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Abstract:Wireless monitoring networks can be used for security applications such as the monitoring of narrow passages

and operational fields. These networks can be designed based on sensor networks. In sensor networks, each node

can hear a message and broadcast the message to its neighbor nodes. Nevertheless, nodes may fail, so that faulty

nodes cannot hear or cannot transmit any message, where the locations of the faulty nodes are unknown and their

failures are permanent. In this paper, the nodes are situated on a line or a square grid-based topology in a plane for

security/monitoring applications. For each topology, 2 nonadaptive and adaptive broadcasting scheduling algorithms

are proposed and analyzed. In addition, the scheduling algorithms take the energy consumption of the sensor nodes into

account in order to prolong the network’s lifetime. The analysis results show that adaptive algorithms need less time

than nonadaptive algorithms to inform the whole network domain.

Key words: Wireless networks, broadcasting, fault tolerance, adaptive scheduling algorithms, nonadaptive scheduling

algorithms

1. Introduction

Wireless sensor networks (WSNs) have attracted much attention and interest from both industry and academic

researchers due to their low-cost infrastructure and flexibility. A WSN includes many low-cost and low-power

sensors that can collect observations in an environment and then send the relevant information to a central sink
node, which is responsible for processing the information and making appropriate decisions. Because of their

agility, low implementation cost, and robustness, WSNs have found wide applications [1–5], such as military

applications, environmental monitoring applications, and target tracking applications.

A straight line vector of sensors (with equidistance between the sensor nodes) can be used for security

applications such as the monitoring of a narrow passage (e.g., an indoor corridor, a tunnel, a bridge) [6]. Sensors

can also be deployed on a square grid-based topology (SGT), where a sensor field is divided into square grids

and the sensor nodes are deployed on grid points [7–10]. Finally, the sensor nodes could be deployed on a

polygonal topology [11].

A WSN is a collection of transmitter–receiver devices located in a geographical region, in which a node

receives a message and transmits (broadcasts) it. Each node has a range of transmission and reception. When

a given node X is located in the range of 2 nodes V and W, and both of them start transmitting, node X will

receive a collided message. However, if one of them transmits a message, node X can successfully receive it.

In a WSN, a sensor node may fail due to a lack of power, physical damage, or environmental interferences.

However, the failure of a sensor node should not exert a negative impact on the overall operations of the WSN
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[12]. Since energy consumption is an important problem in sensor nodes [13–18], its usage must be controlled

in order to prolong the WSN’s lifetime.

Broadcasting could be the fundamental operation in WSN communications. In this network, a source

node may have a message for all of the other nodes in the network. To deliver the message to remote nodes not

located within the range of the source node, intermediate nodes have the responsibility of receiving the message

and transmitting it until all of the nodes are informed. The total time required to inform all of the nodes in

the network is an important performance parameter of broadcasting. An important feature for broadcasting

algorithms is their capacity to inform all of the nodes in the presence of unknown-located faulty nodes. In

the presence of faulty nodes, the topology of the network is uncontrolled. On the other hand, broadcasting

algorithms designed for fault-free networks cannot be used for these networks; i.e. fault-tolerant algorithms

should be designed. The works in [19,20] have analyzed fault tolerance broadcasting in heterogeneous WSNs.

There are also some works, such as [21,22], that provide fault tolerance broadcasting in homogeneous WSNs.

Broadcasting algorithms have been proposed and analyzed in radio networks in [23].

The contributions of this paper are as follows: 1) the algorithms proposed for radio networks in [23] are

adapted and modified to be useful for WSNs; 2) in [23], the energy of the nodes has not been considered at all.

In this paper, the energy consumption of the sensor nodes is considered in the newly proposed algorithms; and

3) since many details are missing in the analysis of the message broadcasting time (MBT) in the algorithms

provided in [23], this paper also aims to provide a simpler analysis with more details compared with [23]. The

worst case analysis is considered in computing the MBT.

The organization of this paper is as follows: The network model, assumptions, and definitions are stated

in Section 2. In Section 3, the broadcasting scheduling algorithms are discussed when deploying sensor nodes

on line. Broadcasting scheduling algorithms for sensor nodes distributed on a SGT topology are described in

Section 4. Section 5 provides a brief conclusion.

2. Network model, assumptions, and definitions

In this paper, 2 different topologies for locating sensor nodes are considered. In the first topology, sensor nodes

are located on a line topology, where the distance between every pair of adjacent nodes is equal. In the second

topology, sensor nodes are deployed on the grid points of a SGT network. As stated in Section 1, these topologies

are suitable for security applications.

To model the system, several assumptions and definitions are made:

• All of the nodes have previously assigned distinct identifiers. In other words, the nodes are only determined

with their identifiers.

• Each node adjusts its range of transmission to radius R .

• In terms of available energy, the sensor nodes are heterogeneous.

• A fault may happen for any reason. In addition, when a node cannot cover transmission range Rdue to

its low battery, it is called a faulty node as well.

• Maximum number of faulty nodes in the network is denoted by F . This number increases by 1 whenever

the energy of a sensor node finishes, i.e. it encounters a permanent fault.

• Faults are assumed to be permanent and their locations are unknown. The worst case distribution of

faulty nodes is considered in our analysis. The source node is assumed to be fault-free.
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• A node v located within the range of more than one simultaneous transmission may receive a collided

message (noise), where collision detection is available.

• A broadcast message can only arrive at fault-free connected components of the source node, which is

called the domain. In other words, a domain is the connected components of the fault-free nodes of graph

G, in which the adjacent nodes are in each other’s range. For example, in Figure 1, the black nodes are

faulty nodes, so that node number 2 cannot deliver the message received from the leftmost nodes to the

rightmost nodes. Thus, the domain is restricted to the leftmost graph.

• Parameter D is the network diameter, i.e. maximum of all of the shortest paths between the source node

and the domain nodes. In Figure 1, we have D = 4.

• The system is time slotted and each node is scheduled to transmit a message at a specific time slot.

Assume a message can be completely transmitted within a time slot.

• The MBT is defined as the maximum number of time slots elapsed between the first transmission of a

message by a source node until its reception by all of the nodes in the domain.

1

2
S

Faulty

node

Figure 1. Node 2 cannot receive and transmit, and therefore the rightmost nodes are out of the domain.

Two types of broadcasting algorithms are defined as:

1. Nonadaptive algorithms are defined with the following features:

• All transmissions are scheduled in advance. Each node has a table that specifies the time slots of

the transmission. It is possible that 2 nodes that are not located within range of each other transmit

simultaneously. Obviously, the scheduling of simultaneous transmissions close to each other should

be avoided because this will result in noise/interference for the receiving nodes. Scheduling in sparse

areas causes a communication delay.

• If a node is scheduled to send a message in a time slot, but it has not received the message, it will

transmit a default message.

• Nodes are scheduled to transmit in a distributed manner based on their labels, where the label for

a node is defined based on its location in a segment and the segment number.

• The periodic scheduling of a node only depends on its label, not the length of line or size of the

SGT.

2. Adaptive algorithms are defined with the following features:

• Nodes are scheduled for future transmission based on their communication history.
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• Nodes learn the faulty status of other nodes from the obtained messages and noises.

• The behavior of a node only depends on its label.

• Nodes are scheduled to transmit in a semidistributed manner, i.e. a group of sensor nodes cooperate

with each other to provide the scheduling. The central fault-free node in the group should run the

scheduling algorithm. Notice that the network is divided into a number of groups and each group

is assigned a number. First, the groups with odd numbers perform the scheduling in parallel, and

then the groups with even numbers carry out the scheduling in parallel.

3. Distribution of the sensor nodes on a line

Here, sensor nodes of a WSN are distributed on a line and at integer points of 0, 1,. . . , n – 1, where n is the

number of total nodes. For 1 < R < n – 1, all of the nodes in set {v±1 , v±2,. . . , v ±R} are in the range of

node v.All of the nodes in set {(i−1)R+ 1,. . . ,i × R} belong to theith segment. Each segment includes at

most R nodes. Since the worst case analysis is considered in computing the MBT, node 0 is considered to be

the source node located at the leftmost part of the line.

Parameter m is defined to be the largest-numbered node in the domain (may be different from n − 1

due to the presence of faulty nodes in the network). It is clear that parameters D and m depend on the

configuration of the faulty nodes in the network. For example, in Figure 2, we have S = source node (numbered

0), n = 21 nodes, R = 5, F = 6 faulty nodes (shown with black nodes), and 4 segments. For node v =9, the

transmission range has been drawn covering nodes from v−R = 4 to v+R = 14. Figure 3 depicts the domain

of this network and the nodes that are located within each other’s range. The black nodes are faulty nodes

that are out of the domain. In this figure, only the arcs between the segments have been drawn. For simplicity,

the arcs within a segment have not been displayed. According to the figure, the nodes with a large number in

each segment can cover more nodes in the neighbor segments. In this diagram, the largest-numbered node in

the domain is node m = 18 and D = ⌈m/R⌉ = 4.

      1st
 
Segment                          2nd Segment                      3rd  Segment                     4th  Segment  

S           

 

0        1                        4       5      6                      v = 9                                     14     15     16                             20 

 

R = 5 

Figure 2. An example of the segment and transmission range for nodes on a line.

3.1. Line nonadaptive (LINE NA) algorithm

Here, the nonadaptive broadcasting scheduling algorithm in Figure 4 is used for a line topology (LINE-NA).

The scheduling formula in the LINE NA algorithm computes the transmission slot time for each node aij . Here,

parameter c is the period number for the scheduling. The choice of tradeoff coefficient β is important since it

influences the transmission delay, signal interference probability, and energy consumption of the sensor nodes.

Note that the case of β = 1 is equivalent to the method described in [23]. For the choice of β , the following

considerations should be taken into account:
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16 11 6 1 

17 12 7 2 

18 13 8 3 

19 14 9 4 

20 15 10 5 

S  

Figure 3. Domain of Figure 2 with intersegment connections.

 

 

 

• For each segment, nodes are numbered in decreasing order. For the ith segment, nodes are 

numbered as aiR, … , ai3 ,ai2 ,ai1.  

• Source transmits at time slot 1. 

• Fault-free node aij transmits at time slot 

                           i + β × j – β + 1 + β× c × (R + 1) ,  where  c = 0, 1, 2, ….

Figure 4. Nonadaptive scheduling algorithm for the linear distribution of the sensor nodes.

• By choosing β as a large number, the transmission delay increases, while the signal interference probability

decreases. In addition, the energy consumption of a sensor node decreases since the node transmits at

long intervals (due to the β× c× (R+ 1) term in the scheduling). For example, at β =3 and R = 5, node

a43 broadcasts messages with an 18-time slot difference at time slots 11 (when c = 0), 29 (when c = 1),

47 (when c = 2), etc.

• By choosing β as a small number, the delay decreases, while the signal interference probability increases.

Furthermore, the energy consumption for a node goes up. For example, at β =1 and R = 5, node a43

broadcasts messages with a 6-time slot difference at time slots 7 (when c = 0), 13 (when c = 1), 19 (when

c = 2), 25 (when c = 3), etc.

• As can be observed, node a43 broadcasts 4 times until time slot 29 at β =1, but only twice until time slot

29 at β =3. Therefore, β = 2 could be a reasonable value as a tradeoff between the transmission delay,

energy consumption, and signal interference. Figure 5 illustrates an example for the scheduling time in

a network under 3 periods (c =0, 1, 2) at β = 2 and R = 5. According to Figure 5, nodes a44 and

a25 transmit simultaneously, but their transmissions never cause a collision in the network due to their

distance of 2 ×R from each other.

To compute the complexity of LINE NA, we should consider the following 2 cases:

Case 1: If node aiR is transmitting and node a(i+1)R is faulty, then segment i must send the message

at the next time starting from node ai1 and from the next period of the scheduling time. Now, it is shown

that retransmitting a message increases the MBT by 4 time units. Using the relation in Figure 4 at β = 2, the

transmission times for nodes aiR and ai1 in periods c and c + 1 are:

1441



RAHBAR/Turk J Elec Eng & Comp Sci

      S       a
15

    a
14

     a
13    

a
12    

a
11 

      a
25

   a
24

     a
23     

a
22   

a
21       

a
35

    a
34

     a
33   

a
32     

a
31      

a
45

   a
44

    a
43    

a
42    

a
41

 

 

      

          1          10       8        6       4        2       11       9        7       5        3      12      10       8       6        4      13      11       9       7       5     c = 0   

                      22      20      18     16      14      23     21      19     17       15     24      22      20     18      16     25      23      21     19      17   c = 1 

                      34      32      30     28      26      35     33      31     29       27     36      34      32     30      28     37      35       33     31      29  c = 2 

 

Figure 5. Scheduling algorithm LINE NA at β = 2 and R = 5: the 3 bottom rows show the transmission times under

different scheduling periods c.

TaiR
= i+ 2×R− 1 + 2× c(R+ 1) = Time slot assigned to node aiR in period c .

Tai1
= i+ 2× 1− 1 + 2(c+ 1)(R+ 1) = Time slot assigned to node ai1 in period c + 1.

Therefore, we have Tai1 − TaiR
= 4.

Case 2: To achieve the upper bound on the broadcasting time, the following fault configuration should

be considered:

• Faults are located on the right side of the first segment starting from a11 .

• Consider that aij is the current transmitting node, where node(s) a(i+1)k (where k ≥ j) are sequentially

faulty. This will increase the broadcasting time by 2 × (k − j+ 1) time units.

For example, in Figure 6, one of the possible worst case fault configurations is shown atR =5,n = 51,

andF = 14, where a node on the top of a column denotes the left side of a segment and the node on the bottom

of that column denotes the right side of that segment. The dashed segments should send more than once due

to Case 1. Here, node 46 is the last segment informed by the previous segment, where nodes 48, 49, and 50

should be informed by node 46.

6

1 9

12

16

19

22

25

28

34

37

40

43

Figure 6. A worst case fault configuration at n =51, R =5, F =14. Numbers beside the nodes present the transmission

times.

Thus, the different delay components of the MBT to inform the whole domain are:

• Each fault in a segment causes a 2-time unit delay in the broadcasting. Therefore, in the worst case, 2

×F time units are wasted in the segments until the node that is not faulty starts its transmission.

• There are some cases that increase the broadcasting time by 4 time units. Following the mentioned fault

distribution, there are an average of F/Ns (where Ns is the number of segments in the network) faults

in each segment. From almost each z = R/ (F/Ns) segments, we need 4 additional time units. Since the

total number of such cases is [Ns / z ] = [F/R ], the total delay is equal to 4 × [F/R ] .Note [x ] returns

ceil of x.

• We also need at most D time units to pass through all of the segments.

1442



RAHBAR/Turk J Elec Eng & Comp Sci

Therefore, at β = 2, it takes at most MBT = D+2 ×F+4 × [F/R ] ∈O(D + F ) time slots to inform

all of the nodes in the domain.

According to [23], the MBT at β = 1 is at most D+F +[F/R ]. When there is no fault, the MBT values

for both β = 1 and β = 2 are the same. However, when F > 0, it seems that the MBT at β = 2 is always

very high compared to the MBT at β = 1. Nevertheless, notice that the energy consumption of the nodes at

β = 1 is high, and therefore the number of faulty nodes F will increase faster at β = 1 compared to β = 2. In

this case, the MBT will increase faster at β = 1 compared to β = 2.

Example For an energy consumption illustration, let Eij denote the number of messages that node a ij

can broadcast before failing. This parameter is directly relevant to the energy of node a ij , i.e. higher Eij

means more energy. In other words, Eij is the capacity of the message broadcasting for node a ij . Since

only one message is broadcast within each period, the last broadcasting of node a ij occurs at time slot

tij = i + β × j − β + 1 + β × Eij × (R+ 1). In other words, at time slot T > tij , node a ij is a faulty

node since its energy has been depleted. Consider R = 5 and n = 21. According to this rule, at different time

slots, Figure 7a shows the number of faulty nodes F under β = 1 and β = 2, and Figure 7b depicts the MBT

under β = 1, and β = 2. Here, the capacity Eij for sensor node a ij is uniformly distributed between 1000

and 2000 messages. As can be observed, under β = 1, the number of faulty nodes reaches F = 8 at time slot

9000, and 21 (i.e. all of the nodes become faulty) at time slot 12,000. In other words, all of the nodes fail until

time slot 12,000 under β = 1. Hence, there is no MBT shown after time 12,000 in Figure 7b. On the other

hand, under β = 2, we have F = 8 at time slot 17,500. In addition, the MBT is always smaller under β = 2

compared with β = 1. These diagrams show the superiority of β = 2 over β = 1 in the energy consumption

of the nodes.

15

18

21

24
β = 1 β = 2 β = 1 β = 2

0

3

6

9

12

 6
0

0
0

 7
0

0
0

 8
0

0
0

 9
0

0
0

1
0

.0
0

0

1
1

.0
0
0

1
2

.0
0

0

1
3

.0
0
0

1
8

.0
0
0

1
4

.0
0

0

1
5

.0
0
0

1
6

.0
0

0

1
7

.0
0
0

 6
0

0
0

 7
0

0
0

 8
0

0
0

 9
0

0
0

1
0
.0

0
0

1
1
.0

0
0

1
2
.0

0
0

1
3
.0

0
0

1
8
.0

0
0

1
4
.0

0
0

1
5
.0

0
0

1
6
.0

0
0

1
7
.0

0
0

Time

18

21

24

27

30

0

3

6

9

12

15

M
es

sa
g
e 

b
ro

ad
ca

st
in

g
 t

im
e 

(M
B

T
)

N
u
m

b
er

 o
f 

fa
u

lt
y
 n

o
d
es

 (
F

)

Time

(a) (b)

Figure 7. a) Number of faulty nodes F at β = 1 and β = 2, and b) the MBT at β = 1 and β = 2.

3.2. Line adaptive (LINE A) algorithm

Most of the time spent in nonadaptive broadcasting is due to faulty nodes. In an adaptive algorithm, to speed

up the broadcasting time, faulty nodes are not given the chance for transmission. Thus, preprocessing should be

first performed in order to detect the fault-free nodes in each segment in a binary manner, as in [23]. Fault-free

nodes could be detected using other techniques such as those in [24–26]. Here, 3 procedures are used to detect

the fault-free nodes. The BinaryElectSmallest (see Figure 8) chooses the smallest-numbered fault-free node in

segment N , and the BinaryElectLargest (see Figure 8) selects the largest-numbered fault-free node in segment

N.In addition, the BinaryElectMiddle (see Figure 9) is used to select 2 fault-free nodes from the middle of
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segment N. Notice the nodes on the left side of a segment are large-numbered nodes, and the nodes on the

right side of a segment are small-numbered nodes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure BinaryElectLargest (N)        ; to choose the largest-numbered fault-free node in segment N 
  U = min(R, F + 1)                                                    ; if F < R, then U = F + 1; otherwise, U = R 

  ACT = Set of U largest-numbered nodes in N       ; set of nodes to be investigated as active 

  I = 1 

  While (I  log2(U))                                                  ; until the ACT set includes one item 

         S = Smaller half of ACT 

         L = Larger half of ACT 

         Invoke all nodes in L to start transmission       ; fault-free nodes transmit simultaneously 

         If message or noise is heard, then ACT = L    ; there is at least one fault-free node in L 

                                                        else ACT = S    ; L is removed when all nodes in L are faulty 

        I = I + 1  

  End while 

  Remaining node in ACT transmits its identity          ; to the fault-free nodes in the segment 

  Return identity                                                        ; to inform the segment active node identity 

End 

 

 

Procedure BinaryElectSmallest (N)    ; to choose the smallest-numbered fault-free node in segment N 
  U = min(R, F + 1)                                                     ; if F < R, then U = F + 1; otherwise, U = R 

  ACT = Set of U smallest-numbered nodes in N        ; set of nodes to be investigated as active 

  I = 1 

  While (I  log2(U))                                                   ; until the ACT set includes one item 

         S = Smaller half of ACT 

         L = Larger half of ACT 

         Invoke all nodes in S to start transmission        ; fault-free nodes transmit simultaneously 

         If message or noise is heard, then ACT = S     ; there is at least one fault-free node in S 

                                                        else ACT = L      ; S is removed when all nodes in S are faulty 

        I = I + 1  

  End while 

  Remaining node in ACT transmits its identity           ; to the fault-free nodes in the segment 

  Return identity                                                         ; to inform the segment active node identity 

End 

Figure 8. The BinaryElectLargest and BinaryElectSmallest algorithms.

Two sorts of adaptive algorithms can be used here:

1. LINE A1: Figure 10 shows the LINE A1 algorithm adapted from [23]. At the preprocessing step (i.e.

Step I) in each segment, this algorithm uses the aforementioned BinaryElectLargest, BinaryElectSmallest,

and BinaryElectMiddle procedures in a parallel manner to specify 2 fault-free nodes as the head of the

segment for the intra- and intersegment transmissions. To avoid a collision, the segments should not be

adjacent. Whenever the number of faults F increases due to the failure of a node, Step I should be

reexecuted. In addition, Step I should be reexecuted at some periodic intervals. Through this mechanism,

the location of nodes L i and S i , selected as the transmitting head nodes in each segment, will be changed

in each period. This can balance the energy consumption of the nodes.

After executing Step I and transmitting identities, nodes L i and S i , and nodes S i and L i+1 will know

each other. Figure 11 illustrates an example for the transmission step (i.e. Step II) at R = 10, in which

notations R1 and R2 represent the conditions stated in Step II of Figure 10. Here, Segment i has run the

BinaryElectMiddle procedure to determine L i and S i . On the other hand, the BinaryElectLargest and

BinaryElectSmallest procedures are executed in Segment i+ 1 to determine L i+1 and S i+1 .
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Procedure BinaryElectMiddle (N)                      ; choose 2 mid-numbered fault-free nodes in segment N 

  U = min(R / 2, F + 1)                                         ; if F < R, then U = F + 1; otherwise, U = R 

 

;choose the largest fault-free node number in right half of segment N 

  ACT = {} 

  For J = R / 2 to (R / 2 – U + 1) Step  –1 

     Append (ACT, ID of node aNJ)                   ; append from the middle toward the right of the segment to ACT  

  End for 

  I = 1 

 While (I  log2(U) )                                                       ; choose the largest-numbered node 

         S = Smaller half of ACT 

         L = Larger half of ACT 

         Invoke all nodes in L to start transmission          ; fault-free nodes transmit simultaneously 

         If message or noise is heard, then ACT = L       ; there is at least one fault-free node in L 

                                                        else ACT = S        ; L is removed when all nodes in L are faulty 

         I = I + 1  

  End while 

  Remaining node in ACT transmits its identity             ; to the fault-free nodes in the segment 

  Y = identity                                                                    ; to keep the segment active node identity 

 

; choose the smallest fault-free node number in left half of segment N 

  ACT ={} 

 For J = R/2+1 to R/2+U 

     Append (ACT, ID of node aNJ)                           ; append from the beginning of segment to ACT investigated 

 End for 

 I = 1 

 While (I  log2(U))                                                        ; choose the smallest-numbered node 

         S = Smaller half of ACT 

         L = Larger half of ACT 

         Invoke all nodes in S to start transmission            ; fault-free nodes transmit simultaneously 

         If message or noise is heard, then ACT = S         ; there is at least one fault-free node in S 

                                                        else ACT = L          ; S is removed when all nodes in S are faulty 

        I = I + 1  

  End while 

 

  Remaining node in ACT transmits its identity              ; to the fault-free nodes in the segment 

  X = identity                                                                   ; to keep the segment active node identity 

  Return X, Y 

End 

 

Figure 9. The BinaryElectMiddle algorithm.

Obviously, in Step II of Figure 10, 2 transmissions occur in each segment. Hence, informing all of the

domain nodes needs at most 2 ×D time units. In Step I, the BinaryElect procedures are invoked in

parallel and we need to calculate only 4 times of invoking. Note that BinaryElectMiddle includes 2 binary

search operations, where each binary search operations has the complexity of a1× log2(U). Since each

BinaryElect is run in c1 +a1× log2(U), Step I encounters a total complexity of 4c1 +4×a1× log2(U) ∈
O(log2(U)). Notice that log2 notation denotes the logarithm in base 2. Here, c1 and a1 are 2 coefficient

values for considering, respectively, the running time of the instructions outside of the loop and inside of

the loop. Therefore, LINE A1 can inform all of the nodes within the domain at most in 2×D+O(log2(U))

times, where in the worst case we have U = min(R,F+ 1).
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Initialize: SchedulingType = 0 

 

                 SchedulingType = 1- SchedulingType 

                 If (SchedulingType = 0), then 

                       For i = 2 to Ns step 2                          ; do for all even segments in parallel 

                              Li = BinaryElectLargest (i)        ; largest fault-free node in segment i 

                              Si = BinaryElectSmallest (i)      ; smallest fault-free node in segment i 

                       End      

                      For i = 1 to Ns step 2                          ; do for all odd segments in parallel 

                             Li, Si = BinaryElectMiddle (i) ; 2 nodes from the middle of segment i 

                       End  

Step I       Else 

                      For i = 2 to Ns step 2                            ; do for all even segments in parallel 

                              Li, Si = BinaryElectMiddle (i) ; 2 nodes from the middle of segment i 

                       End      

                       For i = 1 to Ns step 2                         ; do for all odd segments in parallel 

                             Li = BinaryElectLargest (i)    ; largest fault-free node in segment i 

                             Si = BinaryElectSmallest (i)        ; smallest fault-free node in segment i 

                       End  

    End if 

 

 

  

 

                Source transmits a message at time r  

                Segment 1 receives the message at time r and L1 transmits it at time r + 1   

Step II    In each segment i: 

                R1:  If segment i receives the message from Li at time u, then Si transmits it at time u + 1 

                  R2:  If segment i + 1 receives the message from Si at time y, then Li+1 transmits it at time y + 1   

 

Figure 10. The LINE A1 scheduling algorithm.

Segment i                                                                   Segment i+1

R2                    R1                              R2                                   R1                                  R2 

L i                       S i                                               L i+1                                                     S i+1 

Figure 11. Representing Step II conditions in the LINE A1 algorithm.

2. LINE A2: The algorithm in Figure 12 attempts to speed up Step II of the LINE A1 algorithm [23],

provided that F > 0. Whenever F increases, Step I of Figure 12 should be rerun. Figure 13 depicts an

example for the choice of Li
j and Step II of the algorithm at R =6, F = 5, and k = 2 for 3 consecutive

segments (i – 1, i, i+ 1). Node Li−1
1 transmits from segment i – 1. Since condition v +R ≥ Li

3 is true,

the smallest p for v + R ≥ Li
p is searched and the result is p = 3. Node Li

3 transmits from segment i .

For segment i+ 1, condition v +R ≥ Li+1
3 is false, and therefore Li

1 transmits from segment i again.

The complexity of Step I in LINE A2 is 2(k+ 1)(a1× log2(U) + c1) ∈ O(k× log2(U)), where U =

min(R,F+ 1). In Step II, each segment transmits at least once and some segments transmit twice. To

compute the upper bound for the MBT, we should consider the worst case scenario that happens when the fault

configuration is as follows:
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                 U = min(R, F + 1)                          ; if F < R, then U = F + 1; otherwise, U = R 

                 k =
)(log2 U

F
                         ; it will be proved why this value has been taken for k 

                For i = 2 to Ns step 2                                     ; do for all even segments in parallel 

                         For j=1 to k    

                                Lj
i
 = the jth smallest-numbered fault-free node in segment i    

                         End      

                         Lk+1
i
 = BinaryElectLargest (i)             ; largest fault-free node in segment i 

 Step I     End      

               For i = 1 to Ns step 2                                     ; do for all odd segments in parallel 

                        For j=1 to k    

                                Lj
i
 = the jth smallest-numbered fault-free node in segment i    

                        End 

                        Lk+1
i
 = BinaryElectLargest (i)              ; largest fault-free node in segment i 

               End   

 

   
                 Source sends the message at time r, and node L1

1
 (in segment 1) transmits it at time r+1 

Step II     If a message arrives at segment i from node v in segment i–1 at time r, then 

                   If v+R  Lk+1
i
, then Lp

i

 transmits it at time r+1; p is the smallest index for v + R  Lp
i
, 

                                          else L1
i–1

 transmits at time r+1; this is second transmission from segment i–1 

Figure 12. The LINE A2 scheduling algorithm.

 

   L3

i-1

   
L2

i-1

  
L1

i-1

                                 
L3

i

                                 
L2

i

     
L1

i               
L3

i+1

           
L2

i+1

  
L1

i+1
 

Figure 13. Representing Step II conditions in the LINE A2 algorithm.

• In segment i− 1, node Li−1
1 is forced to transmit the message (for the second time).

• In segment i, the Rth, and 1st to k th nodes are faulty. Hence, the Li
1 = (k+ 1)th node transmits the

message.

• In segment i+1, the 1st to k th nodes are fault-free, and therefore, the smallest-numbered node in segment

i+ 1 transmits.

• The fault configuration of segment i+ 2 is the same as that of segment i . Therefore, node Li+1
1 is forced

to transmit the message for the second time.

According to the mentioned configuration, the number of faults between the segments that are forced to

transmit for the second time is k+1. Thus, the number of segments that send twice is [F / (k+ 1)] < [F/k ].

Therefore, the complexity will be O(k× log2(U)) + (D+ [F / k ]). One can find a value for k to minimize

O(k× log2(U)) + [F / k ] by:

G(k) = k × log2(U) + F/k → G′(k) = log2(U)− F

k2
= 0 → k =

√
F

log2(U)
.
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This is the value used in the first line of the LINE A2 algorithm (see Figure 12). Using this value of k ,

the upper bound time on the MBT is computed by:

D +O(
√
F × log2(U)) + ceil

(√
F × log2(U)

)
= D +O(

√
F × log2(U)), where U = min(R,F+ 1).

In the LINE A2 scheduling algorithm, at least 1 node must transmit in each segment. In some cases,

however, 2 nodes may be forced to broadcast within a segment. On the other hand, in the LINE A1 scheduling

algorithm, 2 nodes always broadcast in each segment. Therefore, Step II of LINE A2 consumes less energy than

Step II of LINE A1. Nevertheless, Step I of LINE A2 consumes a little more energy than Step I of LINE A1.

Thus, the LINE A2 algorithm could be superior to the LINE A1 algorithm.

4. Distribution of the sensor nodes on the SGT

Under the SGT distribution, a sensor field is divided into square grids and the sensor nodes are deployed on

grid points in an n× n grid network. The location of a node is known with (i, j), where 0 < i, j < n+1. Each

square {(i − 1)R + 1, . . . , i × R} × {(j − 1)R + 1, . . . , j × R}, 0 < i, j ≤ n/R is called a cell, similar to that in

[23]. If a cell is divided into 4 squares of side R/2, each square is called a tile, similar to that in [23] .Obviously,

the range of each node equals the square of side 2 ×R . Two cells/tiles are neighbors if they are located at the

side or corner of each other (see Figure 14). Since the worst case analysis is considered in computing the MBT,

the source node is considered to be at location (1,1).

Sou
rce

Cell
with

4
tiles

Tile
with 4
nodes

Region
with 25

tiles

Figure 14. Grid distribution with R = 4 and a region with 5 × 5 tiles.

4.1. SGT nonadaptive (SGT NA) algorithm

Here, a grid is visualized as regions of 5 × 5 tiles (as depicted in Figure 14), where the tiles are colored with 25

various colors in each region. Figure 15 depicts the SGT NA scheduling algorithm. According to this scheduling,

the l th nodes in the k th tiles of all of the regions transmit at the same time. For example, the first nodes in
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the 10th tiles of all of the regions are scheduled to transmit at the same time. Note that the distance between

these nodes should be enough to avoid collision.

 

Source node transmits a message at time 1  

Node aki transmits the message at time 25 (i–1) + Ck + 25 S r

where: 

 
r = 0, 1, 2,…,  

S = R
2 
/ 4,  

Ck = color of tile k in a region,  

i = 1, 2,.., S  

aki = node i (with any order) in the kth tile  

 

Figure 15. Nonadaptive scheduling algorithm for the SGT topology.

When there is no faulty node in the network, each region of 5 × 5 is informed in 25 time units and it

takes 25× n
5×(R/2) = 10× n

R = 10×D time units to inform the whole domain. To consider the role of faults,

the worst case of the fault configurations is assumed. Figure 16 shows this configuration for a cell with R = 4

and 4 tiles. Tile 1 has received a message and each tile includes S – 1 = 3 faults. After 25 × (S – 1) time

units, the fault-free node in tile 1 is scheduled to transmit. However, the last nodes of the neighbor tiles are

faulty, and therefore the fault-free nodes in these tiles will be scheduled to transmit after at most 25 × (S – 1)

time units .If this structure is repeated, the worst case fault configuration is obtained. Thus, 2 faulty neighbor

tiles with the worst case fault configuration cause 50 × (S – 1) time units delay for 2 × (S – 1) faults, i.e.

an average of 25 time units delay for each fault . Having a total of F faults, the time required to inform the

domain is at most 10 ×D+25 ×F ∈ O(D + F ).

Tile 1

Tile 4

Tile 2

Tile 3

Figure 16. The worst case fault configuration.

It should be noted that a region of 5 × 5 is chosen in this paper to reduce the energy consumption of

the sensor nodes for the same reason mentioned in Section 3.1. One should choose these regions at least in

such a way that no collision happens when the corresponding nodes in the corresponding tiles of 2 neighboring

regions transmit at the same time. Hence, the distance between any 2 regions must be at least 3. In this case,

the scheduling time for 3 × 3 regions will be 9 × (i – 1) + Ck+ 9 ×S × r , and the MBT will be at most 6

× D+9 ×F ∈ O(D + F ) [23].

One may think that choosing 3 × 3 regions results in a smaller MBT of 6 ×D+9 ×F compared with

a MBT of 10 ×D+25 ×F in 5 × 5 regions. Note that the case of 3 × 3 regions is equivalent to the method
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stated in [23]. However, the energy consumption of the nodes increases in 3 × 3 regions, for the same reason

discussed in Section 3.1. Therefore, the number of faulty nodes in 3 × 3 regions grows faster than 5 × 5

regions. Therefore, after a while, most of the nodes in 3 × 3 regions fail and the MBT goes up compared with

5 × 5 regions.

4.2. SGT adaptive algorithm

As in Section 3.2, a preprocessor procedure is executed to select the representative fault-free nodes in each cell.

This procedure takes 2 sets of nodes (A,B), which are in the range of each other and selects in a binary manner

2 nodes as their representative nodes. The complexity of this procedure is O(log2 (max( |A| , |B|))). For each

pair of cells, this procedure is invoked and representative nodes are elected. In the broadcasting time, these

nodes are responsible to transmit a received message. Therefore, by removing faulty nodes and introducing

representative nodes, the MBT reduces to O(D+ log2(U) for any configuration of at most F faults [23], where

U = min(R,F+ 1).

5. Conclusion

In this paper, some techniques have been proposed for monitoring networks based on WSNs, where the

locations of the faulty sensor monitoring nodes are unknown. The application of the proposed techniques

is for the monitoring of narrow passages (such as indoor corridors, tunnels, or bridges) or 2-dimensional fields.

Two topologies as line and SGT have been considered for locating the sensor nodes. The scheduling for the

broadcasting time in wireless monitoring networks has been provided and analyzed by proposing 2 nonadaptive

and adaptive broadcasting scheduling algorithms for each topology. In addition, the energy consumption of the

nodes has been considered in the proposed algorithms. An analytical computation for the complexity of the

MBT has been presented for the proposed algorithms. In short, the scheduling in nonadaptive algorithms is

simpler than in adaptive algorithms. The analysis results show that adaptive algorithms need smaller MBTs

than nonadaptive algorithms to inform the whole network domain. The Table compares the complexity of

different algorithms for the MBT, where U = min(R,F+ 1).

Table. Comparison of the upper bound complexities.

Broadcasting algorithm Complexity
Line nonadaptive algorithm O(D + F )
Line adaptive algorithm 1 2×D+ O(log2(U))

Line adaptive algorithm 2 D +O(
√

F × log2(U))
SGT nonadaptive algorithm O(D + F )
SGT adaptive algorithm O(D+ log2(U))
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