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Abstract: In this paper, a model-free controller with an observer is presented for a class of uncertain continuous-time

multiinput-multioutput nonlinear dynamic systems. The proposed model-free control law consists of 2 parts: the first

part is a linear control term used to specify the dynamics of the closed loop system, and the second part is a compensator

of the effects of uncertainties and external disturbances. The compensator is synthesized from an estimator of the effects

of uncertainties and disturbances based on the Lyapunov approach. In order to estimate the unavailable states of the

controlled system, a linear state observer is designed. All of the signals in the closed-loop system are proved to be

uniformly ultimately bounded using the Lyapunov stability theory. The effectiveness and feasibility of the proposed

control strategy are examined in a real-time application for a helicopter with 3 degrees of freedom.
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1. Introduction

Model-based control techniques have been studied in several papers in recent years and many algorithms have

been proposed. The real-time application of these control schemes requires a good understanding of process

dynamics and their operational environment. However, it is difficult to obtain a good mathematical model of

the process dynamics and to know the different disturbances acting on the process. Therefore, these techniques

cannot provide satisfactory results when applied to poorly modeled processes, which can operate in ill-defined

environments. In order to overcome this problem, model-free control techniques that can be directly applied to

complex processes have been given much attention in the control community during the last decade [1–9]. In [1],

Fliess and Join proposed a model-free control technique synthesized based on a local nonphysical model. Within

this scheme, an online numerical differentiator was used to estimate the derivatives of the output signal, and

this control law was applied in real time to control DC/DC converters [2]. In [3], Coelho presented a model-free

learning adaptive control based on the pseudogradient concept and optimization procedure for a general discrete

single-input and single-output nonlinear system. In [4], Kim and Lewis introduced a model-free H∞ control

design algorithm for unknown linear discrete-time systems using Q-learning, which is a reinforcement learning

method based on an actor-critic structure. In [5], Coelho et al. also suggested a model-free learning adaptive

control based on the pseudogradient concept with compensation using a radial basis function neural network and

optimization approach with the differential evolution technique. In [6], Qi et al. proposed an adaptive higher-

order differential feedback control approach of affine chaotic systems, which do not rely on the system’s model.
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In [7], Han proposed an active disturbance rejection control (ADRC) scheme using the proportional-integral-

derivative (PID) control algorithm and nonlinear control feedback. The proposed approach was a model-free

controller consisting of a simple differential equation used as a transient trajectory generator, a noise-tolerant

tracking differentiator, and an extended state observer to obtain the total disturbance estimation and rejection.

The stability analysis of the ADRC was addressed in [8] and an experimental validation of the ADRC can be

found in [9]. In [10–13], one can find other model-free control approaches.

In this paper, we introduce a model-free controller with an observer for a class of uncertain continuous-time

multiinput-multioutput (MIMO) nonlinear dynamic systems composed of q interconnected subsystems whose

states are not all available for measurements. The proposed model-free control law consists of a linear control

term used to specify the dynamics of the closed-loop system and a compensator of the effects of uncertainties

and external disturbances. In addition, a state observer is designed for estimating the states of the plant. The

overall closed-loop system stability is studied using the Lyapunov approach. The proposed controller guarantees

the boundedness of all of the variables in the closed-loop system. The ability of the proposed control scheme is

examined experimentally in the control of a 3 degrees of freedom (3-DOF) helicopter system. The objective is

to drive the helicopter to a desired elevation and travel angles while keeping the stability of the pitch.

Controller design for helicopter systems has been a topic of active research in recent years due to their

important potential applications. The 3-DOF helicopter prototype is often the system used in helicopter research

and education for the design and implementation of control concepts. In our study, we consider the 3-DOF

helicopter laboratory produced by Quanser Consulting Inc. [14]. Because this helicopter has nonlinear and

unstable dynamics as well as significant cross-coupling between its control channels, the control of this MIMO

system is a challenging task. Many researchers have investigated the control of 3-DOF helicopters [15–27]. In

[15], Fradkov et al. presented a PID control law for a 3-DOF helicopter with a scheme for state estimation.

In [16], Rios et al. developed a PID controller with a sliding-mode observer used to compensate and identify

the disturbance. Rios et al. also proposed in [17] a control structure based on the PID controller combined

with a quasicontinuous controller. In [18], Liu et al. proposed an optimal tracking control strategy based on

fuzzy logic and a linear quadratic regulator (LQR). In [19], Hao et al. suggested a robust LQR attitude control

method consisting of 3 parts: a nominal feedforward controller, a nominal LQR state feedback controller, and

a robust compensator. Kiefer et al. [20] proposed a control scheme to ensure the trajectory tracking of a 3-

DOF helicopter under input and state constraints. It consisted of an inversion-based feedforward controller

for trajectory tracking and a feedback controller for the trajectory error dynamics. In [21], Kutay et al.

introduced an adaptive output feedback control method based on model inversion with feedback linearization

and linearly parameterized neural networks to cancel modeling errors. Other control approaches can be found

in the literature, such as fuzzy logic control [22], fuzzy-sliding mode control [23], predictive control [24], H∞

control [25], neural networks control [26], and adaptive control [27].

This paper is organized as follows. Section 2 presents the control problem formulation and control

objectives. The proposed model-free control scheme and the used state observer are developed in Section 3,

with the stability analysis of the overall system. In Section 4, the proposed control scheme is used to control a

3-DOF helicopter in real time. Section 5 concludes the paper.

2. Problem formulation

Consider the MIMO nonlinear dynamic systems Σ composed of q interconnected subsystems Σi, i = 1, . . . , q,

represented in the following normal form:
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∑
i


ẋi1 = xi2, ẋi2 = xi3, . . . , ẋiri−1 = xiri

ẋiri = fi (x, ui) + di (t)

yi = xi1

, (1)

where x =
[
x11, x12, . . . , x1r1 , . . . , xq1, xq2, . . . , xqrq

]T ∈ Rn , is the overall state vector; ri , i = 1, . . . , q, is the

relative order of the subsystem Σi with n =
∑q
i=1 ri ; u = [u1, . . . , uq]

T ∈ Rq is the control input vector;

y = [y1, . . . , yq]
T ∈ Rq is the output vector; fi (x, ui), i = 1, . . . , q, are smooth unknown nonlinear functions;

and d = [d1, . . . , dq]
T ∈ Rq is the external disturbances vector of the system.

Differentiating each yi with respect to time for ri times, i.e. until the input ui appears, one obtains the

input-output form of Eq. (1) as follows:

y
(ri)
i = fi (x, ui) + di (t) , i = 1, . . . , q. (2)

In order to design a control law for the system in Eq. (2), we rewrite this system as follows:

y
(ri)
i = αi ui +∆i (x, ui, t) , i = 1, . . . , q, (3)

where αi is a given design parameter, and ∆i (x, ui, t) includes the effects of uncertainties and external

disturbances and it is given by:

∆i (x, ui, t) = −αi ui + fi (x, ui) + di (t) , i = 1, . . . , q. (4)

We rewrite Eq. (3) in the following form:{
ẋi = Ai xi +Bi (∆i (x, ui, t) + αi ui)

yi = CT
i xi

, i = 1, . . . , q, (5)

where xi = [xi1, xi2, . . . , xiri ]
T ∈ Rri and

Ai =


0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 0 0


ri×ri

, Bi =


0

0

...

1


ri×1

, CT
i =

[
1 0 · · · 0

]
1×ri

.

Let us denote:

∆ (x,u, t) = [∆1 (x, u1, t) , . . . ,∆q (x, uq, t)]
T
, α = diag [α1, . . . , αq] , A = diag [A1, . . . , Aq] ,

B = diag [B1, . . . , Bq] , CT = diag
[
CT

1 , . . . , C
T
q

]
,

and the overall dynamic system, in state space, can be rewritten as:{
ẋ = A x+B (∆ (x,u, t) + αu)

y = CTx
. (6)
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In this section, our goal is to design a control law u (t) that ensures the boundedness of all of the variables in the

closed-loop system and guarantees output tracking of a specified desired trajectory yd (t) = [yd1 (t) , . . . , ydq (t)]
T
.

Let us define xd =
[
yd1 (t) , y

(1)
d1 (t) , . . . , y

(r1−1)
d1 (t) , . . . , ydq (t) , y

(1)
dq (t) , . . . , y

(rq−1)
d1 (t)

]T
∈ Rn as the desired

overall state vector and E = xd − x = [E1, . . . ,Eq]
T ∈ Rn as the overall output tracking error vector, where

Ei =
[
ydi (t)− yi (t) , . . . , y

(ri−1)
di (t)− y

(ri−1)
i (t)

]T
=

[
ei (t) , . . . , e

(ri−1)
i (t)

]T
∈ Rri is the output tracking error

vector of the subsystem Σi , i = 1, . . . , q . Next, from Eq. (3), we get:

Ėi = AiEi +Bi

(
y
(ri)
di − αi ui −∆i (x, ui, t)

)
, i = 1, . . . , q. (7)

Denoting y
(r)
d =

[
y
(r1)
d1 , . . . , y

(rq)
dq

]T
, the closed-loop error dynamic of the overall system Σ can be written as:

Ė = AE+B
(
y
(r)
d − αu−∆(x,u, t)

)
. (8)

Regarding the development of the control law, the following assumptions should be made.

Assumption 1 The partial derivative ∂fi(x,ui)
∂ui

, i = 1, . . . , q , is nonzero and the constant αi fulfills the

condition
∣∣∣ 1
αi

∂fi(x,ui)
∂ui

− 1
∣∣∣ < 1 .

Assumption 2 The desired trajectory ydi (t) , i = 1, . . . , q , is a known bounded function of time with bounded

known derivatives, and ydi (t) is assumed to be ri times differentiable.

Remark 1 We point out that the objective is to find ui to cancel ∆i (x, ui, t) that includes ui , which

constitutes a fixed-point problem. Assumption 1 guarantees that the map ui 7→ ∆i (x, ui, t) is a contraction

and thus guarantees the existence of a solution to the control problem. Moreover, from Assumption 1, αi and

∂fi(x,ui)
∂ui

should be of the same sign and |αi| > 1
2

∣∣∣∂fi(x,ui)∂ui

∣∣∣ .
If the function fi (x, ui) and di (t) , i = 1, . . . , q , are known, i.e. ∆ (x,u, t) is known, to achieve the

control objectives, one can use the following nonlinear control law u (t) = [u1, . . . , uq]
T
, such that:

ui =
1

αi

[
y
(ri)
di +KT

ciEi −∆i (x, ui, t)
]
, i = 1, . . . , q, (9)

where Kci =
[
krici , . . . , k

1
ci

]T ∈ Rri is the feedback gain vector chosen, such that the matrix
(
Ai −BiK

T
ci

)
is

Hurwitz. Substituting Eq. (9) into Eq. (7), we have:

Ėi =
(
Ai −BiK

T
ci

)
Ei, i = 1, . . . , q. (10)

Denoting KT
c = diag

[
KT
c1, . . . ,K

T
cq

]
, the overall closed-loop error dynamics can be written as:

Ė =
(
A−BKT

c

)
E. (11)
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Next, when we select the control law as in Eq. (9), the closed-loop system will be asymptotically stable, which

implies that lim
t→∞

E (t) = 0. Hence, each subsystem output yi (t) converges asymptotically to the reference

output ydi (t), i.e. lim
t→∞

ei (t) = 0, where ei (t) = ydi (t)− yi (t).

According to the above analysis, the control law in Eq. (9) is easily obtained if ∆i (x, ui, t), i = 1, . . . , q,

are known. Unfortunately, in this work, the nonlinear functions fi (x, ui), i = 1, . . . , q, and the external

disturbances di (t) are assumed unknown, i.e. ∆i (x, ui, t) is unknown, so the controller in Eq. (9) cannot

be implemented. In order to overcome this problem, we design in the following section an estimator for the

unknown function ∆i (x, ui, t).

3. Proposed model-free controller

3.1. Control design with measurement states

In the preceding section, we established that there exists a control law, given by Eq. (9), that can achieve control

objectives. However, this controller cannot be used since it depends on unknown function ∆i (x, ui, t). In this

section, we propose to use an estimator for approximating the unknown term ∆i (x,u, t), and the estimated

term ∆̂i (t) will be used to compute the control law.

When we use the estimated term ∆̂i (t) instead of ∆i (x, ui, t), the control law in Eq. (9) can be rewritten
as:

ui =
1

αi

[
y
(ri)
di +KT

ciEi − ∆̂i (t)
]
, i = 1, . . . , q. (12)

Substituting Eq. (12) into Eq. (7), we have:

Ėi =
(
Ai −BiK

T
ci

)
Ei +Bi∆̃i (t) , i = 1, . . . , q, (13)

where ∆̃i (t) = ∆̂i (t) − ∆i (x,u, t) , i = 1, . . . , q . Denoting ∆̂ (t) =
[
∆̂1 (t) , . . . , ∆̂q (t)

]T
and ∆̃ (t) =

∆̂ (t)−∆(x,u, t), the closed-loop dynamics of the overall system can be written as:

Ė =
(
A−BKT

)
E+B∆̃ (t) . (14)

Assumption 3 For the given positive-definite matrix Q1 , there exists a positive solution P1 for the following

matrix equation: (
A−BKT

c

)T
P1 + P1

(
A−BKT

c

)
+ 4ε∆P

T
1 BB

TP1 = −Q1, (15)

where ε∆ is a small positive design parameter.

Assumption 4 The lumped uncertainty ∆(x,u, t) is a continuous function with a bounded time derivative

∆̇ (x,u, t) that satisfies 0 ≤
∣∣∣∆̇ (x,u, t)

∣∣∣2 ≤ ψ0 + ETPT
1 BB

TP1E , where ψ0 is an unknown positive constant

and P1 is the matrix defined in Eq. (15).

In order to achieve the control objectives, we develop an estimation law for ∆̂ (t). To this end, let us

define the following Lyapunov function:

V =
1

2
ETP1E+

1

2
∆̃T∆̃. (16)
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The time derivative of V is:

V̇ =
1

2
ĖTP1E+

1

2
ETP1Ė+ ∆̃T ˙̃∆. (17)

Using Eq. (14), the above equation becomes:

V̇ =
1

2
ET

(
A−BKT

c

)T
P1E+

1

2
ETP1

(
A−BKT

c

)
E+

1

2
∆̃TBTP1E+

1

2
ETP1B∆̃ + ∆̃T ˙̃∆ (18)

or

V̇ =
1

2
ET

((
A−BKT

c

)T
P1 + P1

(
A−BKT

c

))
E+

1

2
∆̃TBTP1E+

1

2
ETP1B∆̃ + ∆̃T ˙̂

∆− ∆̃T∆̇. (19)

As an estimation law for ∆̂ (t), we use the following first-order differential equation:

˙̂
∆ = − 1

ε∆
∆̃ = − 1

ε∆
∆̂ +

1

ε∆
∆. (20)

With Eq. (20), Eq. (19) becomes:

V̇ = 1
2E

T
((
A−BKT

c

)T
P1 + P1

(
A−BKT

c

))
E

+ 1
2∆̃

TBTP1E+ 1
2E

TP1B∆̃− 1
ε∆

∆̃T∆̃− ∆̃T∆̇
. (21)

Using the inequality

1

2
∆̃TBTP1E+

1

2
ETP1B∆̃ ≤ 1

4ε∆
∆̃T∆̃ + ε∆E

TPT
1 BB

TP1E, (22)

Eq. (21) can be bounded as:

V̇ ≤ 1

2
ET

((
A−BKT

c

)T
P1 + P1

(
A−BKT

c

)
+ 2ε∆P

T
1 BB

TP1

)
E− 3

4ε∆
∆̃T∆̃− ∆̃T∆̇, (23)

and with the following inequality:∣∣∣∆̃T∆̇
∣∣∣ ≤ ε∆

∥∥∥∆̇∥∥∥2 + 1

4ε∆

∥∥∥∆̃∥∥∥2 ≤ 1

4ε∆

∥∥∥∆̃∥∥∥2 + ε∆
(
ψ0 +ETPT

1 BB
TP1E

)
, (24)

the inequality in Eq. (23) can be rewritten as:

V̇ ≤ 1

2
ET

((
A−BKT

c

)T
P1 + P1

(
A−BKT

c

)
+ 4ε∆P

T
1 BB

TP1

)
E− 1

2ε∆
∆̃T∆̃ + ε∆ψ0. (25)

From Eq. (15), we have:

V̇ ≤ −1

2
ETQ1E− 1

2ε∆
∆̃T∆̃ + ε∆ψ0. (26)

Using Eq. (26) we can obtain the following inequality:

V̇ ≤ −λmin (Q1)

λmax (P1)

1

2
λmax (P1) ∥E∥2 − 1

ε∆

1

2
∆̃T∆̃ + ε∆ψ0. (27)
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Choosing γ = min
(
λmin(Q1)
λmax(P1)

, 1
ε∆

)
, Eq. (27) can be rewritten as:

V̇ ≤ −γ
2
λmax (P1) ∥E∥2 − γ

2
∆̃T∆̃ + ε∆ψ0, (28)

and with Eq. (16), we have:

V̇ ≤ −γV + ε∆ψ0. (29)

Now we can prove the following theorem, which shows the boundedness of all of the variables in the closed-loop

system.

Theorem 1 Consider system Eq. (1). Suppose that Assumptions 1–4 are satisfied. Next, the control law

defined by Eq. (12) guarantees that the closed-loop system is uniformly ultimately bounded (UUB) stable and

that the output tracking error converges to a small neighborhood of the origin.

Proof From Eq. (29) we have:

0 ≤ V (t) ≤ ε∆ψ0

γ
+

(
V (0)− ε∆ψ0

γ

)
e−γt. (30)

This implies that signals E (t) and ∆̃ (t) in the closed-loop system are UUB. Moreover, in order to achieve

the tracking error E (t) convergence to a small neighborhood around zero, the parameter ε∆ should be chosen

small enough. This completes the proof.

Let us consider again the estimation law in Eq. (20), which can be rewritten in the form of:

∆̂i (s) =
1

1 + ε∆s
∆i (s) , i = 1, . . . , q, (31)

where s is the Laplace variable. From Eq. (31), we conclude that ∆̂i is obtained by filtering ∆i using the

filter 1
1+ε∆s

, and we have ∆̂i (t) → ∆i (t) when ε∆ → 0. Unfortunately, the function ∆ is unknown. In order

to overcome this difficulty, Eq. (3) is used to compute ∆i (t) as follows:

∆i (t) = ẋiri − αiui. (32)

Thus, Eq. (31) becomes:

∆̂i (s) =
1

1 + ε∆s
(ẋiri (s)− αiui (s)) , i = 1, . . . , q. (33)

Substituting ∆̂i into the control law Eq. (12), we have:

ui (s) =
1

αi

[
y
(ri)
di (s) +KT

ciEi (s)−
1

1 + ε∆s
(ẋiri (s)− αiui (s))

]
, i = 1, . . . , q (34)

or

ui (s) =
1

αi

(
1 +

1

ε∆s

)(
y
(ri)
di (s) +KT

ciEi (s)
)
− 1

αi

ẋiri (s)

ε∆s
, i = 1, . . . , q. (35)
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Finally, the control law ui (s), i = 1, . . . , q becomes:

ui (s) =
1

αi

(
y
(ri)
di (t) +KT

ciEi (t)
)
+

1

αiε∆

t∫
0

(
y
(ri)
di (τ) +KT

ciEi (τ)
)
dτ − 1

αiε∆
xiri (t) . (36)

The control law in Eq. (36) is established assuming that the overall state vector is available for measurement.

In the next subsection, we develop a model-free control law when the states are not available.

3.2. Model-free control design with an observer

It is well known, unfortunately, that the state vector xi of the controlled system is not always available. In

order to overcome this problem, a linear state observer is used to estimate the unavailable state variables.

Let us define an observer of system Eq. (5), as follows: ˙̂xi = Ai x̂i +Bi

(
∆̂i + αi ui

)
+K0i (yi − ŷi)

ŷi = CT
i x̂i

. (37)

where x̂i is the estimate of xi , and K0i is the observer gain matrix chosen such that the matrix Ai−K0iC
T
i is

Hurwitz. Denoting êi = ydi (t)− ŷi (t) and Êi =
[
êi (t) , . . . , ê

(ri−1)
i (t)

]T
∈ Rri , using Eq. (37), one obtains:

˙̂Ei = Ai Êi +Bi

(
y
(ri)
di − αi ui − ∆̂i

)
+K0iC

T
i

(
Ei − Êi

)
. (38)

In this case, we design the control law as follows:

ui =
1

αi

[
y
(ri)
di +KT

ciÊi − ∆̂i

]
, i = 1, . . . , q. (39)

Substituting Eq. (39) into Eq. (38), we get:
˙̂Ei =

(
Ai −BiK

T
ci

)
Êi +K0i (ei − êi) , i = 1, . . . , q

êi = CT
i Êi

. (40)

Substituting Eq. (39) into Eq. (7), the closed-loop dynamic system can be written as:

{
Ėi = AiEi −BiK

T
ciÊi +Bi∆̃i, i = 1, . . . , q

ei = CT
i Ei

. (41)

Define the observation error ẽi = ei − êi , Ẽi = Ei − Êi =
[
ẽi (t) , . . . , ẽ

(ri−1)
i (t)

]T
∈ Rri . Subtracting Eq. (40)

from Eq. (41) yields: 
˙̃Ei =

(
Ai −K0iC

T
i

)
Ẽi +Bi∆̃i, i = 1, . . . , q

ẽi = CT
i Ẽi

. (42)
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Denote Ê =
[
Ê1, . . . , Êp

]T
∈ Rn , Ẽ =

[
Ẽ1, . . . , Ẽp

]T
∈ Rn , ê = [ê1, . . . , êp]

T ∈ Rp , ẽ = [ẽ1, . . . , ẽp]
T ∈ Rp ,

and K0 = diag [K01, . . . ,K0p] . Next, the overall error observer becomes:

˙̂E =
(
A−BKT

c

)
Ê+K0 (e− ê)

ê = CTÊ
, (43)

and the overall observation error dynamics is given by:

˙̃E =
(
A−K0C

T
)
Ẽ+B∆̃

ẽ = CTẼ
. (44)

Assumption 5 For the given positive-definite matrices Q̄1 and Q̄2 , there exist positive solutions P̄1 and P̄2

for the following matrix equations:(
A−K0C

T
)T
P̄1 + P̄1

(
A−K0C

T
)
+ 2ε∆P̄

T
1 BB

TP̄1 + ε2∆In×n = −Q̄1, (45)

(
A−BKT

c

)T
P̄2 + P̄2

(
A−BKT

c

)
+

1

ε2∆
P̄2K0K

T
0 P̄2 = −Q̄2. (46)

Assumption 6 The time derivative ∆̇ (x,u, t) of the function ∆(x,u, t) fulfills 0 ≤
∣∣∣∆̇ (x,u, t)

∣∣∣2 ≤ ψ̄0 +

ẼTP̄T
1 BB

TP̄1Ẽ , where ψ̄0 is an unknown positive constant and P̄1 is the matrix defined by Eq. (45).

Consider the Lyapunov function candidate:

V =
1

2
ÊTP̄2Ê+

1

2
ẼTP̄1Ẽ+

1

2
∆̃T∆̃. (47)

The time derivative of V is:

V̇ =
1

2
˙̂E
T

P̄2Ê+
1

2
ÊTP̄2

˙̂E+
1

2
˙̃E
T

P̄1Ẽ+
1

2
ẼTP̄1

˙̃E+ ∆̃T ˙̃∆. (48)

From Eqs. (43) and (44), Eq. (48) becomes:

V̇ = 1
2 Ẽ

T
((
A−K0C

T
)T
P̄1 + P̄1

(
A−K0C

T
))

Ẽ+ 1
2∆̃B

TP̄1Ẽ+ 1
2 Ẽ

TP̄1B∆̃ + ∆̃T ˙̂
∆− ∆̃T∆̇

+ 1
2 Ê

T
((
A−BKT

c

)T
P̄2 + P̄2

(
A−BKT

c

))
Ê+ 1

2 Ẽ
TCKT

0 P̄2Ê+ 1
2 Ê

TP̄2K0C
TẼ

. (49)

Choosing the estimation law for ∆̂ (t) as in Eq. (20), we have:

V̇ = 1
2 Ẽ

T
((
A−K0C

T
)T
P̄1 + P̄1

(
A−K0C

T
))

Ẽ+ 1
2∆̃B

TP̄1Ẽ+ 1
2 Ẽ

TP̄1B∆̃− 1
ε∆

∆̃T∆̃

− ∆̃T∆̇ + 1
2 Ê

T
((
A−BKT

c

)T
P̄2 + P̄2

(
A−BKT

c

))
Ê+ 1

2 Ẽ
TCKT

0 P̄2Ê+ 1
2 Ê

TP̄2K0C
TẼ

. (50)

Using the following inequalities,

1

2
∆̃BTP̄1Ẽ+

1

2
ẼTP̄1B∆̃ ≤ 1

4ε∆
∆̃2 + ε∆Ẽ

TP̄T
1 BB

TP̄1Ẽ, (51)

1572



BOUBAKIR et al./Turk J Elec Eng & Comp Sci

1

2
ẼTCKT

0 P̄2Ê+
1

2
ÊTP̄2K0C

TẼ ≤ 1

2ε2∆
ÊTP̄2K0K

T
0 P̄2Ê+

ε2∆
2
ẼTẼ, (52)∣∣∣∆̃T∆̇

∣∣∣ ≤ ε∆

∥∥∥∆̇∥∥∥2 + 1

4ε∆

∥∥∥∆̃∥∥∥2 ≤ 1

4ε∆

∥∥∥∆̃∥∥∥2 + ε∆

(
ψ̄0 + ẼTP̄T

1 BB
TP̄1Ẽ

)
, (53)

Eq. (50) can be upper bounded as:

V̇ ≤ 1
2 Ẽ

T
((
A−K0C

T
)T
P̄1 + P̄1

(
A−K0C

T
)
+ 2ε∆P̄

T
1 BB

TP̄1 + ε2∆In×n

)
Ẽ

+ 1
2 Ê

T
((
A−BKT

c

)T
P̄2 + P̄2

(
A−BKT

c

)
+ 1

ε2∆
P̄2K0K

T
0 P̄2

)
Ê− 1

2ε∆
∆̃2 + ε∆ψ̄0

. (54)

From Eqs. (45) and (46), Eq. (54) becomes:

V̇ ≤ −1

2
ẼTQ̄1Ẽ− 1

2
ÊTQ̄2Ê− 1

2ε∆
∆̃2 + ε∆ψ̄0. (55)

Using Eq. (55), we can obtain the following inequality:

V̇ ≤ −
λmin

(
Q̄1

)
λmax

(
P̄1

) 1
2
λmax

(
P̄1

) ∥∥∥Ẽ∥∥∥2 − λmin

(
Q̄2

)
λmax

(
P̄2

) 1
2
λmax

(
P̄2

) ∥∥∥Ê∥∥∥2 − 1

ε∆

1

2
∆̃T∆̃ + ε∆ψ̄0. (56)

Choosing γ̄ = min

(
λmin(Q̄1)
λmax(P̄1)

,
λmin(Q̄2)
λmax(P̄2)

, 1
ε∆

)
, Eq. (56) can be rewritten as:

V̇ ≤ − γ̄
2
λmax

(
P̄1

) ∥∥∥Ẽ∥∥∥2 − γ̄

2
λmax

(
P̄2

) ∥∥∥Ê∥∥∥2 − γ̄

2
∆̃T∆̃ + ε∆ψ̄0, (57)

and with Eq. (47), we have:

V̇ ≤ −γ̄V + ε∆ψ̄0. (58)

Now we can prove Theorem 2, which shows the boundedness of all of the variables in the closed-loop system.

Theorem 2 Consider system Eq. (1). Suppose that Assumptions 1–6 are satisfied. Next, the control law

defined by Eq. (39) with the observer in Eq. (40) guarantees that the closed-loop system is UUB stable and that

the signals Ẽ (t)and Ê (t) converge to a small neighborhood of the origin.

Proof From Eq. (58), we can have:

0 ≤ V (t) ≤ ε∆ψ̄0

γ̄
+

(
V (0)− ε∆ψ̄0

γ̄

)
e−γ̄t. (59)

Next, it follows that signals Ẽ (t), Ê (t), and ∆̃ (t) in the closed-loop system are UUB. Moreover, in order to

ensure that Ẽ (t) and Ê (t) converge to a small neighborhood around zero, the parameter ε∆ should be chosen

sufficiently small. This completes the proof.

Consider now the estimation law in Eq. (20), which can be rewritten as:

∆̂i (s) = − 1

ε∆s
∆̃i (s) , i = 1, . . . , q. (60)
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Replacing ∆̂i by Eq. (60) in the control law in Eq. (39), we obtain:

ui (s) =
1

αi

[
y
(ri)
di (s) +KT

ciÊi (s) +
1

ε∆s
∆̃i (s)

]
, i = 1, . . . , q. (61)

From Eq. (42), we have ẽi = H (s) ∆̃i with H (s) = CT
i

(
sI −

(
Ai −K0iC

T
i

))−1
Bi , and then Eq. (61) becomes:

ui (s) =
1

αi

[
y
(ri)
di (s) +KT

ciÊi (s) +
H−1 (s)

ε∆s
ẽi (s)

]
, i = 1, . . . , q. (62)

Remark 2 Since H−1 (s) in Eq. (62) is not causal, the control law ui (s) will be filtered, such as ufi (s) =

1

(1+wis)
(ri−1)ui (s) , i = 1, . . . , q , where wi are design parameters.

Remark 3 In the case of a second-order MIMO nonlinear dynamic system, i.e. ri = 2, for an observer gain

matrix K0i = diag
[
K1

0i,K
2
0i

]
, the control law ui (s) can be rewritten as follows:

ui (s) =
1

αi

[
y
(ri)
di (s) +KT

ciÊi (s) +
s2 +K1

0is+K2
0i

ε∆s
ẽi (s)

]
, i = 1, . . . , q, (63)

and the filtered control law by:

ufi (s) =
1

(1 + wis)
ui (s) , i = 1, . . . , q. (64)

Using Eq. (63), Eq. (64) can be written as:

ufi (s) =
1

αi (1 + wis)

(
y
(ri)
di (s) +KT

ciÊi (s)
)
+

1

αi

s2 +K1
0is+K2

0i

ε∆s (1 + wis)
ẽi (s) , i = 1, . . . , q (65)

or

ufi (s) =
1

αi(1+wis)

(
y
(ri)
di (s) +KT

ciÊi (s)
)
+ 1

αiwiε∆
ẽi (s)

+ 1
αiε∆

(K1
0iwi−1)s+wiK2

0i

wis2+s
ẽi (s)

. (66)

In the next section, we will verify experimentally the effectiveness of the proposed model-free controller in Eq.

(66) with the observer in Eq. (43) in control of the 3-DOF helicopter system. The control objective is to drive

the helicopter to a desired elevation and travel angles while keeping the stability of the pitch.

4. Application to the 3-DOF helicopter

4.1. System description

The 3-DOF helicopter setup used in our work, which is manufactured by Quanser Consulting Inc., is presented

in Figure 1 [14]. It is a platform technology for research in helicopter flight control systems. This setup is an

excellent testbed for advanced control methods and it consists of a base on which a long arm is mounted. The

arm carries the helicopter body composed of 2 propellers on one end and a counterweight on the other end.

Two DC motors are mounted below the propellers to create the forces that drive propellers. The motors’ axes

are parallel and their thrust is vertical to the propellers. We have 3 degrees of freedom: elevation (ψ), pitch

1574



BOUBAKIR et al./Turk J Elec Eng & Comp Sci

(θ), and travel (ϕ). To measure these angles, 3 encoders are installed on the elevation axis, pitch axis, and

travel axis. The movement range of the elevation ψ and pitch θ angles is limited to between around –1 and 1

rad due to the hardware restriction.

 Motor 

Propeller 

Counterweight 

Base 

Elevation 

Pitch 

Travel 

θ

φ

ψ

aL  

Lω  

hL  

Figure 1. Quanser helicopter with 3-DOF.

In the literature, the dynamic modeling of this system was studied in several papers [22,25,26,28]. The

equations of motion about axes ψ , θ , and ϕ are given by Eq. (67).

ψ̈ = (1/Jψ)
(
−Mhg cos (ψ)La +Mωg cos (ψ)Lω +Kf (Vf + Vb) cos (θ)La − fψ

(
ψ̇
))

+ dψ (t)

θ̈ = (1/Jθ)
(
Kf (Vf − Vb)Lh − fθ

(
θ̇
))

+ dθ (t)

ϕ̈ = (1/Jϕ)
(
Kf (Vf + Vb) sin (θ)La − fϕ

(
ϕ̇
))

+ dϕ (t)

(67)

Here, Jψ , Jθ , and Jϕ denote the moments of inertia; Mh is the total mass of the helicopter; Mω is the mass of

the counterweight; La is the helicopter distance to pivot; Lω is the counterweight distances to pivot; Lh is the

motor distance to the pitch; g is the gravity constant, Kf is the motor volt-to-thrust relationship constant; Vf

and Vb are the voltages applied to the front and back motors, respectively; fψ

(
ψ̇
)
, fθ

(
θ̇
)
, and fϕ

(
ϕ̇
)

are

the friction terms; and dψ (t), dθ (t), and dϕ (t) are the bounded external disturbances. The Table provides

the physical parameters of the used helicopter, taken from the Quanser 3-DOF helicopter prototype installed

in the IRCCyN laboratory.

By setting u1 = (Vf + Vb) and u2 = (Vf − Vb), system Eq. (67) takes the following form.

ψ̈ = (1/Jψ)
(
−Mhg cos (ψ)La +Mωg cos (ψ)Lω − fψ

(
ψ̇
))

+ (1/Jψ) (KfLa) cos (θ)u1

+ dψ (t)

θ̈ = (1/Jθ)
(
−fθ

(
θ̇
))

+ (1/Jθ) (KfLh)u2 + dθ (t)

ϕ̈ = (1/Jϕ)
(
−fϕ

(
ϕ̇
))

+ (1/Jϕ) (KfLa) sin (θ)u1 + dϕ (t)

(68)

In this study, our objective is to ensure the convergence of the elevation and travel angles (ψ, ϕ) to the desired

trajectories (ψd, ϕd) while keeping the stability of the pitch angle (θ). From Eq. (68), it can be seen that the
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Table. The 3-DOF helicopter parameter values.

Parameter Value Unit

Vf and Vb [−24 : +24] V

Kf 0.1188 N/V

g 9.81 m s−2

Mh 1.426 kg

Mω 1.87 kg

La 0.660 m

Lω 0.470 m

Lh 0.178 m

Jψ 1.0348 kg m2

Jθ 0.0451 kg m2

Jϕ 1.0348 kg m2

travel rotation (ϕ) depends on the control input u1 . Indeed, u1 is the designed total input vector oriented to

obtain the desired elevation and travel angles. Let us define u3 = u1 sin (θ) as the component of the vector u1

responsible for the travel rotation. Next, the desired pitch angle θd ensuring the suitable travel rotation can be

calculated by

θd = arcsin

(
u3

u1 +∆ε

)
, (69)

where ∆ε is a small positive constant. The dynamic model in Eq. (68) can be rewritten as follows:

ψ̈ = (1/Jψ)
(
−Mhg cos (ψ)La +Mωg cos (ψ)Lω − fψ

(
ψ̇
))

+ (1/Jψ) (Kf cos (θ)La)u1 + dψ (t)

θ̈ = (1/Jθ)
(
−fθ

(
θ̇
))

+ (1/Jθ) (KfLh)u2 + dθ (t)

ϕ̈ = (1/Jϕ)
(
−fϕ

(
ϕ̇
))

+ (1/Jϕ) (KfLa)u3 + dϕ (t)

. (70)

In order to simplify the application of the model-free controller developed in the previous section to the 3-DOF

helicopter system, let us define y = [ψ, θ, ϕ] as the output vector, u = [u1, u2, u3]
T

as the vector of the control

inputs and the state space vector by x =
[
ψ, ψ̇, θ, θ̇, ϕ, ϕ̇

]T
, d = [dψ, dθ, dϕ]

T
as the external disturbances

vector of the system, and fi (x,u) , i = 1, . . . , p as the nonlinearities of the system given as follows.

f1 (x,u) = (1/Jψ)
(
−Mhg cos (ψ)La +Mωg cos (ψ)Lω − fψ

(
ψ̇
))

+ (1/Jψ) (Kf cos (θ)La)u1

f2 (x,u) = (1/Jθ)
(
−fθ

(
θ̇
))

+ (1/Jθ) (KfLh)u2

f3 (x,u) = (1/Jϕ)
(
−fϕ

(
ϕ̇
))

+ (1/Jϕ) (KfLa)u3

Next, the 3-DOF helicopter system given by Eq. (70) can be expressed as:

y
(2)
i = fi (x,u) + di (t) , i = 1, 2, 3, (71)

which is in the general input-output form given by Eq. (2), with ri = 2 and q = 3 in this case.
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4.2. Experiment results

In order to verify experimentally the effectiveness of the proposed model-free controller with an observer

developed in this paper, an application to the 3-DOF helicopter system is conducted. Our objective is to

ensure the convergence of the elevation and travel angles (ψ, ϕ) to the desired trajectories (ψd, ϕd). Since the

control of the travel rotation requires the pitch rotation control, another controller is used to also ensure the

convergence of the angle (θ) to the desired angle (θd). In each case, a model-free controller in the form of

Eq. (66) with an observer in the form of Eq. (40) is used. In the first step, let us define the tracking errors:

eψ = ψ − ψd , eθ = θ − θd , and eϕ = ϕ− ϕd . The inputs (u1, u2, u3) are chosen as the outputs of 3 controllers

given by

u1 (s) =
1

αψ(1+wψs)

(
ψ
(2)
d (s) +KT

cψÊψ (s)
)
+ 1

αψwψε∆
ẽψ (s)

+ 1
αψε∆

(K1
0ψwψ−1)s+wψK2

0ψ

wψs2+s
ẽψ (s)

, (72)

u2 (s) =
1

αi(1+wis)

(
y
(ri)
di (s) +KT

ciÊi (s)
)
+ 1

αθwθε∆
ẽθ (s)

+ 1
αθε∆

(K1
0θwθ−1)s+wθK2

0θ

wθs2+s
ẽθ (s)

, (73)

u3 (s) =
1

αϕ(1+wϕs)

(
ϕ
(2)
d (s) +KT

cϕÊϕ (s)
)
+ 1

αϕwϕε∆
ẽϕ (s)

+ 1
αϕε∆

(K1
0ϕwϕ−1)s+wϕK2

0ϕ

wϕs2+s
ẽϕ (s)

, (74)

with Êψ , Êθ , and Êϕ the state estimation errors computed by the following observers:


˙̂Ei =

(
Ai −BiK

T
ci

)
Êi +K0i (ei − êi) , i ∈ {ψ, ϕ, θ}

êi = CT
i Êi

, (75)

where ẽψ = eψ − êψ , ẽθ = eθ − êθ , ẽϕ = eϕ − êϕ , Ai =

[
0 1

0 0

]
, Bi =

[
0 1

]T
, and Ci =

[
1 0

]
. The

control voltages, Vf and Vb , applied to the front and back motors, are computed from the command signals u1

and u2 as follows: {
Vf = 0.5 (u1 + u2)

Vb = 0.5 (u1 − u2)
. (76)

The control structure is illustrated in Figure 2 and the parameters of the used helicopter are given in the Table.

The control law is developed and implemented using MATLAB/Simulink and Real-Time Workshop with a

fixed step size of ∆t = 0.001 s. The control objective consists of moving the helicopter from the initial position

(ψ = 0◦, ϕ = 0◦) to the new position (ψ = 20◦, ϕ = 15◦). In order to make the desired outputs smooth curves,

the reference trajectories chosen for ψd (t), θd (t), and ϕd (t) are filtered, respectively, with a 2nd-order filter,

1st-order filter, and 6th-order filter defined by the transfer functions Hψ = 1
/
(s+ 1)

2
, Hθ = 1/(0.5s+ 1),

and Hϕ = 1/(s+ 1)
6
, where s is the Laplace variable. The controller parameters used in experiment study

are wψ = wθ = wϕ = 0.01 s. , ε∆ = 0.01 s. , αψ = 0.8, αθ = αϕ = 5, Kcψ = [75, 20], Kcθ = Kcϕ = [10, 1],

K0ψ = [200, 3500], K0θ = [40, 700], and K0ϕ = [80, 1400]. The experiment results are shown in Figures 3–12.
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Figure 2. Synoptic scheme of the proposed controller.
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Figure 3. Trajectories ψ (t) and ψd (t) . Figure 4. Trajectories ϕ (t) and ϕd (t) .

 

 

  

 

 

  

 

 

 

 

 

0 5 10 15 20 25 30 35 40
–10

–5

0

5

10

15

20

25

30

Time [s]

P
it

ch
 a

n
g

le
 [

d
eg

]

 

 

( )tθ

( )d tθ

0 5 10 15 20 25 30 35 40
-50

-35

-20

-5

10

25

40

50

Time [s]

u
1
 [

V
]

Figure 5. Trajectories θ (t) and θd (t) . Figure 6. Control input signal u1 .
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Figure 3 illustrates the time evolution of the desired and actual elevation angles, Figure 4 shows the desired

and actual travel angles, and Figure 5 shows the desired and actual pitch angles. It can be seen from Figures

3–5, that the actual trajectories (ψ (t) , θ (t) , ϕ (t)) converge to the desired trajectories (ψd (t) , θd (t) , ϕd (t)).

The control input signals (u1, u2, u3) are given in Figures 6, 7, and 8, respectively. The control voltages for the

front and back motors are shown in Figure 9. Figure 10 illustrates the time evolution of the state estimation

errors êψ and ˙̂eψ , the state estimation errors êϕ and ˙̂eϕ are given in Figure 11, and the state estimation errors

êθ and ˙̂eθ are given in Figure 12. From Figures 10, 11, and 12, it can be seen that all of the state estimation

errors converge to zero. These experimental results demonstrate the performances of the proposed model-free

controller and its effectiveness for the control tracking of dynamic systems.

5. Conclusion

In this paper, a model-free controller with an observer was proposed for a class of uncertain continuous-time

MIMO nonlinear dynamic systems with unavailable states. The control scheme consists of 2 parts: the first part

is a linear control term used to specify the dynamics of the closed-loop system and the second part is added

to compensate the uncertainties of the dynamic system and external disturbances. A state observer is designed

to provide an estimate of the state vector. The proposed control scheme does not require the knowledge of the

mathematical model of the plant, guarantees the boundedness of all of the signals in the closed-loop system,

and ensures the convergence of the tracking errors to a neighborhood of the origin. The proposed controller has

been experimentally examined and tested in the control of a helicopter system. Our objective was to drive the

helicopter to a desired elevation and travel angles while keeping the stability of the pitch. The experimental

results show the good performances of the proposed controller.
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