
Turk J Elec Eng & Comp Sci

(2014) 22: 1653 – 1663

c⃝ TÜBİTAK

doi:10.3906/elk-1211-26

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Frequency-emulated uniform cellular automata

Hürevren KILIÇ∗

Computer Engineering Department, Gediz University, Seyrek, Menemen, İzmir, Turkey

Received: 07.11.2012 • Accepted: 26.03.2013 • Published Online: 07.11.2014 • Printed: 28.11.2014

Abstract: The notion of a frequency-emulated (f-emulated) uniform cellular automata (CA) that enables the behavior

emulation of some elementary CA via memory usage is introduced. An algorithm that generates f-emulated uniform CA

sets is developed and an upper bound for its output size is given. It is observed that traffic rule 184 together with its

2-emulator version, which generates the behavior of the known majority rule 232, performs the density classification task

perfectly. Moreover, it is possible to use a 2-emulated uniform CA for the solution of the parity problem.

Key words: Cellular automata, frequency-emulated cellular automata, core emulator set, f-emulated set, density

classification task, parity problem

1. Introduction

The establishment of high-quality computational models for better understanding is a critical part of the study

of complex systems, including, for example, the fields of physics, biology, ecology, sociology, and economics. Self-

organization of simple components and the resulting aggregate global system behavior are common features of

most natural and artificial complex systems. Among different computational models, cellular automata (CA) [1]

provide discrete dynamical system models, in which locally interconnected set of cells (i.e. automata) evolve at

discrete time steps through mutual interactions. Instead of describing a complex system with complex equations,

the CA model enables the complexity to emerge by interaction of its simple components following simple rules.

Starting with specific local behavior in mind and to observe its long-term global impact (forward prob-

lem) and identifying local transitions that support some given global behavior (inverse problem) are typical

involvements in the CA field. This study is neither about the forward nor the inverse problem, but is an inves-

tigation of interautomaton emulation possibilities and their consequences/use in problem solving. The purpose

of the study is to attain a basis for CA through examination of their global behavior (or state space) level

mimicking capabilities. The goal is to achieve still simpler computational models. By simpler model, we mean

a uniform cellular model that does not require designed external automaton combinations/switches for solving

hard computational tasks. For our purpose, we introduce a frequency-emulated (f-emulated) uniform CA and,

based on it, 2 sets: the core emulator (CES) and f-emulated set (F-ES), are defined. Use of f-emulators in global

computation that relies on local coordination is shown via the density classification task (DCT) [2] and parity

problem (PP). The notion of f-emulation and the related sets proposed in this paper is original. Different from

existing approaches to solve hard computational tasks via CA combinations, we introduce the f-emulated CA

model, using which one can solve some hard tasks without automaton switches. Moreover, the proposed CES

∗Correspondence: hurevren.kilic@gediz.edu.tr

1653

KILIÇ/Turk J Elec Eng & Comp Sci

defines a basis and reduces the search space for search-based approaches that aim to identify cellular models in

solving hard computational tasks.

In Sections 2 and 3, we give formal definitions for CA, f-emulated uniform CA, and the emulation set.

Section 3 also contains an algorithm that generates f-emulated uniform CA sets, an upper bound for its size,

and a list of all 2-emulated automata and their CES. Section 4 contains emulations of known solutions to the
DCT and PP. The last section is the concluding remarks.

2. Cellular automata

Deterministic CA is a model that consists of a collection of elementary automata with local interactions evolving

in a parallel and synchronous way [1]. A 1-dimensional CA can be built up in the following way:

1) Begin with a cellular space that consists of an infinite line divided into cells indexed by some integer

i ∈ Z .

2) There is a neighborhood relation that gives for any cell i , a finite list of cells indexed by i− r, i− r+

1, . . . , i− 1, i, i+ 1, . . . , i+ r − 1, i+ r called its neighbors, from which it can directly receive information. r

is called the neighborhood radius.

3) Specify a finite list of state Q with cardinality |Q| = k .

4) For cell i , of the cellular space, define a local transition function fi from Q2r+1 to Q , where 2r + 1

is the number of neighbors of cell i . fi specifies the state qt+1
i of cell i at time t+ 1, as a function of states

of its neighbors at time t , that is:

qt+1
i = fi

(
qti−r, q

t
i−r+1, . . . , q

t
i−1, q

t
i , q

t
i+1, . . . , q

t
i+r−1, q

t
i+r

)
. (1)

5) Any function c : Z → Q that defines an assignment of states to all cells in the 1-dimensional cellular

space is called a configuration and for any cell xi , c (xi) is called the state of xi under configuration c .

6) Simultaneous application of local transition functions fi to all the cells of the cellular space defines

a global transition function F that acts on the entire array, transforming any configuration c into a new

configuration c
′
such that:

c
′
(xi) = fi (c (xi−r) , c (xi−r+1) , . . . , c (xi−1) , c (xi) , c (xi+1) , . . . , c (xi+r−1) , c (xi+r)) . (2)

Usually, we assume that the cells are connected with a periodic neighborhood boundary condition that leads

to simply finite configurations. If the same local transition function fi is applied to all cells, the cellular

automaton is called uniform CA; otherwise, it is called hybrid CA. In the case of 1-dimension, r-neighbor,

k-state, the number of all possible uniform CA is: kk
2r+1

. For r = 1 and k = 2, it is 256. In the Wolfram

naming convention [3], the automata (or rules) are enumerated from 0 to 255.

3. Behavior emulation of CA

Definition 1: Given r-neighbor, k-state uniform cellular automaton A defined by local transition function f i ,

f-emulation uniform cellular automaton Af is an r-neighbor k-state uniform cellular automaton having local

transition function:

1654

KILIÇ/Turk J Elec Eng & Comp Sci

qt+1
i = ff

i

(
qti−r, . . . , f

j
i

(
qti−r, . . . f

1
i

(
qti−r, . . . , q

t
i , . . . , q

t
i+r

)
, . . . , qti+r

)
, . . . , qti+r

)
, (3)

where f j
i indicates the j th application of fi .

The local transition function of Af is simply obtained by f times repetitive application of the local

transition function of A while keeping the neighbors’ state fixed. Different from the original CA transition,

the f-emulated uniform CA requires f times consecutive application of the state transition function for cell i in

every single CA update step. Note that each cell automaton i is responsible for the update of its current state

only and throughout the f-emulation steps not the newly updated intermediate neighbor states but the initial

neighbor states of f-emulation are considered. For example, let r = 1, k = 2, qti−1=1, qti = 0 and qti+1 = 1.

Moreover, assume that fi (1, 0, 0) = 1 and fi (1, 1, 0) = 0 are 2 transition rules of the given CA A. Thus, the

3-emulation uniform CA A3 of A computes qt+1
i as f3

i (1, f
2
i

(
1, f1

i (1, 0, 0) , 0
)
, 0) = 1. Note that A1 = A .

The rationale behind the frequency emulation idea is to identify possible behavior mimicking relations among

automata descriptions based-on state space dynamics. The frequency emulation idea extends the spatial cellular

neighborhood to the temporal neighborhood via simple memorization.

Definition 2 Emulation set S (A) of a given r-neighbor k-state uniform CA A is
∞∪
i=1

Ai .

Clearly, |S (A)| ≤ kk
2r+1

.

Proposition: For a given r-neighbor k-state uniform CA A , |S (A)| ≤ k+LCM (1, 2, . . . , k)−2 , where

LCM (1, 2, . . . , k) stands for the least common multiples of the first k numbers. (4)

To see this, let us consider the local instance of the ith cell of A together with its r right and r left

neighbors at time t . During emulation, while we keep its neighbors’ states fixed, by the end of at most k − 1

steps, we reach a local instance occurred before (i.e. local cycle of some length). Local cycles imply a global

cycle entered by the end of some finite number of emulation steps. The upper bound for the global cycle length

can be figured out as the LCM of k2r numbers, where each can take value from 1 to k . The maximum

global cycle length also implies the highest number of automaton that can be emulated by a single automaton.

Furthermore, since r ≥ 1 then k2r > k for any k > 1. Therefore, according to the pigeonhole principle, only

k of k2r such numbers contribute to the LCM . Moreover, the LCM of a smaller (i.e. < k) number of items

cannot be greater than that of the first k numbers. By considering the global state reached by the end of k− 1

number of state changes, we can conclude that S (A) ≤ k − 1 + LCM (1, 2, . . . , k)− 1.

The proposition gives us an idea about the limitations of the frequency emulation approach based

on the number of states k . The size limit for emulation set S (A) is considered in the following Emula-

tion Set Constructor algorithm and the bound figured out in proposition is useful for time-efficient generation

of the emulation set.

Note that the prime number theorem implies that the least common multiples of the first k positive

integers (i.e. 1, 2, 6, 12, 60, 60, 420 ...) LCM (1, 2, . . . , k) = ek(1+o(1)) as k → ∞ . In other words,

ln(LCM(1,2,...k))
k → 1 as k → ∞ . The importance of this expansion is due to figuring out the exponential

number of automata that can be mimicked based on given uniform CA for increased values of k . Furthermore,

bigger |S (A)| values imply more flexibility in solving hard computational problems via fewer automata switches

and by frequency emulation. Below, we give an algorithm for emulation set construction for a given uniform

CA.

1655

KILIÇ/Turk J Elec Eng & Comp Sci

Algorithm Emulation Set Constructor

Input: r - Neighborhood radius; k - # of states; A - r-neighbor, k-state uniform CA

Output: B - Emulation set of A

[1] {

[2] B = {A };

[3] D = A ;

[4] for i = 2 to k + LCM (1, 2, . . . , k)− 2 {

[5] for j = 1 to k2r+1 {

[6] q = k ary (j − 1) ;

[7] s = D.f (q) ;

[8] p = concat (substr (q, 1, r) , s, substr (q, r + 2, r))

[9] D [q] = A.f (p) ;

[10] }

[11] if D ∈ B then return B

[12] else = B ∪ {D };

[13] }

[14] return B ;

[15] }

In the algorithm, the built-in functions k ary , concat , and substr are used for decimal to base k

conversion, string concatenation and substring extraction purposes. Following the initializations, in Line 6,

k ary patterns of length 2r + 1 are generated. In Line 7, we apply the local transition function f of D to

q . Next, we construct and set the rule table entry for the newly established automaton D , in Lines 8 and 9,

respectively. Line 11 checks the existence of the constructed automaton in the set. If not, it is added to the

emulation set; otherwise, we guarantee that no further insertion to the set is possible and return the result.

The proposition gives an upper bound for S (A) size; however, finding a tighter upper bound (if exists)

may lead to construction of more efficient emulation set construction algorithm for the purpose. Time complexity

of the algorithm can be figured out as: θ(e
k(1+o(1)) ∗ k2r+1) ∗ Complexity of functionk ary . In the worst

case, the function k ary takes logk k
2r+1 time and so it is in O(r). Therefore, the algorithm’s complexity is

O(ek(1+o(1)) ∗ k2r+1 ∗ r).

In the proposition, we give an upper bound for the size of the emulation sets. For example, for any r = 1

and k = 2 uniform CA A , |S (A)| ≤ 2. That means at most 2-emulation is possible. In general, we classify any

r-neighbor, k-state uniform CA into 2 disjoint sets based on the f-emulation relation between them: 1) Core

emulator set (CES) that contains all A that are not the f-emulation of any other automata except themselves

and |S (A)| ≥ 1. 2) The F-ES that holds all A that are some f-emulation of at least one other uniform CA B

(i.e. A ∈ S (B)). Note that some members of CES can only emulate themselves (i.e. |S (A)| = 1). Using the

emulation set constructor algorithm, we generate Table 1, which lists members of the CES with |S (A)| = 2 and

corresponding members of the F-ES for all r = 1 and k = 2 uniform CA represented in the Wolfram naming

convention. For example, each of rules 43, 46, and 139 automata are able to 2-emulate the rule 142 automaton.

1656

KILIÇ/Turk J Elec Eng & Comp Sci

Table 1. CESs and corresponding F-ESs for r = 1 and k = 2.

Core emulator 2-emulated Core emulator set, 2-emul. set
set, S(A) = 2 set S(A) = 2 (Cntd.) (Cntd.)
1 4 171 174
2 8 48, 96, 144 192
3, 6, 9 12 49, 52, 97, 100, 145, 148, 193 196
7 13 53, 101, 149 197
11 14 50, 56, 98, 104, 146, 152, 194 200
16 64 58, 106, 154 202
17, 20, 65 68 51, 54, 57, 60, 99, 102, 105, 108, 147, 204

150, 153, 156, 195, 198, 201
21 69 55, 61, 103, 109, 151, 157, 199 205
18, 24, 66 72 59, 62, 107, 110, 155, 158, 203 206
26 74 63, 111, 159 207
19, 22, 25, 28, 67, 70, 73 76 112 208
23, 29, 71 77 113, 116, 209 212
27, 30, 75 78 117 213
31 79 114, 120, 210 216
81 84 122 218
82 88 115, 118, 121, 124, 211, 214, 217 220
83, 86, 89 92 119, 125, 215 221
87 93 123, 126, 219 222
91 94 127 223
32 128 176 224
33, 36, 129 132 177, 180, 225 228
37 133 181 229
34, 40, 130 136 178, 184, 226 232
42 138 186 234
35, 38, 41, 44, 131, 134, 137 140 179, 182, 185, 188, 227, 230, 233 236
39, 45, 135 141 183, 189, 231 237
43, 46, 139 142 187, 190, 235 238
47 143 191 239
161 164 241 244
162 168 242 248
163, 166, 169 172 243, 246, 249 252
167 173 247 253

251 254

The only self-emulating 16 members of the CES with |S (A)| = 1 are {0, 5, 10, 15, 80, 85, 90, 95, 160,
165, 170, 175, 240, 245, 250, 255} . The CES with |S (A)| = 2 holds 175 members and the corresponding

F-ES holds 65 members. The f-emulation relation is not symmetric and the CES is sufficient to emulate all

256 automata, either via 1-emulation or 2-emulation. In [4], 256 elementary CA rules were divided into 88

equivalence classes based on conjugation, reflection and combined conjugation, and reflection transformations.

The introduced 65 F-ES automata span 23 of them. It is interesting to observe that among 64 amphichiral

elementary CA, 37 are able to 2-emulate some other CA. However, it is not possible to 2-emulate rule 110

(known to be Turing-complete) and the rules in its equivalence class (i.e. rules 137, 124, and 193). It can be

interesting to investigate possible f-emulated automata usage in existing or potential solutions to known hard

tasks.

1657

KILIÇ/Turk J Elec Eng & Comp Sci

4. Solutions via f-emulation

The density classification task is a computational task that demands CA to show the behavior of converging to a

fixed point of all 1’s if the initial system configuration is 1-dense (i.e. higher number of 1’s), and to a fixed point

of all 0’s if the configuration is 0-dense (i.e. higher number of 0’s). The behavior is required to be shown in some

M number of steps in the order of CA with lattice size L and assuming periodic boundary conditions. An early

work on DCT reported not perfect but approximate results [5]. By perfect result, it is meant that whatever the

initial 0-dense or 1-dense configuration, the proposed solution converges to a correct fixed point of all 0’s or all

1’s, respectively. In 1995, the authors in [6] proved that no single 1-dimensional 2-state uniform CA exist that

solve the original DCT without making some mistakes. Following this, the authors in [7] demonstrated that

changing the output specification of the original problem and boundary conditions leads to a solution.

The evolution of asynchronous CA for DCT was studied in [8]. A solution to the problem by a variant

of CA called programmable CA is given in [9]. The cellular programming approach based on nonuniform CA

that locally coevolve to solve a given task can be found in [10]. A rule changing/switching methodology to find

alternative solutions in an evolutionary manner is given in [11]. In [12], the existence of substantial homogeneity

between the results for the problem’s solution using elementary CA and multistate CA is verified. Like our

approach, memory augmented/coupled approaches to the problem were developed in [13][14]. Use of stochastic

CA with arbitrary precision for DCT was developed in [15]. In this study, a blend of stochastic and deterministic

rule usage is shown to result in adjustable classification quality at the cost of longer convergence times.

In [16], it was proven that the use of rule 184 followed by rule 232 performs the task perfectly. In the

paper, it is shown that the given configuration, say s of length L with density ρ , and consecutive application

of 2 rules Fm
232 (F

n
184 (s)), where m = ⌊(L− 1) /2⌋ and n = ⌊(L− 2) /2⌋ , produces the result perfectly. Here,

Fm
i indicates m times application of the global function associated with elementary CA rule i . The production

Fm
232 (F

n
184 (s)) consists of only 0’s if ρ < 1/2 and only 1’s if ρ > 1/2; otherwise, (i.e. ρ = 1/2), it is an

alternating sequence of 0 and 1, i.e. . . . 010101. . . In the solution, the role of traffic rule 184 is to eliminate

11 patterns if ρ < 1/2 (or pattern 00 if ρ = 1/2) in n steps while preserving density ρ . The subsequent

application of majority rule 232 for m steps provides replacement of the minority and leads to the homogeneous

configuration of all 0’s (or all 1’s), respectively.

From Table 1, we know that rule 232 is the 2-emulation of rule 184 (i.e. rule 232 automaton ∈ S(rule

184 automaton). To see this, let us apply the emulation set constructor algorithm using the inputs r = 1; k = 2

and rule 184 automaton . Line 3 adds the rule 184 automaton to the output set. Based on the input values, the

outer loop is executed only once and the inner one is executed 8 times to compute all of the possible alternative

local neighborhood configurations. Table 2 shows variable value traces and 2-emulated automaton construction

due to Lines 7, 8, and 9. For example, when q = 100, the cell produces the output 1 and the configuration

becomes 110. The second application of rule 184 to the obtained configuration produces output ; therefore, the

transition rule for the emulated automaton should contain mapping 100 → 0. Application of the 2-emulation

transition rule for all other possible values of q results in constructed rule 232. Finally, Line 12 adds the

constructed rule 232 automaton to the output set. As a consequence, for any arbitrarily given initial system

configuration, n step execution of rule 184 and 2m step execution of its 2-emulated version solve the density

task perfectly.

From Table 2, we can see that the same results can also be obtained using independent rule 226 and/or

rule 178 two-emulations. Note that in the rule 232 execution part, allowing changes among the rule 232 two-

1658

KILIÇ/Turk J Elec Eng & Comp Sci

Table 2. Two-emulated rule 232 automaton constructions using rules 184, 178, and 226 as input instances to the

emulation set constructor algorithm.

2-emulator 2-emulator 2-emulator 2-emulator
rule 184 rule 178 rule 226 rule 232

q s p s p s p D (q)← A.f(p)
000 0 000 0 000 0 000 0
001 0 001 1 011 1 011 0
010 0 000 0 000 0 000 0
011 1 011 0 001 0 001 1
100 1 110 1 110 0 100 0
101 1 111 1 111 1 111 1
110 0 100 0 100 1 110 1
111 1 111 1 111 1 111 1

(a) (b)

(c)

2-emul.
rule

184

rule

184

2-emul.
rule

184

rule

184

2-emul.
rule

184

rule

184

Figure 1. Density task: spatiotemporal diagrams for rule 184 followed by its 2-emulator variety for lattice size L = 100,

where the initial densities of 1 s are: a) ρ = 0.49, b) ρ = 0.53, and c) ρ = 0.50.

1659

KILIÇ/Turk J Elec Eng & Comp Sci

emulators, one can talk about the existence of 3⌊(L−1)/2⌋ alternative solutions to the problem. This is simply

because consecutive application of different 2-emulators emulating the same CA does not affect the resulting

global system dynamics. In Figure 1, example DCT spatiotemporal diagrams for 3 different initial densities

for rule 184 followed by its majority rule emulator variety are given. The execution length of the 2-emulation

part is depicted as around double its base rule execution part. However, it should be clear that 2-emulator

implementation demands not only 2 times the computation of the local transition function in a 1-clock cycle,

realized with memory usage, but also 1-step suppressed sensory capability that prevents information flow to

other cells. Otherwise, one can only talk about simulation (but not emulation) of automaton behavior. Note

that the basic distinction between emulation and simulation is that the former is focused on exact reproduction

of the system behavior while the latter uses some abstract model of the system for behavior generation purposes.

Similarly, in Figure 2, spatiotemporal diagrams for the same task with the same initial densities and

lattice size but using a rule 178-based 2-emulated version of rule 232 are given. The basic difference between the

diagrams given in Figures 1 and 2 is in the rule 184- and 178-based 2-emulation regions, due to the existence

of different ways to emulate rule 232. Among 3 alternative 2-emulators of rule 232 (namely rules 184, 178,

and 226), the one based on rule 184 does not require any rule switch. However, all 3 emulations still require

intermediate transition steps to execute the task. To the best of the author’s knowledge, the DCT solution:

rule 184 followed by the rule 178-based 2-emulation of rule 232, points to the first time use of rule 178 in the

solution. It can be interesting to examine alternative f-emulated solutions based on known alternative chained

2-rule and 3-rule solutions [11] using Table 1.

Another hard task for elementary CA is the PP. Given a finite binary string, say s , the parity of s is

equal to 1 if the number of 1’s in s is odd; otherwise, it is 0. The PP in a CA context is to find elementary CA,

which will converge to all 1’s if the parity of s is 1; otherwise, it will converge to all 0’s, where s is the initial

global state of the CA with periodic boundary conditions. In [17], it is concluded that no single r = 1 CA rule

exists to solve the PP with fixed boundary conditions.

In [18], a solution involving more than 1 rule is developed. In their solution:

1. Given lattice size L being odd, application of the
(
F

⌊L/2⌋
132 F

⌊L/2⌋
222

)⌊L/2⌋
operator/program to s generates

the desired output. Note that both rule 132 and rule 222 ∈ F-ES. Based on the results given in Table 1,

the existence of 3 alternative 2-emulators for rule 132 and 3 alternative 2-emulators for rule 222 implies(
3⌊L/2⌋3⌊L/2⌋)⌊L/2⌋

alternative only 2-emulated CA solutions to the problem each executes in the order

of θ
(
L2

)
time steps.

2. Similarly, if L = 2q , where q is odd, application of the F
⌈L/2⌉
254 F76

(
F

⌊L/2⌋
132 F

⌊L/2⌋
222

)⌊L/2⌋
operator/program

to s generates the desired output. Note that rules 254, 76, 132, and 222 ∈ F-ES. In this case, the existence

of one 2-emulator for rule 254, 7 alternative 2-emulators for rule 76, 3 alternative 2-emulators for rule 132,

and 3 alternative 2-emulators for rule 222 implies 7
(
3⌊L/2⌋3⌊L/2⌋)⌊L/2⌋

alternative only 2-emulated CA

solutions to the problem each still executes in the order of θ
(
L2

)
time steps.

3. The last case of their solution is when L = 2mq , where m ≥ 2 and q is odd, application of the

F
⌈L/2⌉
254 F76

(
F

⌊L/2⌋
132 F

⌊L/2⌋
222 F 184F252

)m−1 (
F

⌊L/2⌋
132 F

⌊L/2⌋
222

)⌊L/2⌋

operator/program to s generates the desired output. Note that rules 254, 76, 132, 222, and 252 ∈ F-ES.

However, rule 184 ∈ CES. Thus, it is not possible to set up a rule sequence constituted from only 2-emulated

1660

KILIÇ/Turk J Elec Eng & Comp Sci

CA. We have one 2-emulator for rule 254, 7 alternative 2-emulators for rule 76, 3 alternative 2-emulators

for rule 132, 3 alternative 2-emulators for rule 222, and 3 alternative 2-emulators for rule 252. This implies

7
(
3⌊L/2⌋3⌊L/2⌋3

)m−1 (
3⌊L/2⌋3⌊L/2⌋)⌊L/2⌋

alternative solutions to the problem each executes in the order of

θ
(
L2 + L logL

)
time steps.

(a) (b)

(c)

2-emul.
rule

178

rule
184

2-emul.
rule

178

rule
184

2-emul.
rule
178

rule
184

Figure 2. Density task: spatiotemporal diagrams for rule 184 followed by 2-emulator rule 178 for lattice size L = 100,

where the initial densities of 1 s are: a) ρ = 0.49, b) ρ = 0.53, and c) ρ = 0.50.

In [19], alternative chains of elementary CA solutions based on rule behavior analysis are reported. Each

reported alternative solution may bring the potential application of their 2-emulated versions. Recently, in [20],

it was proved that there exists no radius 2-rule that can solve the PP from arbitrary initial configurations.

Furthermore, their designed radius 4-rule that provides quick convergence for any initial condition can be

examined for higher frequency emulations using the emulation set constructor algorithm.

5. Conclusions

F-emulated uniform CA are introduced. It is shown that the behavior emulation of some elementary CA via

increased update frequencies is possible. The proposed model is not a simple memory addition that causes a

direct size increase in the transition function. While keeping the transition function the same, it updates the

1661

KILIÇ/Turk J Elec Eng & Comp Sci

current cell state as frequently as it is required for emulation purposes, which results in global computation

that relies entirely on the local coordination of actions at the cost of an extended execution time in the order

of f . The generated f-emulated automaton equivalences given in Table 1 provide building blocks for uniform

and simpler solutions to the known hard computational tasks. An algorithm that generates f-emulated uniform

CA sets is developed and an upper bound for its output size is given. Based on the f-emulation capabilities of

elementary CA, we classify them into 2 sets: CES and F-ES.

We show that combined use of some elementary CA and their f-emulated versions enables us to find

alternative solutions to known problems, as long as we allow minimal memory usage coupled with frequency

emulation. For example, we observe that traffic rule 184 together with its 2-emulated version, which generates

the behavior of majority rule 232 (i.e. already known rule 184 and rule 232 coupled solution [16]), performs the

DCT perfectly. The f-emulation–based solution to the DCT uses the separation and suppression properties of

rule 184 and its 2-emulation version, respectively. Thinking twice in 1 clock cycle together with a 1-step output

suppression (i.e. silence), and/or memory usage, lead to the frequency-driven alternative execution of original

core rule 184 automaton without any dramatic change in functionality (i.e. switching to a totally new rule 232).

We can speculate that self-concentration on processing via a frequency increase to survive is a typical individual

behavior observed in most natural systems before any possible functional level cooperation formation among

individuals. Similar to using already known chained solutions to the DCT, we figure out alternative solutions

for the PP. However, this time we are not able to identify any single rule coupled with its augmented 2-emulator

variety that solves the PP.

As a consequence of our classification, the CES can either be used as background knowledge in CA-based

analysis and design efforts and/or be part of rule space reduction for performance demanding evolutionary

CA search methodologies, in which finding sequential combinations of CA rules that solve given hard tasks is

the ultimate goal. In future, one can investigate alternative frequency emulation possibilities for other hard

computational tasks.

References

[1] J. von Neumann, Theory of self-reproducing cellular automata, University of Illinois, Urbana, 1966.

[2] N.H. Packard, “Adaptation toward the edge of chaos”, In: J.A.S. Kelso, A.J. Mandell, and M.F. Shlesinger (eds.),

Dynamic Patterns in Complex Systems, World Scientific Singapore, pp. 293–301, 1988.

[3] S. Wolfram, “Statistical mechanics of cellular automata”, Reviews of Modern Physics, Vol. 55, pp. 601–644, 1983.

[4] S. Wolfram, “A new kind of science”, Champaign, IL: Wolfram Media, Inc. 2002.

[5] M. Mitchell, P.T. Hraber, J.P. Crutchfield, “Revisiting the edge of chaos: Evolving cellular automata to perform

computations”, Complex Systems, Vol. 7, pp. 89–130, 1993.

[6] M. Land, R.K. Belew, “No perfect two-state cellular automata for density classification task exists”, Physical Review

Letters, Vol. 74, pp. 5148–5150, 1995.

[7] M.S. Capcarrère, M. Sipper, M. Tomassini, “Two-state, r=1 cellular automaton that classifies density”, Physical

Review Letters, Vol. 77, pp. 4969–4971, 1996.

[8] M. Tomassini, M. Venzi, “Evolving robust asynchronous cellular automata for the density task”, Complex Systems,

Vol. 13, pp. 185–204, 2002.

[9] S. Sahoo, P.P. Choudry, A. Pal, “Solutions on 1D and 2D density classification problem using programmable cellular

automata”, arXiv: 0902.2671 [nlin.CG], 2009.

1662

http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/PhysRevLett.74.5148
http://dx.doi.org/10.1103/PhysRevLett.74.5148
http://dx.doi.org/10.1103/PhysRevLett.77.4969
http://dx.doi.org/10.1103/PhysRevLett.77.4969

KILIÇ/Turk J Elec Eng & Comp Sci

[10] M. Sipper, Evolution of parallel cellular machines: The cellular programming approach (Lecture Notes in Computer

Science), Springer, 1997.

[11] C.L.M. Martins, P.P.B. de Oliveira, “Evolving sequential combinations of elementary cellular automata rules”,

Advances in Artificial Life, Lecture Notes in Artificial Intelligence, Vol. 3630, pp. 461–470, 2005.

[12] A.R. Gabrielle, “The density classification problem for multi-states cellular automata”, Advances in Artificial Life,

Lecture Notes in Artificial Intelligence, Vol. 3630, pp. 443–452, 2005.

[13] C. Stone, L. Bull, “Solving the density classification task using cellular automaton 184 with memory”, Complex

Systems, Vol. 18, pp. 329–344, 2009.

[14] R. Alonso-Sanz, L. Bull, “One-dimensional coupled cellular automata with memory: initial investigations”, Journal

of Cellular Automata, Vol. 5, pp. 29–49, 2010.

[15] N. Fatès, “Stochastic cellular automata solutions to the density classification problem”, Theory of Computing

Systems, 2012, Vol. 53, pp. 223–242, 2013.

[16] H. Fukś, “Solution of the density classification problem with two cellular automaton rules”, Physical Review E, Vol.

55, pp. 2081–2084, 1997.

[17] M. Sipper, “Computing with cellular automata: Three cases for nonuniformity”, Physical Review E, Vol. 57, pp.

3589–3592, 1998.

[18] K.M. Lee, H. Xu, H.F. Chau, “Parity problem with a cellular automaton solution”, Physical Review E, Vol. 64, pp.

267021–267024, 2001.

[19] C.L.M. Martins, P.P.B. de Oliveira, “Improvement of a result on sequencing elementary cellular automata rules for

solving the parity problem”, Electronic Notes in Theoretical Computer Science, Vol. 252, pp. 103–119, 2009.

[20] H. Betel, P.P.B. de Oliveira, P. Flocchini, “On the parity problem in one-dimensional cellular automata”, Proceed-

ings of the 18th International Workshop on Cellular Automata and Discrete Complex Systems and 3rd international

symposium Journées Automates Cellulaires , EPTCS 90, pp. 110–126, 2012.

1663

http://dx.doi.org/10.1007/3-540-62613-1
http://dx.doi.org/10.1007/3-540-62613-1
http://dx.doi.org/10.1007/11553090_45
http://dx.doi.org/10.1007/11553090_45
http://dx.doi.org/10.1007/s00224-012-9386-3
http://dx.doi.org/10.1007/s00224-012-9386-3
http://dx.doi.org/10.1103/PhysRevE.55.R2081
http://dx.doi.org/10.1103/PhysRevE.55.R2081
http://dx.doi.org/10.1103/PhysRevE.57.3589
http://dx.doi.org/10.1103/PhysRevE.57.3589
http://dx.doi.org/10.1016/j.entcs.2009.09.017
http://dx.doi.org/10.1016/j.entcs.2009.09.017

	Introduction
	Cellular automata
	Behavior emulation of CA
	Solutions via f-emulation
	Conclusions

