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Abstract:The subject of modeling and estimating of synchronous motor (SM) parameters is a challenge mathematically.

Although effective solutions have been developed for nonlinear systems in artificial intelligence (AI)-based models,

problems are faced with the application of these models in power circuits in real-time. One of these problems is the

delay time resulting from a complex calculation process and thus the difficulties faced in the design of real-time motor

driving circuits. Another important problem regards the difficulty in the realization of a complex AI-based model in

microprocessor-based real-time systems. In this study, a new hybrid technique is developed to solve the problems in

AI-based nonlinear modeling approaches. Through this method, the relationships among the motor parameters can be

described in a linear/quadratic SM form. The most effective and modern metaheuristic methods are utilized in the

creation of SM forms. The SM forms developed in this study lead to an easy design and application of the SM driver

software. Therefore, a model that is faster, more effective, and more easily applicable than AI-based popular methods is

developed for SMs. The proposed techniques can also be applied to many other industrial modeling problems that have

nonlinear features.

Key words: Synchronous motor, metaheuristic modeling, gravitational search optimization, linear and quadratic SM

forms, parameter estimation

1. Introduction

Synchronous motors (SMs) are AC motors with constant speed [1]. The rotation of the shaft is synchronized with

the frequency of the AC supply current. They have high operating efficiency and reliability, controllability of the

power factor, and relatively low sensitivity to voltage dips. Thus, they have been commonly used in the power

factor correction task [1–3]. The wide variety of applications of SMs as reactive power compensators makes it

necessary to achieve a fast and reliable parameter modeling system design [4–7]. The usage of SMs in industrial

applications leads to a poor power factor. It is an important problem in terms of cost, efficiency, electrical

overload, and capacity. This configuration in the power line also requires the increasing of the capacities of

power breakers, transformers, relays, and isolations [2–5,8–11]. There are a number of methods used in the

power factor correction task in order to reduce cost and improve efficiency. A detailed review about the usage of

various capacitor groups for power factor correction task can be found in [10]. If a SM is used as a reactive power

compensator, it works in a transmission line as a leading operation condition. A SM can be used to increase the

quality of power factor and the voltage stability of the line by adjusting the amount of excitation current [2,5].

There are no clear relationships among the SM parameters [5,12]. Thus, modeling of SM parameters, such as
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excitation current, power factor, load current when the SM is operating at lagging, and the leading and unity

condition for reactive power compensation, is a difficult task. The relationships among the SM parameters are

mostly complex and nonlinear [5,12–15]. Researchers have suggested artificial intelligence (AI)-based nonlinear

modeling techniques, such as proportional plus integral plus derivative [16], pulse width modulation [17–20],

fuzzy logic [2,3], Kalman filter-based methods [7,15,21], artificial neural networks (ANNs) [22,23], particle swarm

optimization (in real-time applications) [24], intuitive k-nearest neighbor (k-NN) estimator and genetic algorithm

(GA) [5,25], and adaptive ANNs [4] for modeling the parameters and/or predicting the excitation current of

SMs and permanent magnet synchronous machines. The modeling of SM parameters using modern AI-based

methods for excitation current estimation was realized in recently published studies [4,5,17]. Although effective

solutions were developed by means of AI-based models, significant problems arose in the real-time environments

of these models. There were important differences between the results of the simulations and experimental

works. The response time in the simulation environments was faster than in the real-time environments.

This was also determined by the operational characteristics of the microprocessor or digital signal processor

and switching frequency of the motor drivers. These factors limit the response time of real-time applications

[26,27]. Additionally, AI-based models also affect the response time of real-time applications and simulation

environments negatively. The purpose of this study is to facilitate the complex calculation process in the AI-

based methods, simplify the representation of the SM parameters, and decrease the workload of the control

unit in real-time applications. For this purpose, linear and quadratic form-based new heuristic hybrid methods

are developed to solve the problems in AI-based nonlinear modeling techniques. Through this method, the

parameters of SMs are converted into linear and quadratic equations and modeled. The most effective and

modern metaheuristic methods, such as the GA, artificial bee colony (ABC), and gravitational search algorithm

(GSA), are utilized in the development of AI-based exploring units and the creation of the linear/quadratic

SM forms. After a linear/quadratic SM form is created in an offline training process, it can be easily applied

in a microprocessor or microcontroller-based real-time application environment. The linear/quadratic SM form

developed in this study leads to an easy design and realization of the SM driver software. Therefore, a model

that is faster, more effective, and more easily applicable than AI-based popular methods is developed in this

study. It is expected that the proposed hybrid approach might be effectively and easily applicable for many other

industrial modeling problems that cannot be mathematically modeled and have complex modeling parameters.

The proposed metaheuristic AI methods are used to explore the best parameter coefficients of SM forms

and create the best linear/quadratic equation in an offline training process. The methods have the advantages

of the heuristic searching strategy, linear modeling technique, and hybrid modeling approach. These properties

provide several benefits, such as the elimination of local optima, simplicity and high speed in real-time decision

making, and easy realization.

In this study, simple linear or quadratic SM forms can be successfully created, the parameter modeling

system can be easily realized in a microprocessor unit, and stable estimations can be generated by the decision-

making unit. An experimental set for SMs and representation of the SM parameters will be given in the following

sections. The proposed hybrid approach will be explained in more detail. The testing of linear and quadratic

SM forms and details of experimental studies will be expressed and demonstrated in Section 4.

2. General knowledge of SMs

A SM has important advantages, such as ability to operate at leading, lagging, and a unity power factor over

a wide range, which can be readily adjusted by changing its excitation current. The operating conditions and

properties of the SM are given in Table 1.
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Table 1. Operating conditions and properties of the SM [2,4,5,28].

Operating condition Property

• Overexcited SM
• At leading current

• It behaves like a condenser
• Improves the power factor of the system

(reactive power compensator)

• Unity power factor
• At constant source voltage and frequency
• No load (cosϕ = 1.0)

• Efficiency of SM is maximum
• Stator current of SM is minimum
• Adjust its excitation current

• If the excitation current is reduced
• (cosϕ < 1.0) in unity power factor condition and

the SM is operated with an underexcited field

• It is run in lagging condition
• The lagging current may be sufficient to

compensate the condensing effect of the
transmission line

• If the excitation current is increased • The stator current of SM is reduced and its
lagging condition reduces and approaches the
unity power factor

• If the excitation current is increased more than
the unity point (–cosϕ < 1.0)

• Operation condition of SM is changed from unity
power factor to leading current

The scheme of work for the experiment with a SM is shown in Figure 1 [2,4,5]. The excitation current

estimation and parameter modeling for a SM in the power factor correction task are realized under operating

conditions of Υ/∆ 400 / 231 V, 5.8 / 10 A, cosϕ = 0.8, 4 kVA, 1000 rpm. These parameters are used to

prepare the datasets for the AI-based heuristic exploring unit and create the linear and quadratic SM forms.

Figure 1. The scheme of work for the experiment with a SM [2–5].

The experimental study procedures are given below:

i) An auxiliary motor is used to drive the SM in the test rig. For this purpose, a serial rheostat is used to

obtain a variable DC supply in the field circuit manually.

ii) An AC voltage is applied to the stator windings of the SM until the speed of the motor is very close to

the synchronous speed.
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iii) A DC voltage is applied to the field winding of the SM and so synchronous operation is started.

iv) After synchronous speed is realized, the field current of the SM is adjusted to its minimum value by means

of a serial rheostat connected in series to the field circuit.

After step 4, the motor draws minimum current from the supply, the efficiency is maximum, and the

power factor of the SM is at unity. To choose this point as a reference operation condition, the field current is

adjusted by the serial rheostat. Thus, the load and voltage are kept constant. If the field current is increased,

the motor shifts from a unity power factor to leading power factor operation conditions. The experimental tests

are repeated several times under different load conditions. The input and output parameters of the SM are

measured and recorded from the test rig [2–5]. Finally, these parameters are used to create linear and quadratic

SM forms in the heuristic exploring unit.

Five parameters are used to represent and model the SM as in the literature [2–5]: the load current (Iy),

power factor (pf), power factor error (e), variation in excitation current (dif ), and excitation current (If ).

< If > is the output and < Iy , pf, e, dif > are the input parameters of the SM in the power factor correction

task. A recent study [5] was executed to explore the numerical weights or effects of input parameters < Iy , pf,

e, dif > on the changing of output < If > individually. FSM represents an array of input parameters and

TSM represents an array of output parameters for a SM dataset, as given in Table 2 [4–5].

Table 2. Representation of the SM parameters in the AI-based model [4].

FSM (input parameters) TSM (target)
Load Power Power factor Changing of excitation Excitation
current factor error current current
Iy pf e dif If

3. Development of the heuristic modeling technique for creating linear and quadratic SM forms

A detailed description of the proposed heuristic modeling technique is given in this section.

The processing steps are shown in Figure 2. Depending on the input and output parameters in Table 2, a

SM dataset can be represented in DSM matrix form, as given in Eq. (1). Here, < fIy, fpf, fe, fdif > represents

the numerical values of sample cases belonging to the input parameters in the FSM dataset and <tIf >

represents the numerical values of sample cases belonging to the output parameters in the TSM dataset.

The DSM dataset is used to explore the best candidate solution and finally test the performance of the

created linear and quadratic SM forms in the heuristic modeling unit.

DSM [j,4]=


fIy[0,0]

fpf[0,1]
fe[0,2] fdif [0,3]

tIf[0,4]

...

fIy[j,0]
fpf[j,1]

fe[j,2] fdif [j,3]
tIf[j,4]

 (1)

In this study, estimation of the excitation current of the SM based on the input parameters <Iy , pf, e, d if >

is modeled using linear and quadratic forms. The linear form can be expressed as below.

Elinear = w1∗x1+w2∗x2+w3∗x3+w4∗x4+w5 (2)
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SM DATA   

“Modeling and representation of SM parameters and data”  

LINEAR and QUADRATIC FORMS   

“Designing of linear and quadratic SM forms”   

 

 

 

  

 

  

HEURISTIC MODELING SYSTEM   

  

  

EVALUATION UNIT: FITNESS FUNCTIONS  

“Evaluation of linear and quadratic equations” 

HEURISTIC UNIT 
“Representation of SM problem and linear and quadratic SM forms in GSA, 

GA, and ABC algorithms”  

UPDATE and TERMINATION  
“Applying the heuristic algorithm operators for updating, modifyingo and 

terminating processes” 
 

“Saving of the b est linear or quadratic SM form for predicting the excitation 
current of SM for a given input dataset” 

DECISION SUPPORT SYSTEM for SM  

Figure 2. Processing steps of the developed heuristic modeling system.

Here, the optimization coefficients are represented by w1 , w2, . . .,w5 and the design parameters are represented

by x1, x2, . . ., x4 . We can rewrite the above expression in Eq. (2) to produce the linear SM form and estimate

the excitation current.

Elinear(SM) = IPredicted
f = w1∗ iy+w2∗pf+w3∗e+w4∗dif+w5 (3)

The fitness function for the linear SM form can be written as below [Eq. (4)]. Eq. (4) can be used to determine

the fitness values of the candidate solutions, which are created by the metaheuristic modeling unit.

Minf (v) =

j∑
k=1

(IPredicted
f − Iobservedf )

2
(4)

The expression of quadratic form is given in Eq. (5).

Elinear(SM) ≡ Ipredictedf = w1∗x1+w2∗x2+w3∗x3+w4∗x4+w5∗x1∗x2+w6∗x1∗x3+w7∗x1∗x4

+w8∗x2∗x3+w9∗x2∗x4+w10∗x3∗x4+w11∗x2
1+w12∗x2

2+w13∗x2
3+w14∗x2

4+w15

(5)

Note that the optimization coefficients (w1, w2, . . ., w15) and design parameters (x1, x2, . . ., x4) in Eq.

(5) are similar to those in Eq. (3).
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3.1. Metaheuristic modeling unit

The task of the metaheuristic modeling unit is to create and modify linear and quadratic SM forms using Eq.

(3) and a rewritten version of Eq. (5) to explore the best candidate. The fitness function [Eq. (4)] is used to

evaluate the fitness value of the candidates and to determine the best solution. Finally, the unit predicts the

value of the excitation current of the SM for arbitrary values of input parameters <Iy , pf, e, d if > based on

the best SM form.

The GSA is based on the law of Newtonian gravity and mass interactions [29]. The gravitational force

might be stated as a communication and interaction form among the masses. The gravitational force F ij

between the particles or masses i and j , is defined as follows.

Fij=
Maj xMpi

R2
(6)

Here, Maj represents the active gravitational mass of particle i , Mpi represents the passive gravitational mass

of particle j , and R2 is the square distance between the particles. The acceleration of particle i is calculated

as follows (Eq. 7).

ai
Fij

Mii
(7)

Here, M ii represents the inertia mass of particle i . In the GSA, agents are considered as particles in nature.

The performance of the agents is measured by their masses. The agents attract each other by the gravitational

force, as given in Eq. (6). Each agent represents a solution for a problem. The agents, which have heavy

masses, present good solutions and move more slowly than lighter ones. An agent is defined by 4 parameters

(X ij , M ii , Maj , and Mpi).

The position X ij of the ith agent is equal to the solution of the problem and its gravitational masses, such

as active, passive, and inertial (Maj , Mpi , M ii), are specified using a fitness function [29–31]. The principle

of the GSA is shown in Figure 3. The formulation of the GSA is detailed depending on its flow chart in the

following lines.

i) Generate initial population: First, a population is created with N masses or agents. Each agent has 4

specifications: position, inertial mass, active gravitational mass, and passive gravitational mass. For a

system with N agents, the position of the ith agent is defined as follows:

Xi =
(
xl
i, . . . , x

d
i , . . . , x

n
i

)
for = 1, 2, . . . , N (8)

where xd
i represents the position of the ith agent in the dth dimension. Positions of the agents represent

the optimization coefficients [in Eq. (3)] for creating a linear/quadratic SM form in the GSA-based

metaheuristic unit specifically.

ii) Evaluate fitness for each agent: Fitness functions are used to evaluate the gravitational and inertia masses

of the agents. A specific fitness function for each problem is formulated by the user [see Eq. (4)]. Depending

on the fitness function, the agents that have heavier masses are more efficient than the other agents.

iii) Update the G best and worst of the population: The gravitational and inertial masses are updated

depending on Eqs. (9)–(11), as follows:
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Generate initial population

Evaluate fitness for each agent

Update the G, best and worst of the population

Calculate the Mand a for each agent

Update the velocity and position

Meeting end of criterion?

Returnbest solution

Yes

No

 

Figure 3. Flow chart of the GSA [29].

The gravitational constant G is calculated using Eq. (9). G is initialized at the start randomly and then

is decreased depending on time t to control the search accuracy. According to Eq. (9), G is a function of

the initial value (G0) and time (t):

G (t) = G (G0, t) . (9)

Eq. (4) could be rewritten as in Eq. (10), as follows:

G (t) = G0e
−α t

T , (10)

where α is a specific constant determined by the user, and t and T are the number of current iterations

and the number of total iterations, respectively. For a minimization problem, the best(t) and worst(t)

are defined in Eqs. (11) and (12), as follows:

best (t) = min
j∈{1,...,N}

fitj (t) , (11)

worst (t) = max
j∈{1,...,N}

fitj (t) . (12)

For a maximization problem, the best(t) and worst(t) are defined in Eqs. (13) and (14), as follows:

best (t) = max
j∈{1,...,N}

fitj (t) , (13)

worst (t) = min
j∈{1,...,N}

fitj (t) . (14)

where fit j(t) is the fitness value of agent I .
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iv) Calculate M and a for each agent:

Mai = Mpi = Mii = Mi, i = 1, 2, . . . N (15)

mi (t) =
fiti (t)− worst (t)

best (t)− worst (t)
(16)

Mi (t) =
mi (t)

N∑
j=1

mj (t)

(17)

Here, fit i(t) is the fitness value, mi(t) is the inertial mass, and Mi(t) is the gravitational mass of agent

iat time t.The gravitational force F ij between agents i and j at a specific time t is defined in Eq. (18),

as follows.

F d
ij (t) = G (t)

Mpi (t)xMaj (t)

Rij (t) + ε

(
xd
j (t)− xd

i (t)
)

(18)

Here, G(t) is the gravitational constant at time t , ? is a small constant, and Rij is the distance between

the ith and j th agents. Depending on the experimental results, Rashedi et al. [29] reported that Rij

provides better results than Rij 2 in all of the experimental cases. The Euclidean metric is used to measure

the distances between iand j objects/agents. It is defined as follows:

Rij(t) = ∥Xi(t), Xj(t)∥2 . (19)

The total force for agent i in dimension d can be a randomly weighted sum of the dth components of the

forces sourced from other agents and is calculated as in Eq. (20).

F d
i (t) =

N∑
j=1,j ̸=i

randjF
d
ij (t) (20)

Here, rand j is randomly generated and the interval of the j -values is in the range of [0,1]. kbest is the

set of K agents that have the best fitness value and biggest mass. According to the law of motion, the

total force F d
i (t) and the inertial mass M ii are used to calculate the acceleration of agent i at time t in

the dth dimension directly. The adi (t) value is given in Eq. (21), as follows:

adi (t) =
F d
i (t)

Mii (t)
. (21)

The next velocity of agent i is calculated depending on the acceleration. The acceleration of the agent is

added to its current velocity. The next velocity and next position of agent ican be calculated with Eqs.

(22) and (23), as follows:

vdi (t+ 1) = randi × vdi (t) + adi (t) , (22)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) , (23)

where vdi (t+1) is the next velocity, randi is a random number in the interval [0,1], vdi (t) is the current

velocity, adi (t) is the acceleration, xd
i (t+1) is the next position, and xd

i (t) is the current position of agent
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i at time t in dimension d . Rashedi et al. [29] proposed reducing the number of agents and using only

a set of agents with a bigger mass to apply their force to the other agents. They also used only the best

agents Kbest for attraction to the others. Based on this strategy, Eq. (20) can be rewritten as follows:

F d
i (t) =

N∑
j∈Kbest,j ̸=i

randjF
d
ij (t). (24)

Kbest is defined as a function of time, with the initial value K0 at the beginning and decreasing with

time. Based on this strategy, all of the agents can apply a force to each other in the initialization process.

As time passes, Kbest is linearly decreased, and at the end of the process, there will be just one agent

applying force to the others.

4. Experimental study: testing of linear and quadratic SM forms

In this study, the steps of the proposed method are implemented according to Figure 2. The linear and quadratic

SM forms are created by the heuristic unit in the experimental study. Test studies are conducted to explore

the best linear or quadratic equation and investigate the performances of GSA-, ABC-, and GA-based methods

according to the conditions given in Table 3. Each of the experiments is repeated 20 times with different random

seeds.

Table 3. Parameters of the GA-, ABC-, and GSA-based exploring methods.

GSA parameters 

Population size 

(linear/quadratic) Iteration number   constant  Gravitational constant 
 

 

100/200 20,000 0.01 10 

ABC parameters 

Population size 
Iteration 

number 
Onlooker bees Employed bees 

Neighborhood 

coefficient 

100/200 20,000 50/100 50/100 [0.001; 0.01] 

GA parameters 

Population size 
Iteration 

number 

Parent 

selection 

method 

Crossover method 
Mutation 

coefficient 

Mutation 

method 

100/200 20,000 
*Roulette 

wheel 

*Flip bit, *Boundary 

*Nonuniform,*Uniform 

Interval [0.001; 

0.01] 

*Single point 

*2 points 

*Inversion 

A SM dataset is obtained from a real experimental set. For the experimental study, 594 data samples are

used for the training and testing processes of the linear/quadratic SM forms [4,5,22,23] and 394 test samples

(training data) from the dataset are chosen randomly. The rest of the dataset (200 sample cases) is used in the

test process. The SM forms are created by metaheuristic exploring methods in the forms of Eqs. (3) and (5).

The fitness function [Eq. (4)] is used to evaluate the performance of the created forms. The task is to create

the best linear or quadratic form to estimate the excitation current of SM. The estimated excitation current is

compared with the real value in the test dataset of SM.

Test case 1 : Creating and testing the linear SM forms and identification of the optimization coefficients:

First, linear SM forms are created in the form of Eq. (3). The forms have 5 optimization parameters. The best

parameter values are explored by a metaheuristic searching unit. The accuracy of the SM forms is validated by

experimental tests. The best optimization values of the other experimental parameters are given in Table 4.
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Table 4. Application of the proposed methods on the SM dataset and experimental test results for linear SM forms.

Method
Optimization coefficients

Fitness Error Standard
Value % Deviation

w1 w2 w3 w4 w5 (Training) (Test) (Test)
GSA 0.069097 0.135676 0.815564 0.575546 0.824279 0.007626 3.48 3.58
ABC 0.010779 0.637809 0.637809 0.946734 0.533464 0.010840 4.16 2.78
GA 0.117146 0.286163 0.999948 0.304766 0.557133 0.005586 5.16 3.01

The best linear SM form [Eq. (25)] can be achieved for each heuristic method by substituting the

optimization ratios given in Table 4 in Eq. (3).

Elinear(SM) = IPredicted
f = 0.069097∗ iy+0.135676 ∗ pf + 0.815564 ∗ e+ 0.575546∗dif+0.824279 (25)

The accuracy of the developed method is tested using the linear SM form swiftly and simply. This feature

proves the measurability, testability, and verifiability of the developed method in comparison with the available

AI-based black-box methods. The excitation currents can be estimated for each sample in the set of test data

using the design ratios in the set of test data (parameter rates related to each test sample) and linear SM forms

achieved using each metaheuristic method.

Estimation charts created by the AI-based nonlinear methods such as the IKE [5], k-NN estimator [5],

ANN [4,22,23], and proposed methods are given in Figure 4. The excitation currents can be estimated with

high accuracy and sensitively using the developed linear SM forms, as seen in Figure 4. When compared with

the estimation results produced by the linear and nonlinear techniques, it is seen that despite the simplicity,

the proposed technique is at least as successful as AI-based nonlinear methods.

The percentages of error rates that occurred in the excitation current estimation for each heuristic

technique are given in Figure 5. Figure 5a shows the error rates that occurred in the nonlinear techniques

based on the IKE [5], k-NN estimator [5], and ANN [5,22,23], whereas the error rates that occurred in the

proposed techniques are given in Figure 5b.

Test case 2 : Creating and testing quadratic SM forms and identification of the optimization coefficients:

Quadratic SM forms are created in the form of Eq. (6) by the metaheuristic exploring unit. The forms have

15 optimization parameters. The accuracy of these forms is validated by the experimental tests. The best

optimization values, which are explored by the GSA-, ABC-, and GA-based metaheuristic techniques, and the

other experimental parameters are given in Table 5.

To achieve the best quadratic SM form, one can replace in Eq. (5) the optimization ratios related to the

GSA given in Table 5. Similarly, other SM forms can be also achieved by replacing in Eq. (5) the optimization

ratios that are discovered with the ABC- and GA-based heuristic methods. The excitation currents for each
sample in the set of test data can be estimated using the design ratios in the set of test data (parameter rates

related to each test sample) and quadratic SM forms.

It is seen that a more sensitive modeling system for SM forms is developed compared to recent works in

literature, based on the error percentages and standard deviation rates that occurred in the excitation current

estimation given in Table 5 [4,5,22,23]. It has the most advantages. For example, the proposed model is realized

easier than the AI-based nonlinear models. It does not have complex functions. The quadratic SM forms

represented in simple formula form can be easily implemented to microprocessor-based systems. Hence, it has

the ability to produce faster responses. In addition to these advantages, the error rates and standard deviation

values in the estimation of the excitation current in the proposed model are quite low.
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(a) IKE  [5]  (b) Linear SM form created by GSA  

 

(c) Classic k -NN estimator [ 5]  

 

(d) Linear SM form created by ABC  

 

(e) ANN [5. 22-23 ]  

 

(f) Linear SM form created by GA  
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Figure 4. Comparison of the estimation results of AI-based nonlinear methods and proposed linear SM forms: a)

intuitive k-NN estimator (IKE) [5], b) linear SM form created by the GSA, c) classic k-NN estimator [5], d) linear SM

form created by the ABC, e) ANN [5,22,23], f) linear SM form created by the GA.

In Figures 6a–6c, the excitation current estimations for GSA-, ABC-, and GA-based quadratic SM forms

are given, and the percentages of the error rates are given in Figure 6d.

Test case 3 : Comparing the response time of the proposed linear/quadratic SM forms and the AI-based

nonlinear methods: In this case, the response time of the algorithms is compared. The algorithms are realized

in the MS Visual Studio .NET software development environment [32].
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Figure 5. Comparison of the error rates of the AI-based nonlinear methods (a) and proposed linear method (b).

Table 5. Application of proposed methods to the SM dataset and experimental test results for the quadratic SM forms.

Method
Optimization coefficients Fitness value Error % Standard deviation
W (w1, w2, w3, . . . , w15) (training) (test) (test)

GSA

(0.003976, 0.563066, 0.878701,
0.116363, 0.016562, 0.019134,
0.016564, 0.890887, 0.264445,
0.185232, 0.007866, 0.220562,
0.185250, 0.044121, 0.277656)

0.006101 4.91 3.03

ABC

(0.001967, 0.673275, 0.689621,
0.190243, 0.033631, 0.174685,
0.001971, 0.691692, 0.311157,
0.309606, 0.001967, 0.372069,
0.674622, 0.052454, 0.030473)

0.006670 5.05 3.06

GA

(0.007219, 0.589528, 0.981977,
0.046613, 0.046613, 0.046613,
0.046613, 0.981977, 0.046613,
0.046613, 0.007219, 0.231306,
0.832696, 0.046613, 0.114425)

0.005083 5.50 3.50

The mean response time of the proposed and classic methods for the test dataset is measured as shown

in Figure 7. In the linear SM model, the mean response time is 247 times faster than with the IKE and 11

times faster than with the ANN method. The calculation of the distances among the observations and an

increment in the k-value (nearest neighbor count) and the number of sample observations negatively affect the

workload of the processor and response time of the IKE. Thus, the algorithm response time is delayed in the
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Figure 6. The estimation and error results of the proposed quadratic SM forms: a) quadratic SM form created by the

GSA, b) quadratic SM form created by the ABC, c) quadratic SM form created by the GA, d) comparison of the error

rates of the proposed quadratic SM forms.

IKE. Detailed information about the application of the IKE method to the SM problem can be found in [5]. The

number of nodes and the hidden layers, types of activation functions in the nodes, and input/output numbers

of the ANN-based model negatively affects its response time [4]. Detailed information about applying the ANN

method to the SM problem can be found in [4,5,22,23]. Maiti et al. [33] reported that AI-based methods require

large memory support and include computational complexity. Consequently, the decision-making process and

input/output operations in AI-based nonlinear methods are more complex than in the proposed method.

0.1729
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Figure 7. Mean response time of the proposed and classic methods for the test dataset.
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(a) IKE-based method [5]  (b) ANN-based method [5. 22 -23] 
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Figure 8. A comparison of the AI-based nonlinear methods (a and b) and proposed quadratic/linear methods (c and

d) for the response times: a) IKE-based method [5], b) ANN-based method [5,22,23], c) quadratic SM form, d) linear

SM form.

The response times of the proposed and classic methods for each observation in the test dataset are

measured as shown in Figure 8. The proposed methods improve the response time through the simple lin-

ear/quadratic SM forms significantly.

5. Conclusions

A hybrid estimation method for the excitation current of a SM using a metaheuristic exploring technique and

linear/quadratic SM forms is proposed for the design of a parameter modeling system. Based on a hybrid

estimation method of the excitation current, 3 metaheuristic methods, including the proposed technique, are

implemented for the performance comparison. Next, as an effective way of estimating the excitation current of

a SM in a simple manner, the motor parameters are modeled using the best linear or quadratic SM forms. Since

only a simple equation of the linear and/or quadratic SM form is used for the motor parameter modeling, the

driver software designs are considerably simpler and the computational load of the microprocessor for estimation

of the excitation current is smaller than in the existing AI-based popular and actual techniques. Through the

various comparative experimental studies, it is verified that the proposed modeling technique yields a robust,

stable, and fast estimation performance and creates simple linear and quadratic SM forms. As a result of

this, improved complexity versus nonlinear modeling techniques can be obtained without requiring an AI-based

black-box modeling approach, such as in ANNs. With the proposed approach, the relationships among the SM

parameters can be represented with a simple linear/quadratic form. As a result of this study, the complexity

problem of the popular AI-based nonlinear modeling techniques is solved, the convergence problem in the

ANN-based methods is overcome, and the estimation results from the well-known popular solutions are better

achieved. The proposed technique can be considered as a powerful alternative to AI-based black-box modeling.

1650



KAHRAMAN/Turk J Elec Eng & Comp Sci

References

[1] S. Vaez-Zadeh, A.R. Ghasemi, “Design optimization of permanent magnet synchronous motors for high torque

capability and low magnet volume”, Electric Power System Research, Vol. 74, pp. 307–313, 2005.

[2] I. Colak, R. Bayindir, O.F. Bay, “Reactive power compensation using a fuzzy logic controlled synchronous motor”,

Energy Conversion and Management, Vol. 44, pp. 2189–2204, 2003.

[3] I. Colak, R. Bayindir, I. Sefa, “Experimental study on reactive power compensation using a fuzzy logic controlled

synchronous motor”, Energy Conversion and Management, Vol. 45, pp. 2371–2391, 2004.

[4] R. Bayindir, I. Colak, S. Sagiroglu, H.T. Kahraman, “Application of adaptive artificial neural network method to

model the excitation currents of synchronous motors”, 11th IEEE International Conference on Machine Learning

Applications, Vol. 2, pp. 498–502, 2012.

[5] H.T. Kahraman, R. Bayindir, S. Sagiroglu, “A new approach to predict the excitation current and parameter

weightings of synchronous machines based on genetic algorithm-based k-NN estimator”, Energy Conversion and

Management, Vol. 64, pp. 129–138, 2012.

[6] F.S. Sellchopp, L.M.A. Arjona, “A tool for extracting synchronous machines parameters from the dc flux decay

test”, Computers and Electrical Engineering, Vol. 31, pp. 56–68, 2005.

[7] H.M. Al-Hamadi, K.M. EL-Naggar, “Measurement of synchronous machine parameters using Kalman filter based

fuzzy logic estimator”, Measurement, Vol. 43, pp. 1327–1335, 2010.

[8] R.A. Fuselier, “Alternative cost-effective applications of power factor correction”, IEEE Transactions on Industry

Applications, Vol. 25, pp. 10–18, 1989.

[9] R.G. Andrei, R.R. Kanushik, R.W. Reinaker, “Bridge capacitor bank design and operation”, IEEE Transactions

on Power Delivery, Vol. 11, pp. 227–233, 1996.
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