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Abstract: The multiuser detection (MUD) problem was addressed as a pattern classification problem. Due to their

strength in solving nonlinear separable problems, radial basis functions, aided by soft particle swarm optimization, were

proposed to perform MUD for a synchronous direct sequence code division multiple access system. The proposed solution

was shown to exhibit performance better than a number of other suboptimum detectors including the genetic algorithm

and the classical particle swarm optimization algorithm.
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1. Introduction

Code division multiple access (CDMA) systems offer a soft user capacity but at the same time suffer from

multiple access interference (MAI), which is one of the key issues that restrict capacity. Thus, one of the major

challenges in CDMA systems has been to mitigate the effects of MAI. For this, optimum as well as a number of

suboptimum detectors has been proposed. The optimum detector [1] uses the principle of maximum likelihood

and serves as an ideal or an upper bound for other suboptimal detectors. However, it cannot be used practically

due to its enormous computational cost. Suboptimum detectors can be classified in various categories like linear,

nonlinear, and evolutionary classes.

The most famous linear detectors are the decorrelating detector [2] and linear minimum mean square error

(LMMSE) detector [3], which face the problem of noise enhancement and the requirement of channel estimates

at the receiver. The successive interference cancellation [4] technique in the nonlinear category of detectors faces

the problem of error propagation, while the performance of parallel interference cancellation (PIC) [5] heavily

depends on the initial bit estimates. Researchers have also used radial basis functions (RBFs) for the multiuser

detection (MUD) of CDMA systems [6]. There has been increased interest in using evolutionary techniques for

the MUD problem recently. Researchers have proposed the genetic algorithm (GA) [7–9], ant colony optimization

[10], evolutionary strategies [11], evolutionary programming [12] and particle swarm optimization (PSO) [13,14].

This paper is an extension of our previous contribution [14], in which the hard PSO (HPSO) along with RBF

for MUD was used to carry out MUD. In this paper, we employ soft PSO (SPSO) for the same problem. The

SPSO proceeds towards the optimum solution in a gradual manner, thus providing better results compared to

other algorithms.
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The remainder of the paper is ordered as follows: The system model is described in section 2. Section

3 explains the application of the PSO algorithm to the MUD problem. Section 4 contains the simulations and

their results, while section 5 presents conclusions and future work.

2. System model

We consider the direct sequence CDMA (DS-CDMA) system with K users, employing a binary phase shift

keying with a bit interval of Tb . The spreading code g(k) =
[
gk1g

k
2 · · · gkN

]
for the k th user consists of N chips,

with each chip having an interval of Tc . As shown in Figure 1, the composite signal of K users thus transmitting

in a synchronous DS-CDMA system is given as
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Figure 1. System model of the transmitter.

T =
K∑
j=1

t(k) =
K∑
j=1

A(j)b(j)g(j), (1)

where the transmitted bit has an amplitude of A(k) . The received vector is given as:

r=T+n. (2)

The channel has been assumed to be memoryless and nondispersive Rayleigh and n is the noise vector of the

zero mean. The channel state is assumed to be known at the receiver. Figure 2 shows the proposed detector.

The soft output r from the matched filter is passed through tanh(.), whose output is employed for center

selection using the SPSO. For the composite received signal r and vector center cj , the j th RBF is given by:

φj(r) = exp

[
−∥r− cj∥2

2σ2
j

]
j = 1, 2, · · · , 2K , (3)

where σ2
j represents the spread of the RBF. The 2K noiseless channel output vectors serve as candidates for

the RBF centers [9]. The weighted output from the RBF network is

z =
[
z(1)z(2) · · · z(j) · · · z(K)

]
,

where

z(j) =
M∑
i=1

wi,jφi(r) (4)
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Figure 2. SPSO-RBF–assisted receiver.

or

y=WΦ. (5)

The weight wi.j from any ith RBF to any j th summer is either 1 or –1, following the majority decision, as

follows:

wij =

{
1, b

(j)
i = 1

−1, b
(j)
i = −1

. (6)

Owing to binary signaling, we have 2K possible combinations of bits, and hence 2K possible RBF centers, given

as follows:

ci =

K∑
j=1

A(j)b
(j)
i g(j) where j = 1, 2, · · · 2K . (7)

The optimum approach requires us to employ all of the 2K combinations, which turns out to be computationally

intensive, especially when the values of K go up. This problem has been attempted previously using the GA [9]

and PSO [14]. We suggest SPSO, which performs better than PSO [14].

3. HPSO and SPSO

Like any other evolutionary algorithm, the PSO algorithm operates on a population, also referred to as a swarm.

In the following, we describe the steps of the SPSO as well as the difference between the hard and SPSO. There

are 4 differences between HPSO and SPSO. It is important to note that the number of steps in HPSO and

SPSO are the same. The 2 algorithms differ only in terms of the details of each step.

Step 1. Initialization: The first difference lies in the initialization step. In the HPSO or the classical

discrete PSO algorithm, the particles are initialized at hard values of +1 and –1. The rest of the population

is generated by flipping the first particle in a random manner. In the case of SPSO, the algorithm starts with

soft values between +1 and –1. In order to tilt the particles towards +1 and –1, these soft values are passed

through the tanh() function. The rest of the whole population is generated by adding a small random number

(between 0 and 1) to random locations of the first particle. The velocity of each particle is initialized at small

random values, in the case of both SPSO and HPSO.
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Step 2. Fitness evaluation: The fitness of each particle is evaluated using a problem-specific fitness

function.

Step 3. Update the velocity: The HPSO utilizes the following equation to update the velocity of the

particles:

v
(m)
i (n) = v

(m)
i (n− 1) + φ1(p

(m)
i − b

(m)
i (n− 1)) + φ2(p

(m)
g − b

(m)
i (n− 1)) . (8)

The second term in the above equation takes into account the current position of the particle and the best

position achieved so far. This is referred to as personal intelligence. The global intelligence is contributed by

the third term, which involves the global best particle pg . It is important to note that HPSO is proposed to

have a fixed and equal contribution of local and global intelligence for updating the velocity of the particle. On

the other hand, the SPSO updates the velocity as follows:

v
(m)
i (n) = v

(m)
i (n− 1) + βφ1(p

(m)
i − b

(m)
i (n− 1)) + (1− β)φ2(p

(m)
g − b

(m)
i (n− 1)) . (9)

Here, an adaptive approach is proposed by incorporating the dynamic parameter β , which gives more importance

to local intelligence in the initial stages and more importance to collective intelligence at the later stages of the

algorithm.

Step 4. Update the position: HPSO employs the following equation to update the particle position:

if(rand() < S(v
(m)
i )),

then

b
(m)
i = −1 (10)

else

b
(m)
i = 1

where

S(v
(m)
i ) =

1

1 + exp(−v
(m)
i )

. (11)

On the other hand, SPSO proceeds as

if(rand() < S(v
(m)
i )),

then

b
(m)
i = −1 + S(v

(m)
i ) (12)

else

b
(m)
i = S(v

(m)
i ),

where

S(v
(m)
i ) =

1

1 + exp(−γv
(m)
i )

. (13)

The changes in Eqs. (12) and (13) make discrete PSO look like continuous PSO. The parameter γ in Eq. (13)

makes S(v
(m)
i ) an adaptive function. To start with,S(v

(m)
i ) is kept fairly linear due to the small value for γ ,

and then γ keeps on increasing with the number of cycles, thus making S(v
(m)
i ) more and more nonlinear, and,

at the end, makes it very close to a hard sigmoid function. This is obvious in Figure 3.
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Figure 3. Effect of γ on the softness of the SPSO.

Step 5. Go back to step 2, until the stopping condition is met.

The complete algorithm is shown in the form of a flowchart in Figure 4.

Yes 
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Figure 4. Flowchart of the PSO.
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4. SPSO- and RBF-assisted MUD

The optimal detection requires us to maximize the objective function (Eq. (3)), which, in turn, requires the

selection of optimal RBF centers. The RBF centers, closer to the vector r , will result in optimal detection.

Any j th RBF center cj will be represented as a particle bj in the PSO, as follows:

bj=
[
b
(1)
j b

(2)
j , · · · , b(m)

j , · · · b(K)
j

]
, (14)

where K is the number of users, and bmj is the position of the j th particle and mth user. Each particle has a

corresponding velocity, given by

vj=
[
v
(1)
j v

(2)
j , · · · ,v(m)

j , · · · v(K)
j

]
. (15)

The best value of a particle is maintained by a particle, called personal best, and represented as pi =[
p
(1)
i · · · p(m)

i · · · p(K)
i

]
. Similarly, the best particle of the whole swarm is stored and denoted as pg =[

p(1)p(2) · · · p(m) · · · p(K)
]
. Both the personal and global best particles are updated. The PSO algorithm proceeds

as follows:

Step 1: As described earlier, the output from the group of matched filters is passed through tanh(.) to

get the first particle of the swarm. The rest of the swarm is created by randomly perturbing the values of the

first particle.

Step 2: For the fitness evaluation of a particle in the swarm, we use Eq. (3) as a fitness function. The

personal as well as the global best particles are selected and recorded on the basis of this fitness evaluation.

Step 3: In our previous paper, the value of β was fixed at 0.7, while in this paper, we change the value

of b gradually, such that by the end of the algorithm, the global intelligence of the particles plays a dominant

role compared to the individual intelligence.

v
(m)
i (n) = v

(m)
i (n− 1) + βφ1(p

(m)
i − b

(m)
i (n− 1)) + (1− β)φ2(p

(m)
g − b

(m)
i (n− 1)) (16)

The velocity v
(m)
i of a particle is bounded as follows:

if v
(m)
i > Vmax, v

(m)
i = Vmax

and

if v
(m)
i < Vmax, v

(m)
i =− Vmax.

The strength of SPSO lies in the fact that as the algorithm runs the particles move towards +1 or –1 gradually,

under the influence of the factor g in Eq. (13). A relatively high value of v
(m)
i pulls a particle towards +1 and

vice versa.

Step 4: The steps of the algorithm are repeated to a finite number of iterations. At the end of the

algorithm, a hard decision is applied on the particle to get the estimated data bits. Simulations and results

The proposed detector is simulated using MATLAB. We investigate the bit error rate (BER) performance

of SPSO against a number of other suboptimal detectors, like the decorrelating detector, LMMSE detector, and

partial PIC detector, for systems with various numbers of users. It is worth mentioning that the optimum

detector, which is based on the principle of maximum likelihood, is not practically used because of its high

computational complexity, which increases exponentially with the number of users. We employ the 31-chip Gold
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code for spreading. The computational complexity of SPSO is close to that suggested in [9]. It is a given by

product of the number of cycles and number of chromosomes. We also consider the same metric. Figure 5 shows

the performance comparison of HSPO and SPSO for a system with 10 users for 2 computational complexities,

i.e. 10 cycles with 10 particles and 10 cycles with 20 particles. SPSO shows better BER performance than

HPSO.

Figure 6 shows the performance comparison of HPSO, GA, and SPSO for a system with 15 users. After

8 dB, SPSO takes over HPSO and is far better than the GA-based detector. The superiority of the performance

of SPSO is mainly because of its faster convergence and its strength to avoid local minima. Figure 7 presents

the performance comparison of SPSO with a decorrelating detector, LMMSE detector, partial PIC detector,

and HPSO for a system with 20 users. Here, SPSO outperforms the competitors by a clear margin. We use

100 particles and 50 iterations for HPSO, and 100 particles and 10 iterations for SPSO. Figure 8 presents a

comparison of the BER performance for a 32-user system. No graphs were available for comparison with the

suboptimal detectors for systems with 32 users; therefore, the last graph presents a self-comparison of SPSO
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Figure 5. Performance comparison of HPSO-RBF and

SPSO-RBF (K = 10).

Figure 6. Performance comparison of GA-RBF, HPSO-

RBF, and SPSO-RBF (K = 15).
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Figure 8. Performance comparison of HPSO-RBF and

SPSO-RBF for a 32-user system.
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for various complexities. It is obvious that as the number of particles is increased, SPSO starts taking over

by a clear margin. It is important to mention that with 64 users, the optimum detector would require a

huge computational requirement, while the suboptimum detector, like SPSO, does the job with a very nominal

computational cost. The 4 differences highlighted in the previous section are the major reasons for the improved

performance of SPSO over HPSO.

5. Conclusion

We investigated the performance of SPSO-RBF–assisted MUD for synchronous CDMA systems against a number

of other suboptimal detectors. We used a nondispersive additive white Gaussian noise channel. It was seen

that SPSO performs better than its hard counterpart, i.e. HPSO. This improvement in performance is mainly

because of the manipulation of soft values instead of hard values. In future, we aim to explore the strength of

PSO for asynchronous cases and for dispersive channels.
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