSNR score than the other enhancement algorithm, which means that

the CEULICA suppresses the noise more successfully with the MIDAS database. PSNR scores show that the

CEULICA is more successful with the MIDAS database than the Brainweb database.

Usage of the CEULICA for classification:

There is another yield of the algorithm. The CEULICA can also be used for classification tasks. For

this purpose, the only need is to find the right coefficient sets for classifications. With proper coefficients, the

algorithm can perform many different classifications. The following sets and images present this ability of the

algorithm. The 86th, 136th, and 181st images of the Brainweb database are used in this brief representation.

Thus, 3 coefficient sets are generated for the T1, T2, and PD modality images.
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Table 4. Information about the MIDAS database as slice number and pixels.

Volunteer T1-FLASH T1-MP-RAGE T2
number Slice Image size Slice Image size Slice Image size

number (pixels) number (pixels) number (pixels)
3 176 176 × 256 NA NA 128 192 × 256
4 176 176 × 256 NA NA 128 192 × 256
20 NA NA NA NA 128 192 × 256
21 176 176 × 256 NA NA NA NA
27 NA NA NA NA 128 192 × 256
28 176 176 × 256 128 208 × 256 128 192 × 256
29 176 176 × 256 128 208 × 256 NA NA
30 176 176 × 256 NA NA 128 192 × 256
31 NA NA 128 208 × 256 128 192 × 256
32 176 176 × 256 NA NA 128 192 × 256
34 176 176 × 256 128 208 × 256 NA NA
37 176 176 × 256 128 208 × 256 NA NA
41 176 176 × 256 128 208 × 256 128 192 × 256
42 NA NA 128 208 × 256 128 192 × 256
43 176 176 × 256 128 208 × 256 NA NA
46 NA NA 128 208 × 256 NA NA
47 176 176 × 256 128 208 × 256 NA NA
49 176 176 × 256 128 208 × 256 128 192 × 256
50 176 176 × 256 128 208 × 256 NA NA
53 176 176 × 256 NA NA 128 192 × 256
54 176 176 × 256 128 208 × 256 NA NA
56 176 176 × 256 NA NA NA NA
59 176 176 × 256 NA NA NA NA
60 NA NA 128 208 × 256 128 192 × 256
62 176 176 × 256 NA NA 128 192 × 256
66 NA NA 128 208 × 256 128 192 × 256
69 NA NA 128 208 × 256 128 192 × 256
72 NA NA NA NA 128 192 × 256
73 176 176 × 256 NA NA 128 192 × 256
74 176 176 × 256 160 208 × 256 128 192 × 256
75 NA NA 160 208 × 256 NA NA
76 NA NA 160 208 × 256 128 192 × 256
80 160 176 × 256 160 208 × 256 128 192 × 256
82 NA NA 160 208 × 256 128 192 × 256
83 NA NA 160 208 × 256 NA NA
86 NA NA NA NA 128 192 × 256
88 160 176 × 256 NA NA NA NA
89 160 176 × 256 160 208 × 256 128 192 × 256
90 160 176 × 256 160 208 × 256 NA NA
91 160 176 × 256 NA NA NA NA
96 NA NA NA NA 160 392 × 512
97 NA NA 160 208 × 256 NA NA
100 NA NA 160 208 × 256 NA NA
101 NA NA 160 208 × 256 160 392 × 512
102 NA NA NA NA NA NA
103 NA NA 160 208 × 256 NA NA
106 NA NA 160 208 × 256 160 392 × 512
107 NA NA 160 208 × 256 NA NA
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Figure 5. MRI images before and after enhancement with the CEULICA: a) T1-MP-RAGE, b) T1-FLASH, c) T2, d)

histogram of T1-MP-RAGE, e) histogram of T1-FLASH, f) histogram of T2, g) enhanced T1-MP-RAGE, h) enhanced

T1-FLASH and i) enhanced T2.
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Figure 5. MRI images before and after enhancement with the CEULICA: j) histogram of the enhanced T1-MP-RAGE,

k) histogram of the enhanced T1-FLASH, and l) histogram of the enhanced T2.

Coefficient set for the T1 modality:

∝= {1.426, –1.934, 0.24375, –1.358, 0.504, 2, 0.329, 0.421, 0.484, –1.097, –0.792} .

With this set, the algorithm enhances the WM region in the brain and the results are shown in Figures

6a–6c.

(a) (b) (c)

Figure 6. a) 86th image of the set, b) 136th image of the set, and c) 181st image of the set.

1560
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Coefficient set for the T2 modality:

∝= {3.622, 1.893, 2.069, 0.4756, –1.684, –4, 2.865, 0.387, 3.844, –3.844, –0.543}.
With this set, the algorithm enhances the CC region in the brain and the results are shown in Figures

7a–7c.

(a)
(b)

(c)

Figure 7. a) 86th image of the set, b) 136th image of the set, and c) 181st image of the set.

Coefficient set for the PD modality:

∝= {3.622, 1.893, 2.069, 0.475, –1.684, –4, 2.861, 0.387, 3.844, –3.844, –0.543}.
With this set, the algorithm enhances the whole brain and skull regions in the brain and the results are

shown in Figures 8a–8c.

(a) (b) (c)

Figure 8. a) 86th image of the set, b) 136th image of the set, and c) 181st image of the set.

6. Conclusions

In this paper, a new image contrast enhancement algorithm for brain MRI images is presented. The Brainweb

and MIDAS databases are used for evaluating the algorithm. In this study, the performance of the proposed

algorithm is evaluated on both 8-bit and 12-bit grayscale images. For the 8-bit image set, the Brainweb database

is used, which comprises T1, T2, and PD modality image scans of a multiple sclerosis simulated brain scan with

1-mm slice thickness, 3% noise, and 20% nonuniformity. This database includes 181 images with 181 × 217

pixel resolution.

For the 12-bit image set, the MIDAS database used. The MIDAS database consists of MR brain images

of healthy volunteers. Images are acquired on a 3T unit under standardized protocols. Images include T1 and

T2 acquired at 1 × 1 × 1 mm3 . In this study, the T1-FLASH, T1-MP-RAGE, and T2 sequences of the MIDAS

database are used.
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The algorithm operates with a coefficient set that differs from modality to modality. We generate these

sets with the ABC algorithm developed by Karaboğa et al. The algorithm needs different coefficient sets for

different tasks; for example, the coefficient set generated for the T1 modality images is not suitable for the

PD or T2 modality images. The coefficient set generated for the T1 images is also applied to the T1-FLASH

and T1-MP-RAGE images. In our work, we also generate sets for segmenting different regions in brain images,

where proper coefficient sets in the WM region, CC region, or the entire brain can be segmented or emphasized

in the image.

In case study 1, the algorithm performs best with the T1 modality images with 5.844 CIR, 6.217 EME,

15.045 AMBE, and 22.150 dB PSNR scores as average values. The algorithm also performs adequately well

with the T2 and PD images. Evaluation scores of the T2 images processed with the CEULICA are 4.736 CIR,

9.251 EME, 17.652 AMBE, and 12.680 dB PSNR scores as average values. Evaluation scores of the PD images

processed with the CEULICA are 3.594 CIR, 4.871 EME, 6.209 AMBE, and 17.211 dB PSNR. However, the

T2 and PD scores still need to be improved with extra research on linear combination coefficients.

In case study 2, the algorithm performs best with the T1-MP-RAGE modality images with 6.983 CIR,

17.326 EME, 3.514 AMBE, and 30.157 dB PSNR scores as average values. The algorithm’s performance with

the T1-FLASH modality images gives satisfactory results with 10.191 CIR, 12.820 EME, 2.884 AMBE, and

30.948 dB PSNR scores as average values. Evaluation scores of the T2-type images in the MIDAS database

processed with the CEULICA are scored as 2.705 CIR, 73.111 EME, 12.683 AMBE, and 20.240 dB PSNR as

average values.

The CEULICA can be used for classification tasks with proper linear combination coefficients, for instance,

classification of the WM regions in brain MRI images. For this purpose, the only need is to find the right

coefficient sets for classifications. Thus, 3 coefficient sets are generated: the T1, T2, and PD modality images.

In this study, a brief representation of this classification ability of the algorithm is done.

In future studies, we aim to generate effective coefficient sets for all image types. Moreover, we aim to

develop an adaptive version of the algorithm for automatically detecting and adapting itself for any given image.

Another aim is also developing a segmentation algorithm based on or supported by the CEULICA.
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