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Abstract: This paper considers robust classification as a constrained optimization problem. Where the constraints are

nonlinear, inequalities defining separating surfaces, whose half spaces include or exclude the data depending on their

classes and the cost, are used for attaining robustness and providing the minimum volume regions specified by the half

spaces of the surfaces. The constraints are added to the cost using penalty functions to get an unconstrained problem

for which the gradient descent method can be used. The separating surfaces, which are aimed to be found in this way,

are optimal in the input data space in contrast to the conventional support vector machine (SVM) classifiers designed by

the Lagrange multiplier method, which are optimal in the (transformed) feature space. Two types of surfaces, namely

hyperellipsoidal and Gaussian-based surfaces created by radial basis functions (RBFs), are focused on in this paper due

to their generality. Ellipsoidal classifiers are trained in 2 stages: a spherical surface is found in the first stage, and then

the centers and the radii found in the first stage are taken as the initial input for the second stage to find the center

and covariance matrix parameters of the ellipsoids. The penalty function approach to the design of robust classifiers

enables the handling of multiclass classification. Compared to SVMs, multiple-kernel SVMs, and RBF classifiers, the

proposed classifiers are found to be more efficient in terms of the required training time, parameter setting time, testing

time, memory usage, and generalization error, especially for medium to large datasets. RBF-based input space optimal

classifiers are also introduced for problems that are far from ellipsoidal, e.g., 2 Spirals.

Key words: Classification, gradient methods, penalty approach, spherical/elliptical separation, support vector machines

1. Introduction

Design of robust classifiers, namely determining surfaces separating data from each other and from the noise and

outliers with low misclassification error and with low time-memory requirement, is one of the most fundamental

problems in pattern recognition. In the last 2 decades, artificial neural networks (ANNs) and support vector

machines (SVMs) have offered solutions as alternatives to the conventional classification methods [1,2]. Algebraic

ANNs, which define input-output mappings, are used to obtain nonlinear separating surfaces. They are usually

designed in a supervised way using a gradient descent algorithm for minimizing the empirical risk, i.e. the

training error for a given input-desired output (data-class label) set [2]. The generalization ability is attempted

to be gained by some techniques embedded in the learning algorithms, such as the prevention of overfitting,

and there is little concern about noise and outliers hidden in the training data.
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SVMs have a framework providing a design methodology for classifiers that minimize not only the training

error but also the generalization error. An SVM transforms the input data, by a nonlinear mapping defined

with a kernel, into a high-dimensional feature space, where the data become more likely linearly separable, and

then produces an optimal separating hyperplane that maximizes the margin, i.e. the maximum distance away

from the closest (transformed) data belonging to the classes, while ignoring the data falling in the margin to

suppress the effect of noise and outliers as much as possible. SVMs use an optimization formulation, where

the cost corresponds to the maximization of the margin or equivalently the minimization of a structural risk

term for providing the generalization ability, and the linear inequalities in the feature space as constraints

define the inclusion or exclusion of the training data by the classes. SVMs employ the Lagrange multiplier

method of optimization theory for having an unconstrained optimization problem as augmenting the cost by

adding a term for each inequality constraint via a Lagrange multiplier. SVMs reach a quadratic cost in terms

of Lagrange multipliers after the elimination of all of the primal parameters, i.e. linear weights defining the

separating hyperplane and kernel parameters using the first-order optimality conditions [3]. SVMs constitute

quite powerful methods for classification since they have generalization ability, their formulation is independent

from the dimension of the data space, and their design requires solving a quadratic minimization problem,

which becomes convex when defined by a positive semidefinite kernel, so it can be minimized using one of the

many available efficient algorithms. However, SVM classifiers have some problematic features, some of which

are outlined below.

I) SVMs are originally developed for 2-class classification problems [4]. Multiclass classification problems

need to be solved using 2 or more SVMs, as done in the extensions of SVMs developed in the literature:

one versus one, one versus all, and directed acyclic graph [5–7]. However, an optimization formulation

enables us to define multiclass classification as a unique optimization problem, so requiring just one routine

to be run is more appropriate [8]. One formulation of multiclass classification is presented in this paper.

II) The best appropriate parameter selection of SVM addressed in [9,10] could take a very long time for some

problems. The computation and memory needs for SVM grow proportionally according to the training set

size; hence, the solution is obtained very slowly for large datasets [11] since a standard SVM has to solve a

quadratic programming optimization problem so that the optimization variables are Lagrange multipliers,

which are as numerous as the number of training samples. To prevent having an excessive number of

optimization variables, inequality constraints might be embedded into the cost in another way, different

from the Lagrange multiplier method, which associates an optimization variable for each constraint. The

penalty function method employed in this paper provides such a solution.

III) Depending on the choice of kernel and the kernel’s parameter, the distance order among the samples may

not be preserved while carrying them into the feature space by the nonlinear mapping defined by the

chosen kernel [12–15]. This means that the inverse image of the optimal separating hyperplane found in

the feature space may be far away from the optimal separating surface in the input data space.

There are many works in the literature that exploit spherical, ellipsoidal, and radial basis surfaces for

classification purposes [16–26]. However, some of them are devoted to a single-class classification problem only.

Some do not search for minimum volume region classes and ignore the generalization ability and robustness

against the noise and outliers. Some search for optimal surfaces in the feature space, not in the input space.

Lagrange multiplier and penalty parameter methods are usually used in these works to transform constrained
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UÇAR et al./Turk J Elec Eng & Comp Sci

optimization, defining the classification problem as an unconstrained one. None of them provide a scheme to

learn penalty parameters; they just use fixed parameters.

The classifier design method proposed in this paper is different from those of the literature in the following

aspects. The multiclass classification problem is posed as a single (constrained) optimization routine. The

volumes of the class regions are taken as the main cost in the minimization, which are introduced to provide the

generalization ability. The constrained optimization defining the multiclass classification problem is transformed

into an unconstrained one by applying the penalty function method of the optimization theory. The penalty

parameter, which balances the empirical risk term (i.e. the misclassification error term for the training samples)

and the structural risk term (i.e. the sum of squares of the radii or linear connection weights that corresponds

to the total volume of the class regions in some sense), is not chosen fixed, but is learned in an iterative way

while learning the parameters defining the classes and the separating surfaces.

The remainder of the paper is organized in 5 sections. The method proposed has the same purpose as

the SVM and its derivation is also based on the same optimization theory as the SVM, although exploiting a

different optimization approach. To see the common and different features, Section 2 is devoted to providing

preliminary information about SVMs. Section 3 provides the formulations and solution methods of the spherical

and ellipsoidal classifiers and novel classifiers using a convectional radial basis function (RBF) classifier (CRBFC)

surface. Numerical results are given in Section 4. Finally, Section 5 concludes the paper with some final remarks.

2. Background of SVMs

Given L samples of training data (x1, y1), ..., (xL, yL), x ∈ ℜn, y ∈ {−1, 1} , the SVM first transforms the input

samples to a high-dimensional feature space via a nonlinear mapping ϕ(x) and then classifies the transformed

feature vectors by the optimal separating hyperplane, defined by Eq. (1), in the feature space:

ℓ(x) = wTϕ(x) + b, (1)

where w ∈ ℜn stands for the normal vector and b ∈ ℜ determines a measure for the offset of the separating

hyperplane [1,2]. The optimal separating hyperplane is the one with the maximum margin and least error due to

the intramarginal misclassified (transformed) training samples. Herein, the margin is the distance between the

separating hyperplane and the transformed class sample(s) nearest to the hyperplane (namely support vector(s),

SVs). The optimal separating hyperplane defined in this way represents a nonlinear decision surface in the input

space, so a nonlinear classifier called the SVM classifier can be found by solving the primal optimization problem

given in Eqs. (2) and (3):

min
w,b,ξ

Lprimal(w, ξi) = C

L∑
i=1

ξi +
1

2
∥w∥2 , (2)

subject to yi
[
wTϕ(xi) + b

]
≥ 1− ξi. (3)

The first term in the cost penalizes the sum of absolute errors ξi , which are measures of the distances between

the intramarginal misclassified (transformed) training samples and the separating hyperplane. The second term

in the cost forces the margin to maximum. The constraints correspond to the correct classification of the class

samples outside the margin. C creates a tradeoff between the margin size and the error due to the allowed

misclassified intramarginal training examples.
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Using the Lagrange multiplier method, the constrained problem in Eqs. (2) and (3) is transformed into

an unconstrained one:

L̂primal(w, b, ξ, λ, β) = C

L∑
i=1

ξi +
1

2
∥w∥2 −

L∑
i=1

λi

{
yi

[
wTϕ(xi) + b

]
− 1 + ξi

}
−

L∑
i=1

βiξi, (4)

where λi ≥ 0 and βi ≥ 0 are Lagrange multipliers. The solution of the primal problem in Eq. (4) is the

optimal saddle point (wo, bo, ξo, λo, βo), which can be found by minimizing it with respect to w , b , and ξ , and

by maximizing it with respect toλi and βi . The problem can also be solved in the dual space of the Lagrange

multipliers. The dual form follows from the Karush–Kuhn–Tucker optimality conditions:

∂L̂primal

∂wo
= 0 ⇒ wo =

L∑
i=1

λiy
iϕ(xi),

∂L̂primal

∂bo
= 0 ⇒

L∑
i=1

λiy
i = 0,

∂L̂primal

∂ξo
= 0 ⇒ λi + βi = C, (5)

with λi{yi[wTϕ(xi) + b]− 1 + ξi} = 0, βiξi = 0, λi ≥ 0, βi ≥ 0, ξi ≥ 0 for i = 1, ..., L. w, b, and ξ variables

in Eq. (4) are calculated in terms of the Lagrange multipliers using Eq. (5). By eliminating all variables

other than the Lagrange multipliers to λi s and by introducing kernel K(xi, xj) to represent the inner product

byϕ(xi)Tϕ(xj), the dual form is obtained as the following quadratic optimization problem, since many efficient

solution methods exist.

max
λ

Ldual(λ) = −1

2

L∑
i,j=1

λiλjy
iyjK(xi, xj) +

L∑
i=1

λi (6)

subject to

L∑
i=1

yiλi = 0, 0 ≤ λi ≤ C, i = 1, ..., L (7)

The separating hyperplane is thus obtained as:

ℓ(x) = sign(
∑

support vectors

yiλiK(xi, xj) + b), (8)

where the SVs are the data points xi corresponding to λi > 0.

On the other hand, in the multikernel learning problem, the kernel is given as a convex combination of

positive definite classical kernels, Km :

K(xi, xj) =

M∑
m=1

dmKm(xi, xj) with dm ≥ 0,

M∑
m=1

dm = 1, (9)

where dm presents the kernel weight. In simple multiple-kernel learning (SimpleMKL) [27], the optimization

problem in Eq. (10) is constructed. It uses projected gradient updates and trains the SVMs at each iteration.

J(d) =


min

w,b,ξ,d
LSimpleMKLprimal(w, ξi) = C

L∑
i=1

ξi +
1
2

M∑
m=1

1
dm

∥wm∥2

subject to yi
M∑

m=1

[
wT

mϕm(xi) + b
]
≥ 1− ξi

(10)
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3. Proposed classifiers

The idea behind the proposed design method for spherical classifiers (SCs) and ellipsoidal classifiers (ECs) is to

associate 1 region, equivalently 1 surface, for each class so that a region is made large enough to include all of

the associated class samples, and so the misclassification error for training samples and the volume of the region

are kept at a minimum in order to prevent overfitting the training data and to exclude noise and outliers from

the region, thus providing the generalization ability. Below, SCs are presented before presenting the ellipsoidal

and radial basis ones, since the proposed method is best understood in the simplest setting with SCs.

3.1. Stage I: spherical classifiers

Let (xi, yim)withxi ∈ ℜn,yim ∈ {−1, 1} for i = 1, ..., L and m = 1, ...,M define a set of L samples, each of

which is associated to one of the M classes (M ≥ 1), such that any label yim = 1 for a unique m and –1 for

the others. M spherical surfaces given in Eq. (11) can be used to define M -class SCs.

Sm = {x ∈ ℜn
∣∣∣||(xi − cm)||2 −R2

m = 0, i = 1, ..., L,m = 1, ...,M} (11)

Here, Rm ∈ ℜ is the radius of the surface Sm and cm ∈ ℜn is the center. To have zero misclassification error,

Sm spheres should include the associated samples, i.e. the following quadratic inequalities should be satisfied:

||(xi − cm)||2 −R2
m > 0 yim = −1, (12)

||(xi − cm)||2 −R2
m ≤ 0 yim = 1. (13)

The design of the robust SCs is defined as finding the smallest-volume spheres including the associated class

samples:

min
cm,Rm

g(Rm) =
M∑

m=1

R2
m,

subject to ||(xi − cm)||2 −R2
m > 0 yim = −1

||(xi − cm)||2 −R2
m ≤ 0 yim = 1

. (14)

Note that the system of inequalities in Eqs. (12) and (13) might be an inconsistent system having no solution,

i.e. the classes are spherically nonseparable. In such cases, the above design problem should be read as finding

the smallest volume spheres, including the associated class samples as much as possible, and now the minimum

error solution to the inequality system is searched for.

Using the penalty function method, the constrained optimization problem in Eq. (14) can be transformed

into an unconstrained one as follows:

min
cm,Rm

LSC =
M∑

m=1

L∑
i=1

f(yim(||(xi − cm)||2 −R2
m)) +A

M∑
m=1

R2
m, (15)

where the penalty function f(•)is chosen as the ramp function:

f(ξ) = ξ ξ > 0

f(ξ) = 0 ξ ≤ 0

f ′(ξ) = 1 ξ > 0

f ′(ξ) = 0 ξ < 0.
(16)
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Note that ramp function f(•) is not a differentiable function of its ξ argument (the right-hand derivative is

different from the left-hand derivative at the origin), but it is a differentiable function of the cm centers and

Rm radii. The reason for choosing such a penalty function, which is differentiable with respect to the class

parameters, i.e. the centers and radii, relies on the fact that the gradient descent minimization method, which

is chosen in this paper due to its efficiency in time and memory and due to its ability to find acceptable minima

without having sensitive dependency on the initial centers and radii, requires the derivative of the cost with

respect to the optimization variables. The chosen penalty function has another crucial property: it does not

bring any extra variables other than the centers and radii, which are indispensable for defining spherical classes,

making the proposed method superior to the Lagrange multiplier-based methods for large datasets where an

optimization variable, i.e. a Lagrange multiplier, is introduced for each class sample.

The regularization parameter A > 0 is chosen as a variable to balance the volume of the spheres, which

are desired to be sufficiently large to include almost all of the class samples and sufficiently small for preventing

overfitting, and to exclude noise and outliers.

In the proposed SCs, each class is separately clustered by K-means. Any prototype selection method

can be used for the initial cluster selection [28]. The cluster number is automatically adjusted, taking into

consideration the quantization error ratio. In this paper, the error ratio is defined as the ratio of the obtained

quantization error to the determined quantization error. If the error ratio is more than 3, the cluster number

is increased by the nearest integer to the error ratio. Otherwise, the cluster number is increased by the input

space dimension minus 1. In this paper, the quantization error is previously determined as 30 × (n+ 2)/M

for all of the datasets. For the SC stage, the initial cluster centers are set as the sphere center and the initial

cluster radii are set as half of the distance to the mean of the samples in the cluster.

3.1.1. Gradient descent solution for the spherical classifier design

Several minimization methods, such as standard gradient descent, steepest gradient descent, conjugate gradient

descent, scaled conjugate gradient descent, quasi-Newton, and the gradient descent adaptive learning rate

(GDALR) including momentum term methods [2], are examined in solving the piecewise quadratic problem in

Eq. (15). Among those methods listed, GDALR is the best when considering together all of the computation

time and memory requirements, sensitivity to the initial centers and radii, and training and test performances.

To apply any gradient-based method to Eq. (15), it is necessary to calculate the negative gradients of

the LSC cost function with respect to the cm centers and Rm radii:

−∂LSC

∂cm
= 2

L∑
i=1

yim(xi − cm)f ′(yim(||(xi − cm)||2 −R2
m)), (17)

−∂LSC

∂Rm
= 2

L∑
i=1

yimf ′(yim(||(xi − cm)||2 −R2
m))Rm − 2ARm. (18)

In GDALR, the cm centers and Rm radii are updated as follows:

∆cm(k + 1) = α∆cm(k)− (1− α)η(k)
∂LSC

∂cm
, (19)

∆Rm(k + 1) = α∆Rm(k)− (1− α)η(k)
∂LSC

∂Rm
, (20)
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where α , the momentum constant, is usually chosen as 0.9. The learning rate η (k)is updated as in Eq. (21)

and is chosen the same in both of the update equations, Eqs. (19) and (20).

η(k) =


aη(k) if LSC(x(k)) < LSC(x(k − 1))

dη(k) if LSC(x(k)) ≥ eLSC(x(k − 1))

η(k)

(21)

with a = 1.05; d = 0.7; e = 1.04; η (0) = 0.01.

Each ℓm(x) identifies the class samples, assigning them as 1 when they are in the positive half space of

the mth class separating surface and –1 when they are in the negative half space:

ℓm(x) = sign(R2
m − ||(x− cm)||2). (22)

3.2. Learning regularization parameter

As with SVMs and any regularization problem [2,29], the value of the regularization parameter A in Eq.

(15) is crucial for the quality of the classifiers obtained as solutions to the posed optimization problem. A

value larger than the optimal, say A∗ , causes a high misclassification error for the training samples, while a

value smaller than A∗ causes poor generalization ability. In other words, A should be chosen to balance the

L1
SC =

M∑
m=1

L∑
i=1

f(yim(||(xi − cm)||2 −R2
m)) misclassification cost term and L2

SC =
M∑

m=1
R2

m generalization cost

term.

It has been observed in the simulations that choosing A as an optimization variable and then searching

for a gradient descent solution does not provide a convergence to an acceptable solution set of class centers and

radii due to a piecewise cubic polynomial of the optimization variables for nonconstant As. Thus, there is a

need a tool in determining the right value for A by considering the following facts:

1. Equal emphasis should be given to both the misclassification and the generalization errors.

2. A large value for A provides small radii and hence a large misclassification error. On the other hand,

a small value for A provides large radii and hence a small misclassification error. As the number L of

samples increases, L1
SC increases as well.

3. For the yim = 1 class labels, L1
SC is a positive definite (piecewise) quadratic with respect to thecm class

center parameters, and it is a negative definite (piecewise) quadratic with respect to the Rm class radii

parameters. For the yim = −1 class labels, the reverse is true. When trying to minimize L1
SC by a

gradient descent method, for the yim = 1 class labels, the negative gradient direction forces the cm

vectors towards the centers of the classes and enlarges Rm ; both help to reduce the misclassification

error. If cmand Rmare initialized properly, such that all of the cross-class misclassification terms, i.e. the

terms in L1
SC related to the yim = −1 class labels, are 0, then the gradient descent solution provides a

movement on thecm vectors towards the centers of the classes and it provides an enlargement on Rm . It

should be noted that the mentioned proper choice would be obtained by choosing the means of the class

samples as initial cm vectors and by choosing a small Rm . The enlargement on Rm will be stopped when

the cross-class misclassification terms become active. The second source of controlling the enlargement

of Rm is the generalization cost L2
SC , on which the application of the gradient descent reduces Rm . In
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light of the above observations, a small value of A is chosen at the beginning and it is then computed

iteratively as follows.

if A < L

if LSC(k + 1) < LSC(k), Ak+1 = 0.01 +Ak,

elseif LSC(k + 1) > LSC(k), Ak+1 = Ak − 0.01Ak, end

end

3.3. Stage II: ellipsoidal classifiers

In this stage, the decision surface is defined as ellipsoids. For the M ≥ 1 class problem, M ellipsoids with a

inverse covariance matrix Σm ∈ ℜnxn and a center cm ∈ ℜn are defined by:

Em = {x ∈ ℜn|((xi − cm)TΣm(xi − cm)− 1) = 0, i = 1, ..., L, m = 1, ...,M}. (23)

Similar to the SC stage, it is accepted that the ellipsoid includes the patterns belonging to the class labeled

with +1 and the others are excluded:

((xi − cm)TΣm(xi − cm)− 1) > 0 yim = −1, (24)

((xi − cm)TΣm(xi − cm)− 1) ≤ 0 yim = 1. (25)

In this stage, the minimum volume sphere problem, including the xi data belonging to the class +1 and taking

into consideration the classification error, is:

min
cm,Σm

LEC =
M∑

m=1

L∑
i=1

f(yim((xi − cm)TΣm(xi − cm)− 1)) +
M∑

m=1

A/
√
|Σm|. (26)

3.3.1. Solution method for ellipsoidal classifiers

The optimization problem in Eq. (26) can be solved using the GDALR method. First, the negative gradients

of the objective function with respect to the cm and Σm variables are taken as:

−∂LEC

∂Σm
= −

L∑
i=1

yim(xi − cm)(xi − cm)T f ′(yim((xi − cm)TΣm(xi − cm)− 1)) +A(Σ−1
m )T

/
2
√
|Σm|, (27)

−∂LEC

∂cm
= 2

L∑
i=1

yimΣm(xi − cm)f ′(yim((xi − cm)TΣm(xi − cm)− 1)). (28)

The obtained centers in the first stage are accepted as the center of the ellipsoids. The covariance matrices are

initialized with matrices in which the diagonal elements are 1
/
R2

m using the radii obtained from the first stage.

Next, the Σm and cm parameters are updated by:

∆cm(k + 1) = α∆cm(k)− (1− α)η
∂LEC

∂cm
, (29)

∆Σm(k + 1) = α∆Σm(k)− (1− α)η
∂LEC

∂Σm
. (30)
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The final decision is given by:

ℓm(x) = sign(1− (xi − cm)TΣm(xi − cm)). (31)

3.4. Stage III: classifiers based on RBF

For(x1, yim), ..., (xL, yLm), xi ∈ ℜn ,yim ∈ {−1, 1} , the output of a CRBFC with r hidden units and 1 layer for

M -class classification problems is given by:

ℓm(x) =
r∑

j=1

wjmϕjm(x) + bm, (32)

where wjm is the real weight vector, bm is the distance with respect to the origin, and ϕjm(x) is a spherical

or elliptical Gaussian function with the center cjm ∈ Rn and width σjm ∈ ℜ or inverse covariance Σjm :

ϕjm (x) = e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 or ϕjm (x) = e
−0.5[xi−cjm]

T ∑
jm

[xi−cjm]. (33)

The classification error functions, empirical risks, for conventional spherical RBF classifiers (CSRBFCs) and

conventional elliptical RBF classifiers (CERBFCs) are respectively defined by:

min
wjm,bm,cjm,σjm

LCSRBF =
1

2

M∑
m=1

L∑
i=1

(yim − (
r∑

j=1

wjm(e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 ) + bm)))2, (34)

and

min
wjm,bm,cjm,

∑
jm

LCERBF =
1

2

M∑
m=1

L∑
i=1

(yim − (

r∑
j=1

wjm(e
−0.5[xi−cjm]

T ∑
jm

[xi−cjm]) + bm)))2. (35)

The structure of the CRBFCs is generally determined by different clustering methods. These methods generate

one hidden neuron for each cluster [2]. Although they need fewer hidden neurons compared to the methods

assigning a hidden neuron for each sample, the decision surfaces of M -class classification problems are not

accurately modeled and so their classification performance, especially in test samples, is low.

In this paper, the CSRBFCs and CERBFCs initialized by the parameters obtained from the SC and

EC stages are called SC-CSRBFCs and EC-CERBFCs, respectively. On the other hand, the CSRBFCs and

CERBFCs initialized by the parameters obtained using the K-means function of MATLAB are called K-means-

CSRBFCs and K-means-CERBFCs, respectively. The parameters of all of the CRBFCs are trained by the

GDALR algorithm without a momentum term since the GDALR algorithm may increase the error in multiclass

classification problems. CRBFCs can also be trained by other methods [30–32].

3.4.1. The proposed robust spherical and elliptical RBF classifiers

As one of the main contributions of the paper, novel classifiers based on RBF surfaces are introduced, which are

designed by minimizing both the empirical and structural risk formulated using the penalty function approach

for the complex surfaces that are not separated spherically or elliptically. The separating surface of the proposed
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robust spherical RBF classifiers (RSRBFCs) is defined as:

D = {xi ∈ ℜn|
r∑

j=1

wjm(e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 ) + bm = 1, j = 1, ..., r, i = 1, ..., L,m = 1, ...,M}, (36)

and the samples are labeled by:

r∑
j=1

wjm(e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 ) + bm ≥ 1 yim = 1, (37)

r∑
j=1

wjm(e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 ) + bm < 1 yim = −1. (38)

The constraints are given by: ∣∣wTϕ(x)
∣∣ ≤ 1, (39)

∣∣wTϕ(x)
∣∣ ≤ ||w||||ϕ(x)|| ≤ 1. (40)

Since the volume of the enclosed decision surface is restricted by ||w|| , the norm of weights, the constraint

problem is likely constructed of the 2-stage formulations:

min
wjm,bm,cjm,σjm

LRSRBF =
M∑

m=1

L∑
i=1

f(yim(1− (
r∑

j=1

wjm(e

−[xi−cjm]
T
[xi−cjm]

2(σjm)2 ) + bm))) +A
M∑

m=1

||wjm||2, (41)

where the penalty parameter is iteratively computed.

The optimization problem in Eq. (41) is solved using the GDALR method. The centers and radii obtained

from the SC stage are initialized as the centers and radii of RBF bases. Next, the negative gradients with respect

to wjm , cjm , σjm , and bm are taken:

−∂LRSRBF

∂wjm
=

L∑
i=1

f ′(yim(1− (
r∑

j=1

wjm(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 ) + bm)))yim(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 )−Awjm, (42)

−∂LRSRBF

∂cjm
=

L∑
i=1

f ′(yim(1− (

r∑
j=1

wjm(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 ) + bm)))yimwjm(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 )
[xi − cjm]

(σjm)2
, (43)

−∂LRSRBF

∂σjm
=

L∑
i=1

f ′(yi
m(1− (

r∑
j=1

wjm(e

−[xi−cjm]T [xi−cjm]

2(σjm)2 ) + bm)))yi
mwjm(e

−[xi−cjm]T [xi−cjm]

2(σjm)2 )
[xi − cjm]T [xi − cjm]

(σjm)3
,

(44)

−∂LRSRBF

∂bm
=

L∑
i=1

f ′(yim(1− (

r∑
j=1

wjm(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 ) + bm)))yim. (45)
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Finally, all of the variables are iteratively updated and the samples are labeled by:

ℓm(x) = sign(−1 + (
r∑

j=1

wjm(e
−[xi−cjm]T [xi−cjm]

2(σjm)2 ) + bm)). (46)

On the other hand, the cost function for the proposed robust elliptical RBF classifiers (RERBFCs) is defined

by:

min
wjm,bm,cjm,

∑
jm

LRERBF =
M∑

m=1

L∑
i=1

f(yim(1− (
r∑

j=1

wjm(e
−0.5[xi−cjm]T

∑
jm

[xi−cjm]) + bm))) +A
M∑

m=1

||wjm||2.

(47)

Here, the Σjm , wjm , bm , and cjm parameters are determined by the GDALR algorithm. The centers and

inverse covariance matrices obtained from the proposed elliptical classifier stage are used as the initial centers

and inverse covariance matrices of RERBFC bases.

In addition, in this paper, robust diagonal elliptical RBF classifiers (RDERBFCs) are also designed with

a diagonal inverse covariance matrix. The formulation is the same as the one given in Eq. (47), but the initial

centers and covariance matrix parameters are chosen using the parameters obtained from the SC stage. Diagonal

components of the inverse covariance are taken as the determined radii.

4. Numerical results

The proposed classifiers are tested on 9 datasets with different kinds of sample distributions, input space

dimensions, and class numbers to carry out different evaluation practices: the Satimage, Shuttle (Statlog),

Vowel, Liver, Pima, Ionosphere, and Iris plant datasets from the University of California Irvine Knowledge

Discovery in Databases Archive [33], and the 2 Spirals and 4 Spirals datasets artificially arranged in [34]. Table

1 lists the characteristics of the 9 benchmark datasets used in the experiments. The training and testing data of

the Satimage, Shuttle, Vowel, Iris, 2 Spirals, and 4 Spirals datasets were previously determined in the literature

[5,34]. On the other hand, the training data of the Liver, Pima, and Ionosphere datasets are chosen randomly

as 70% of all of the sample points and the remaining 30% are used for the testing data according to [27]. The

process is repeated 10 times. The average results relating to the time, accuracy, and SV number of the datasets

are given in all of the tables. Moreover, the Satimage and Shuttle datasets, rather large datasets, also have

validation datasets [35]. The number of features determining the dimension of the input space of the Iris and

Ionosphere datasets are 4 and 34, respectively. In this paper, only the third and fourth features of the Iris

dataset are used for visualizing aims, similar to [36]. In addition, the second feature of the Ionosphere dataset

is removed since it takes only a single value (0), similar to most of the studies in the literature [37].

All of the experiments are run on a personal notebook computer with 2.4-GHz Intel(R) Core(TM)2 Duo

processors, 3 GB of memory, and Windows Vista operation system in a MATLAB environment. CRBFCs;

MATLAB interface LIBSVM 2.83 [35] software implementing the sequential minimal optimization algorithm,

decomposing the overall quadratic programming (QP) problem into QP subproblems; and SimpleMKL [27] using

multiple kernels are used for comparison purposes. The optimal parameters of the LIBSVM are determined by

10-fold cross-validation. For the LIBSVM, all of the datasets are first normalized to be in [–1, 1], as in [35].

Using the 225 combinations of 1
/
(2σ2) = [242322...2−10] and C = [212211210...2−2] , the parameters exhibiting

the best validation accuracy are accepted as the optimal ones. In SimpleMKL, Gaussian kernels with 10 different
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Table 1. Characteristics of the benchmark datasets.

Problem ̸= Input space ̸= Class ̸= Training data ̸= Testing data ̸= Validation data
Satimage 36 6 3104 2000 1331
Shuttle 9 7 30,450 14,500 13,050
Iris 2 3 75 75 -
Two Spirals 2 2 500 500 -
Four Spirals 2 2 1000 1000 -
Vowel 2 10 338 333 -
Liver 6 2 241 104 -
Pima 8 2 538 230 -
Ionosphere 33 2 246 105 -

bandwidths, σ , consisting of [0.5 1 2 5 7 10 12 15 17 20], and polynomial kernels of degree 1 to 3 are used,

as in [27]. The best C value of SimpleMKL is searched for in 100 values of the interval [0.01, 1000] on a

logarithmic scale for 2-class datasets. For multiclass datasets, the best C value is searched for in 5 different

values, consisting of [1, 10, 100, 200, 1000], and the OVA method is used. For SimpleMKL, all of the datasets

are normalized to a 0 mean and unity variance.

The results of the proposed classifiers are tabulated. The classifiers are compared in terms of their

parameter selection time, training time, testing time, training accuracy, testing accuracy, and SV numbers. In

our classifiers, small datasets are normalized to a 0 mean and unity variance but large datasets are normalized

into [–1, 1], since this normalization exhibits a small number of clusters. It is reasonable to use the normalization

of 0 mean and unity variance as possible for all of the datasets.

In the tables, the results related to 2 kinds of CRBFCs are given. In CRBFCs-1, the cluster parameters

obtained by the SC stage, the EC stage, or K-means and the weights and bias parameters determined by

the pseudoinverse are trained by GDALR without a momentum term. In CRBFCs-2, the determined cluster

parameters are not trained but the weight and bias parameters are solely updated in order to save time. In

addition, SC-CDERBFC-1 denotes the conventional diagonal elliptical RBF classifier (CDERBFC) initialized

by the cluster parameters obtained by the SC stage in all of the tables.

In this paper, all of the SCs, including the RBF classifiers, are run for 80 epochs. On the other hand, all

ECs are run for 2× 80/n epochs to save time by trusting the efficiency of the initial parameters. If the epoch

number was increased, a small increase in accuracy might be observed. However, this case may not always

appear due to the conditions causing it to stop the iteration.

Our classifiers have 8 advantages: 1) The parameter setting problem is not available since all of the

parameters are automatically adjusted. 2) Even if the parameters obtained from the EC stage or the SC stage

are used directly for the CSRBFC or the CERBFC without updating the parameters of cjm and σjm , good

results can be obtained, especially as seen in Tables 2–7. 3) The RSRBFC has a low training time and high

testing accuracy, especially as seen in Tables 6 and 7. Tables 6 and 7 show that the parameter selection times of

the RSRBFC and RERBFC are much less than those of the LIBSVM and SimpleMKL, even for small datasets,

if the grid search is used for the selection of free parameters. 4) The testing time of the RSRBFC is consistently

faster than that of the LIBSVM, especially on 2 large datasets, as seen in Tables 8 and 9. SimpleMKL could

not be run for the Satimage and Shuttle datasets on our computer without using decomposition methods due

to the large memory requirements and lengthy computations. 5) For small datasets, our robust classifiers, or

the CRBFCs initialized by the EC stage or the SC stage, have a smaller parameter setting time, training time,

and testing time than the other classifiers. 6) The testing accuracies of our robust classifiers are very close to
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those of the others for all of the datasets. 7) The proposed surfaces can be visually interpreted. The spherical

clusters obtained in the first stage and the elliptical clusters obtained in the second stage are presented in parts

a and b of Figures 1–4 for the Vowel, Iris, 4 Spirals, and 2 Spirals datasets, respectively, while the 2D and 3D

separating surfaces of the RERBFC are shown in parts c and d. The obtained ellipsoids on the 2D separating

surfaces are also plotted, except in Figure 1. These figures exhibit the operation scheme of our classifiers. 8) Our

robust classifiers have lower memory requirements. Memory usage can be separately evaluated for the initial

parameter selection, training, and testing stages: in the initial parameter selection stage, the SCs (ECs) need

to adjust the parameters of cm , Rm (Σm ), and A. In the training stage, RSRBFCs (RERBFCs) need to adjust

the parameters of A , wjm ,cjm , σjm (Σjm ), and bm , while CSRBFCs (CERBFCs) need to adjust wjm , cjm ,

σjm (Σjm), and bm . ECs and RERBFCs are more complex than SCs and RSCRBFCs, respectively, due to the

need for updating their covariance matrices. RSRBFCs (RERBFCs) have one additional parameter compared

to their conventional counterparts. In the update process, all of the parameters take the place of the previous

ones at each run, so there is no need to store them. In the initial parameter selection stage of the LIBSVM,

it is both trained and tested for 225 combinations of the 1
/
(2σ2) and C parameters. In the training stage,

the LIBSVM needs to adjust the λi parameters and some columns of the Hessian (kernel) matrix relating

to LIBSVM are calculated and stored in the computer memory when needed. Hence, the developed robust

classifiers require less memory than the LIBSVM at the initial parameter selection and training stages. On the

other hand, in the initial parameter-determining stage of SimpleMKL, it is both trained and tested for many

combinations of the C and σ parameters. In the training stage, SimpleMKL needs to adjust the λi and dm

parameters. The Hessian (kernel) matrix of SimpleMKL is calculated using the derivative of the dual variable

with respect to weights d . Hence, the developed robust classifiers require less memory than SimpleMKL at the

initial parameter determining and training stages. For the testing stage, fewer SV or cluster numbers require

less memory. All of our classifiers have fewer SV numbers than the LIBSVM and SimpleMKL.

Table 2. Comparative results for the Liver dataset.

Selection Training Testing Training Testing Cluster/SV
Classifiers time time time accuracy accuracy number

(%) (%)
SC 0.826 2.23 - - - 39
EC - 1.15 - - - 39
SC-CSRBFC-1 - 1.76 0 74.27 61.53 39
SC-CSRBFC-2 - 0.01 0 75.51 60.57 39
K-means-CSRBFC-1 - 1.60 0 75.10 66.34 39
K-means-CSRBFC-2 - 0.01 0 74.68 72.11 39
RSRBFC - 1.62 0 80.91 65.38 39
EC-CERBFC-1 - 11.63 0.03 74.68 61.53 39
EC-CERBFC-2 - 0.01 0 74.68 61.53 39
K-means-CERBFC-1 - 11.65 0.03 60.16 56.73 39
K-means-CERBFC-2 - 0.01 0 57.67 57.69 39
RERBFC - 9.62 0 77.17 68.26 39
SC-CDERBFC-1 - 10.92 0.03 74.68 60.57 39
RDERBFC - 8.93 0 74.27 66.34 39
SimpleMKL, C = 86.97 164.10 26.18 0.0394 64.90 75.44 226.40
LIBSVM 1/(2σ2) = 0.5, C = 64 84.64 0.01 0.004 74.24 67.30 151
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Table 3. Comparative results for the Pima dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.1045 5.41 - - - 8

EC - 2.38 - - - 8

SC-CSRBFC-1 - 5.36 0.001 74.59 74.19 8

SC - CSRBFC-2 - 0.10 0.001 74.39 74.15 8

K-means-CSRBFC-1 - 4.83 0 78.08 77.40 8

K-means-CSRBFC-2 - 0.05 0 77.22 76.92 8

RSRBFC - 5.02 0.001 71.22 70.64 8

EC-CERBFC-1 - 11.59 0.004 74.07 74.06 8

EC-CERBFC-2 - 0.09 0.001 74.07 74.02 8

K-means-CERBFC-1 - 11.17 0.003 67.26 65.84 8

K-means-CERBFC-2 - 0.09 0 65.66 65.49 8

RERBFC - 8.12 0 74.18 74.45 8

SC-CDERBFC-1 - 12.37 0.003 74.09 73.80 8

RDERBFC - 8.89 0.004 74.13 73.67 8

SimpleMKL, C = 628 1543.60 107.45 0.29 98.92 76.62 456

LIBSVM 1/(2σ2) = 0.0625, C = 8 161.60 0.04 0.01 78.81 77.82 304

Table 4. Comparative results for the Ionosphere dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.16 3.69 - - - 33

EC 0 1.64 - - - 33

SC-CSRBFC-1 0 3.82 0.006 97.91 91.69 33

SC-CSRBFC-2 0 0.05 0.004 97.91 91.50 33

K-means-CSRBFC-1 0 4.54 0.004 96.48 94.81 33

K-means-CSRBFC-2 0 0.10 0.003 96.40 95.66 33

RSRBFC 0 1.96 0 98.20 90.75 33

EC-CERBFC-1 0 6.27 0.01 97.95 91.50 33

EC-CERBFC-2 0 0.05 0.01 97.95 91.50 33

K-means-CERBFC-1 0 4.95 0.017 97.14 74.81 33

K-means-CERBFC-2 0 0.04 0.007 93.79 71.79 33

RERBFC 0 5.83 0.012 98.12 91.50 33

SC-CDERBFC-1 0 6.59 0.003 97.91 91.50 33

RDERBFC 0 4.81 0.003 98.16 91.50 33

SimpleMKL, C = 109.7 1375 113.33 0.028 95.10 91.42 80.5

LIBSVM 1/(2σ2) = 0.1250, C = 4 53.68 0.03 0.006 99.43 93.61 80.20
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Table 5. Comparative results for the Iris dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.21 0.32 - - - 3

EC - 0.24 - - - 3

SC-CSRBFC-1 - 0.23 0 96.00 97.33 3

SC-CSRBFC-2 - 0 0 96.00 96.00 3

K-means-CSRBFC-1 - 0.32 0 96.00 97.33 3

K-means-CSRBFC-2 - 0 0 96.00 96.66 3

RSRBFC - 0.43 0 97.33 97.33 3

EC-CERBFC-1 - 0.71 0 96.00 97.33 3

EC-CERBFC-2 - 0 0 96.00 97.33 3

K-means-CERBFC-1 - 0.62 0 81.33 81.33 3

K-means-CERBFC-2 - 0 0 78.66 72.00 3

RERBFC - 0.60 0 97.33 97.33 3

SC-CDERBFC-1 - 0.73 0 96.00 97.33 3

RDERBFC - 0.68 0 97.33 97.33 3

SimpleMKL, C = 100 58.89 7.07 0.015 96.00 96.00 25

LIBSVM 1/(2σ2) = 0.5, C = 4096 2.65 0.0013 9.2e-4 98.66 97.33 11

Table 6. Comparative results for the Vowel dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.34 0.40 - - - 17

EC - 0.43 - - - 17

SC-CSRBFC-1 - 0. 34 0 76.92 77.77 17

SC-CSRBFC-2 - 0 0 76.33 77.77 17

K-means-CSRBFC-1 - 0.51 0 76.92 78.57 17

K-means-CSRBFC-2 - 0 0 76.03 77.77 17

RSRBFC - 0.37 0 76.33 79.07 17

EC-CERBFC-1 - 9.45 0 77.51 80.48 17

EC-CERBFC-2 - 0 0 77.21 80.78 17

K-means-CERBFC-1 - 9.26 0 38.46 41.74 17

K-means-CERBFC-2 - 0 0 47.04 45.34 17

RERBFC - 0.43 0 76.92 80.48 17

SC-CDERBFC-1 - 9.09 0 77.21 79.57 17

RDERBFC - 0.92 0 77.21 79.27 17

SimpleMKL, C = 200 217.35 44.94 0.004 80.23 80.48 746

LIBSVM 1/(2σ2) = 0.5, C = 16 53.07 0.01 0.01 78.40 80.18 226
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Table 7. Comparative results for the 4 Spirals dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.15 0.35 - - - 10

EC - 0.42 - - - 10

SC-CSRBFC-1 - 0.31 0 91.80 90.40 10

SC-CSRBFC-2 - 0 0 89.60 86.00 10

K-means-CSRBFC-1 - 0.29 0 81.40 76.20 10

K-means-CSRBFC-2 - 0 0 85.60 78.00 10

RSRBFC - 0.49 0 96.80 94.80 10

EC-CERBFC-1 - 8.25 0 91.80 89.20 10

EC-CERBFC-2 - 0 0 90.00 85.60 10

K-means-CERBFC-1 - 8.23 0 79.00 71.00 10

K-means-CERBFC-2 - 0 0 75.80 69.20 10

RERBFC - 6.86 0 95.80 94.60 10

SC-CDERBFC-1 - 8.22 0 90.00 85.40 10

RDERBFC - 0.76 0 92.40 91.40 10

SimpleMKL, C = 1000 373.73 1.82 0.01 0.93 90.67 118

LIBSVM 1/(2σ2) = 16, C = 4096 82.80 0.02 0.003 99.60 96.80 58

Table 8. Comparative results for the Shuttle dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 8.14 63.46 - - - 17

EC - 36.72 - - - 17

SC-CSRBFC-1 - 76.61 0.28 99.42 99.47 17

SC-CSRBFC-2 - 0.06 0.28 99.44 99.48 17

K-means-CSRBFC-1 - 72.65 0.29 98.71 98.77 17

K-means-CSRBFC-2 - 0.06 0.28 98.45 98.52 17

RSRBFC - 71.23 0.28 99.57 99.58 17

EC-CERBFC-1 - 355.91 1.49 99.45 99.50 17

EC-CERBFC-2 - 30.54 1.46 99.34 99.39 17

K-means-CERBFC-1 - 353.48 1.51 83.28 83.80 17

K-means-CERBFC-2 - 0.10 1.88 78.44 79.08 17

RERBFC - 68.68 1.49 99.34 99.39 17

SC-CDERBFC-1 - 247.24 1.31 99.35 99.39 17

RDERBFC - 62.54 1.38 99.35 99.39 17

LIBSVM 1/(2σ2) = 8, C = 2048 [5] 7.06 1.99 99.72 99.71 301
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Table 9. Comparative results for the Satimage dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 2.96 24.30 - - - 281

EC - 39.37 - - - 281

SC-CSRBFC-1 - 33.94 0.26 95.23 90.25 281

SC-CSRBFC-2 - 0.21 0.18 99.80 89.35 281

K-means-CSRBFC-1 - 33.61 0.26 92.75 90.20 281

K-means-CSRBFC-2 - 0.15 0.38 98.67 90.10 281

RSRBFC - 15.05 0.26 95.23 89.90 281

EC-CERBFC-1 - 156.39 3.32 94.97 89.75 281

EC-CERBFC-2 - 0.25 125.50 99.80 79.20 281

K-means-CERBFC-1 - 102.69 3.32 46.19 46.10 281

RERBFC - 48.76 3.32 94.97 89.75 281

SC-CDERBFC-1 - 124.97 2.82 94.97 89.75 281

RDERBFC - 41.35 2.85 94.97 89.75 281

LIBSVM 1/(2σ2) = 1, C = 16 551.24 1.35 0.41 99.51 90.35 1219
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Figure 1. Results relating to the Vowel dataset: a) spherical clusters, b) elliptical clusters, c) 2D decision surface of the

RERBFC, d) 3D decision surface of the RERBFC.
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Figure 2. Results relating to the Iris dataset: a) spherical clusters, b) elliptical clusters, c) 2D decision surface of the

RERBFC, d) 3D decision surface of the RERBFC.
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Figure 3. Results relating to the 4 Spirals dataset: a) spherical clusters, b) elliptical clusters, c) 2D decision surface of

the RERBFC, d) 3D decision surface of the RERBFC.
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UÇAR et al./Turk J Elec Eng & Comp Sci

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

4

x1

x
2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13
14

15

16

17

(a)
–4 –3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

4

x1

x
2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13
14

15

16

17

(b)

–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

x1

x
2

(c)

–2
0

2

–2

0

2

–1

–0.5

0

0.5

1

1.5

x1
x2

R
E

R
B

F
C

 s
u

rf
ac

e

(d)

Figure 4. Results relating to the 2 Spirals dataset: a) spherical clusters, b) elliptical clusters, c) 2D decision surface of

the RERBFC, d) 3D decision surface of the RERBFC.

On the other hand, our classifiers have some limitations: 1) Determination of the cluster number may not

be optimal. In this paper, a predetermined quantization error value produces good results for all of the datasets.

The predetermined value can be changed, but the results do not represent a big difference. If the predetermined

value is reduced, the cluster number increases. In that case, the testing accuracy might be less as the training

accuracy increases and the unsmooth surfaces are generated. On the other hand, if the predetermined value

is increased, the same testing accuracy might be obtained as the cluster number reduces. For example, when

increasing this value for the 2 Spirals dataset, 10 clusters are generated and similar results to those of 17 clusters

given in Table 10 are obtained. 2) The parameter selection stage of the LIBSVM and SimpleMKL, and the

training stage of the RERBFCs, need a lot more time and a larger memory for very large datasets. In this

paper, very large datasets are not examined due to the increase in the processor heat of our computer. Our

algorithms must be specifically developed for very large datasets. On the other hand, the results relating to

the parameter selection stage of the LIBSVM could not be obtained using our computer, even for the Shuttle

dataset. Hence, the LIBSVM parameters in [5] were used. 3) In addition, our algorithms are sensitive to the

initial parameters since the SC stage is initialized by the K-means algorithm. Testing accuracy can vary up to

±3 according to the tabulated results.

5. Conclusions

In this paper, a set of alternative classifiers to SVMs are designed. The contributions of the proposed classifiers

are 6-fold: 1) The data structure is preserved by operating in the input space. 2) Classification is carried out
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Table 10. Comparative results for the 2 Spirals dataset.

Selection Training Testing Training Testing Cluster/SV

Classifiers time time time accuracy accuracy number

(%) (%)

SC 0.24 0.54 - - - 17

EC - 0.70 - - - 17

SC-CSRBFC-1 - 0.54 0 95.70 95.90 17

SC-CSRBFC-2 - 0 0 94.90 93.30 17

K-means-CSRBFC-1 - 0.53 0 84.20 83.00 17

K-means-CSRBFC-2 - 0 0 85.00 84.00 17

RSRBFC - 0.67 0 98.80 97.20 17

EC-CERBFC-1 - 27.08 0 96.10 95.70 17

EC-CERBFC-2 - 0 0 96.10 93.80 17

K-means-CERBFC-1 - 27.17 0 63.60 63.60 17

K-means-CERBFC-2 - 0 0 58.70 56.00 17

RERBFC - 10.74 0 98.40 97.20 17

SC-CDERBFC-1 - 26.14 0 95.10 93.50 17

RDERBFC - 2.07 0 99.40 97.50 17

SimpleMKL, C = 394.42 3387.60 21.60 0.11 95.75 94.90 273

LIBSVM 1/(2σ2) = 16, C = 1024 300.66 0.05 0.008 98.60 97.30 67

by easily interpretable decision surfaces, such as sphere and ellipsoid. 3) The newly proposed classifiers are

based on both the structural and empirical risk. 4) Robustness is obtained by softly rejecting outliers and noise,

thanks to the penalty approach, without using extra slack variables or Lagrange multipliers. 5) The proposed

classifiers have small testing and parameter selection times compared to SVMs. 6) The proposed classifiers can

be applied to moderately large datasets without initialization problems and big memory requirements, thanks

to the first-order gradient descent methods. Extensions of the algorithms to classify very large datasets are

promising areas of future research.
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