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Abstract: The problem of discrete-time modeling of the lumped-parameter Hamiltonian systems is considered for

engineering applications. Hence, a novel gradient-based method is presented, exploiting the discrete gradient concept and

the forward Euler discretization under the assumption of the continuous Hamiltonian model is known. It is proven that

the proposed discrete-time model structure defines a symplectic difference system and has the energy-conserving property

under some conditions. In order to provide alternate discrete-time models, 3 different discrete-gradient definitions are

given. The proposed models are convenient for the design of sampled-data controllers. All of the models are considered

for several well-known Hamiltonian systems and the simulation results are demonstrated comparatively.
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1. Introduction

Hamiltonian systems are a well-known formalism for the modeling and analysis of some physical systems. Almost

all electrical, electromechanical, and complex network systems with negligible dissipation can be described by

a suitable Hamiltonian formalism. In the continuous-time literature, Hamiltonian system formalism has been

extended by adding a dissipation structure and input and output ports, which yields a control model for lumped-

parameter systems. This extended model structure is called a port-controlled Hamiltonian system. Note that

systems with dissipation can be represented by this latter model structure. Therefore, the Hamiltonian formalism

could be regarded as the most appropriate mathematical tool for systems in physical and engineering sciences.

The fundamental theory of continuous Hamiltonian systems can be found in [1–3] and the references cited

therein.

The widespread use of digital computers needs the discretization of continuous Hamiltonian systems for

the analysis of discrete physical problems and the digital control of the complex systems, especially for systems

where electrical and mechanical subsystems have to be considered together [4–6].

In mathematics literature, discrete Hamiltonian systems are considered for different purposes. In some

of these works, discrete Hamiltonian systems are considered under the titles of ‘symplectic difference systems’

or ‘discrete symplectic systems’ and many analyses have been carried out for these systems [7–10]. Aside from

these, some works on this subject dealt with the numerical computation of Hamiltonian dynamics and focused

on integration methods. The survey in [11] summarized the already existing integration methods thoroughly,

and the integration methods for Hamiltonian systems can be found in [12]. It should be noted that an alternative

approach to the modeling and simulation of port-Hamiltonian systems, Hamiltonian systems with input and
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output, were offered in [13], where direct modeling at the discrete level was considered.

The existing methods in the mathematical literature are on the numerical modeling of Hamiltonian

systems, most of which are too difficult to employ for digital control design purposes. Therefore, the derivation

of a discrete-time model convenient for sampled-data control of the lumped-parameter Hamiltonian systems is

considered in this study and a method based on the discrete gradient concept is presented, and the forward

Euler discretization is chosen for the differential operator. It is shown that the discrete-time model obtained

with the method proposed here defines a symplectic difference system and has an energy-conserving property

under some conditions. Furthermore, 3 different discrete-gradient definitions are given to provide alternate

discrete time models, all of the models are obtained for well-known Hamiltonian systems, and the simulation

results are compared.

The proposed models are uncomplicated and practical to use in the design of controllers for engineering

applications, whereas the existing numerical integration methods are complex and inconvenient for engineering

applications. It might be noted that the discrete time models proposed here were used in the sampled-data

control of port-Hamiltonian systems in the sense of passivity-based control and disturbance attenuation in [14–

18], respectively. It should be emphasized that [17] reported a real application where the proposed model was

easily and successfully utilized.

2. Preliminaries

For the reader’s convenience, some definitions constantly used in the literature on Hamiltonian systems, discrete-

gradient conditions [12], and quadratic approximation lemma [19] are restated herein.

The lumped-parameter standard Hamiltonian systems are defined as:[
q̇

ṗ

]
=

[
∇pH(q,p)

− ∇qH(q,p)

]
, (1)

where (q,p) ∈ X ⊂ ℜ2n is a 2n-dimensional manifold; q is the vector of the generalized positions; p is the

vector of the generalized momentums; H(q, p) is the Hamiltonian function, namely the total energy of the

system; and the notation ∇(•)H is used to represent the gradient vector of the scalar function of H with

respect to (•). As is known, H(q, p) can be written in the following form:

H(q,p) = 1
2p

TM−1(q)p+ V (q)

= 1
2 q̇

TM(q) q̇+ V (q)
,

where V (q) is the potential energy and M(q) is a symmetric and positive generalized inertia matrix. If M(q) =

M ∈ ℜn×n , the system is called a ‘separable Hamiltonian system’; otherwise, it is called a ‘nonseparable

Hamiltonian system’. On the other hand, a Hamiltonian system with dissipation can be given as:[
q̇

ṗ

]
= (J−R(q,p))∇H(q,p), (2)

where matrices J and R(q,p) ∈ ℜ2n× 2n are the standard skew-symmetric matrix and the nonnegative

symmetric matrix, respectively, given as:

J =

[
0 In

−In 0

]
, R(q,p) =

[
0 0

0 R1(q,p)

]
, R1(q,p) ≥ 0.
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In local coordinates, Hamiltonian systems with dissipation are defined as follows:

ẋ(t) = [J(x) − R(x)]∇H(x), (3)

where x(t) ∈ ℜn is the state vector, matrices J(x) = −JT (x) and R(x) = RT(x) ≥ 0 respectively determine

the internal connection structure and the dissipation structure of the system, and, finally, H(x) is the total

energy function of system Eq. (1).

In the mathematics literature, discrete Hamiltonian systems are investigated under the titles of ‘symplec-

tic difference systems’ or ‘discrete symplectic systems’ [7–10]. The formal definition for these systems is given

below.

Definition 1 Given a (2n × 2n)-dimension discrete system:

z(k + 1) = Sk z(k), k ∈ I. (4)

It is called a ‘symplectic difference system’ provided that for all k , Sk are symplectic matrices, i.e. if ST
k JSk =

J or equivalently Sk JST
k = J , where

J =

[
0 In

−In 0

]
(5)

is a standard skew-symmetric matrix, namely J = −JT .

Many properties of symplectic matrices can be found, e.g., in [20]. In particular, each symplectic matrix

S has an inverse, such that S−1 = JSTJT , and matrices ST , S−1 are symplectic matrices.

As mentioned previously, in this study, several gradient-based discrete models are presented. To provide

these alternate models, the discrete gradient definition given in [12] and restated in this section is considered.

Definition 2 Let H(x) be a differentiable scalar function in x , where ∇̄H(xk,xk+1) is a discrete gradient of

H(x) if it is continuous in x and

∇̄TH(xk,xk+1) [xk+1 − xk] = H(xk+1)−H(xk)

∇̄H(xk,xk) = ∇H(xk)
, (6)

in which the gradient of H(x) defined as:

∇H(x) := gradH(x) =
[

∂ H
∂ x1 · · · ∂ H

∂ xn

]T

, x = [x1, . . . , xn]. (7)

In this study, a systematic method to construct a discrete gradient for energy functions in general is also

presented, so the quadratic approximation lemma, which is used to construct this generic discrete gradient, is

restated below.

Lemma 2 (quadratic approximation) [19]

If and only if the quadratic function f(z) is defined by

f(z) = a0 + aTz +
1

2
zTAz , AT = A, (8)
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then

f(z1)− f(z0) =
1

2
[∇f(z1) + ∇f(z0) ]

T (z1 − z0), (9)

where ∇f(zr) is the gradient vector of f(z) evaluated at zr .

3. Discrete-time modeling

In order to obtain the discrete-time models of Hamiltonian systems, a gradient-based method is presented

in this section. The discrete-time models obtained define symplectic difference systems and have an energy-

conserving property for some discrete gradients with a special form and for some continuous systems with a

specific structure. Moreover, 3 different discrete-gradient definitions are given in the sequel.

Consider the continuous-time Hamiltonian systems with dissipation:

ẋ(t) = [J(x)− R(x)] ∇H(x) , (10)

where x ∈ ℜn denotes the state vector and J(x)=−JT (x) , R(x)=RT (x) ≥ 0. The notation ∇H(x) is used to

represent the gradient vector of the scalar function of H(x) with respect to x .

A gradient-based discrete-time model of the Hamiltonian system given in Eq. (10) can be constructed

using the discrete gradient of H(x) given in Definition 2.

When the derivatives of state variables in Eq. (10) is approximated by forward Euler as

ẋ ∼=
xk+1 − xk

T
(11)

and the discrete gradient ∇̄H(x (k ),x (k+1 )) is substituted for the gradient term ∇H(x), the gradient-based

discrete-time model of the Hamiltonian system is obtained as follows:

xk+1 − xk = T [J(xk) − R(xk)] ∇̄H, (12)

where T is the sampling period.

For R(xk) = 0 , the system in Eq. (12) will have an energy conservation property if the discrete gradient

of H(x), i.e. ∇̄H , satisfies the conditions in Definition 2, and it will define a ‘symplectic difference system’

when matrix J(xk) = J is the standard skew-symmetric matrix given in Eq. (5) and the discrete gradient used

has some special properties. These properties are given as a theorem in the sequel. Proposition 1 will be used

to prove the theorem on the symplectic property of Eq. (12).

Proposition 1 If matrix F is in the form of

F = [I− JP]
−1

[I+ JP] , (13)

such that J is the standard skew-symmetric matrix given in Eq. (5) and P is a symmetric matrix, i.e. P = PT ,

then matrix F is a symplectic matrix.

Proof It is easily shown that matrix F given in Eq. (13) holds FJFT = J , so the proof is complete.
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Theorem 1 Consider the Hamiltonian system without dissipation ẋ = J∇H(x) and if the discrete gradient of

H(x) has the following structure:

∇̄H(x) = Φk [xk+1 + xk] . (14)

Next, the discrete-time model of this system is given in the following form:

xk+1 = Fk xk, (15a)

in which

Fk = [I− TJΦk]
−1 [I+ TJΦk], (15b)

where T is the sampling period, and it then defines a symplectic difference system.

Proof When the discrete gradient given in Eq. (14) is substituted into the discrete model given in Eq. (10)

for R(xk) = 0 , the following relation is easily written as

xk+1 = T J Fk [xk+1 + xk] + xk,

and, after some algebraic operations, the difference equation given in Eq. (15) is obtained. The symplectic

property of the system is proven using Proposition 1.

Furthermore, the following theorem is on the energy-conserving property of the discrete model given in

Eq. (12) for R(xk) = 0 .

Theorem 2 Consider the Hamiltonian system without dissipation ẋ = J(x) ∇̄H(x) and assume that the

discrete gradient of H(x) , i.e. ∇̄H , satisfies the conditions in Definition 2 precisely. Next, the following

discrete system has the energy conservation property:

xk+1 − xk = T J(xk) ∇̄H, (16)

where T is the sampling period.

Proof If Eq. (16) is multiplied from the left by∇̄TH , one can then write the following relation:

∇̄TH [xk+1 − xk] = T ∇̄TH J(xk) ∇̄H. (17)

From the first condition of Definition 2, the following relation can be obtained:

H(xk+1)−H(xk)

T
= ∇̄TH J(xk) ∇̄H = 0. (18)

The skew symmetry property of J(xk) proves the claim.

The following remark, which can be stated as a consequence of Theorems 1 and 2, is worth mentioning.

Remark 1 The discrete-time model obtained using the method proposed here defines a symplectic difference

system whenever the form of the structure matrix of the system is the standard skew-symmetric matrix given

in Eq. (5) and the discrete gradient of H(x) has the property given in Eq. (14). However, the discrete time

model always has the energy conservation property if the discrete gradient of H(x) satisfies the first condition

of Definition 2.
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It is easily seen that the discrete time model of the Hamiltonian system with dissipation, namely

R(xk) ̸= 0 , which is obtained using the method proposed in this study, is obtained as

xk+1 = [I− T (Jk −Rk )Φk]
−1 [I+ T (Jk −Rk)Φk]xk, (19)

where Jk = J(xk) and Rk = R(xk).

In the sequel, 2 different discrete gradients in the form of Eq. (14) are defined such that they yield some

discrete-time models, which have the structure given in Eq. (15) or Eq. (19). These discrete-gradient definitions

can be used for a class of the energy functions that have a continuous gradient in the form of ∇H(x) = Q(x)x .

Afterwards, a methodology to remove the constraint on the energy function and to obtain a generic discrete

gradient is also given in this section.

The mean value theorem and the first condition of the discrete gradient imply that 2 satisfactory discrete

gradients in the form of Eq. (14), which provide 2 slightly different discrete-time models in the form of Eq.

(15), can be defined as follows.

Definition 3 Consider a differentiable function in x given as H(x) and its gradient given in the form

of ∇H(x) = Q(x)x ; the discrete gradient of H(x) is then defined as

∇̄H(xk,xk+1) = Φk [xk+1 + xk] , (20)

where

Φk = Φ(xk,xk+1) =
1

4
[Q(xk+1) +Q(xk)] . (21)

Definition 4 Consider a differentiable function in x given as H(x) and its gradient given in the form

of ∇H(x) = Q(x)x ; the discrete gradient of H(x) is then defined as

∇̄H(xk, xk+1) = Φk [xk+1 + xk] , (22)

where

Φk =
1

2
Q(x)| xk+1 + xk

2

. (23)

Remark 2 The discrete gradients given in Definitions 3 and 4 satisfy both of the conditions given in Definition

2 exactly when the energy function is in the form of H(x) = xTZ(x)x with Z(x)=Z , namely a constant n×n

matrix. This case corresponds to nonseparable mechanical systems with quadratic potential energy. However,

in general, these discrete gradients do not precisely satisfy the first condition given in Eq. (6). Therefore, the

discrete-time models obtained using these definitions do not have an energy conservation property but it can

easily be shown that the residual energy is insignificant for small sampling periods.

Thus far, we have defined 2 different discrete gradients to obtain discrete-time models. These discrete

gradients have some drawbacks since they need a special form of energy function and/or gradient of the energy

function. In the following, a systematic method is presented to construct a discrete gradient for general energy

functions using the quadratic approximation lemma, which was restated in Section 2.

Considering the analogy between the first condition of Definition 2, i.e. Eq. (6), and the relation in Eq.

(9) in the quadratic approximation lemma, one can conclude that there exists a discrete gradient that exactly
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satisfies the condition in Eq. (6) if the energy function H(x) has the general quadratic form as in Eq. (8).

Consequently, the second-order Taylor approximation of any H(x) might be used to define a discrete gradient

as follows:

∇̄H =
1

2

[
∇H̃(xk+1) + ∇H̃(xk)

]
,

where H̃(x) is the second-order Taylor approximation of H(x), namely

H̃(x) = H(xk) +∇TH(xk) (x− xk) +
1

2
(x− xk)

THHess(xk) (x− xk) (24)

for xk ≤ x < xk+1 . As a consequence of the above analysis, the definition below is presented.

Definition 5 Consider a differentiable function in x given as H(x) , and then the discrete gradient of a H(x)

is defined as

∇H(xk, xk+1) = ∇H(xk) +
1

2
HHess(xk) (xk+1 − xk), (25)

in which HHess(x) is the Hessian matrix of the energy function of H(x) .

When the discrete gradient given in Eq. (25) is substituted into Eq. (12), the following discrete-time

model is obtained after a few algebraic operations:

xk+1 = xk + T

[
I − T

2
(Jk −Rk) HHess(xk)

]−1

(Jk −Rk)∇H(xk), (26)

where Jk = J(xk) and Rk = R(xk).

It should be noted that the energy function of the discrete system given in Eq. (26) is H̃(xk) and this

energy is conserved for R (xk) = 0. Moreover, it is easily verified that the model given in Eq. (26) defines a

symplectic difference system when the skew-symmetric matrix J (xk) is in the standard form given in Eq. (5)

and the energy function is in the form of H(x) = xTZ(x)x with Z(x) = Z , namely a constant n× n matrix,

although this discrete system is not a symplectic difference system in general.

Remark 3 The discrete-time models for port-controlled Hamiltonian systems can be given by

xk+1 − xk = T [J(xk) − R(xk)] ∇̄H+ TG(xk)uk

yk = GT (xk)∇̄H
, (27)

where ∇̄H is the discrete gradient. The explicit models can be obtained by substituting the discrete gradients

in Definitions 3, 4, and 5 presented in this study for the discrete-gradient term.

In the following section, all 3 of these models are verified on well-known Hamiltonian systems and their

performances are compared.
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4. Numerical experiments

This section is devoted to simulations in order to validate the discrete-time models that are obtained using the

methods proposed in this study. For this purpose, it may be reasonable to give a brief review of these methods,

as follows.

• The first 2 models are in the following form, from Definition 3 and 4, under the assumption of ∇H(x) =

Q(x)x :

xk+1 = [I− T (Jk −Rk )Φk]
−1 [I+ T (Jk −Rk)Φk] xk,

for the following Φk :

1. Φk = Φ(xk,xk+1) =
1
4 [Q(xk+1) +Q(xk)] ,

2. Φk = 1
2Q (x)|xk+1 + xk

2

.

• The model obtained using Definition 5 is as follows:

xk+1 = xk + T

[
I− T

2
(Jk −Rk ) HHess(xk)

]−1

(Jk −Rk ) ∇H(xk),

in which HHess(x) is the Hessian matrix of the energy function of H(x).

It should be noted that it is used as a simple approximation for xk+1 in the calculation of Φk =

Φ(xk+1,xk) ∼= Φ(x̂k+1,xk) as xk+1
∼= x̂k+1 = F(xk−1)xk for the first 2 models.

Example 1 (van der Pol oscillator)

As is well known, the dynamic equations of the van der Pol oscillator are as given below:

ẋ1 = x2

ẋ2 = µ (1− x2
1)x2 − x1

.

The Hamiltonian model of the system can be given as follows:

ẋ = [J−R(x)] ∇H ,

where

H(x) =
1

2
xTI2 x

is the energy function of the system and

R(x) =

[
0 0
0 −µ (1− x2

1)

]
is the dissipation structure. Note that the gradients of H(x) can be written as

∇H = Q(x)x = I2 x, Q(x) = P(x) = I2 =

[
1 0
0 1

]
.
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In this example, µ = 1 is considered and the sampling period is taken as T = 0.01. Since the matrix Q(x) is

constant, the 3 proposed discrete gradients are equivalent for this special case. Calculations for the proposed

discrete gradients and corresponding discrete-time models are given in the sequel.

The discrete gradient proposed in Definition 3 is obtained as follows:

Φk = Φ(xk,xk+1) =
1
4 [Q(xk+1) +Q(xk)] =

1
4 [I2 + I2] =

1
2I2

∇̄H(xk,xk+1) = Φk [xk+1 + xk] =
1
2 [xk+1 + xk] ;

thus, the corresponding discrete-time dynamics is obtained as:

xk+1 = [I− T (Jk −Rk )Φk]
−1 [I+ T (Jk −Rk)Φk] xk

xk+1 = [I2 − 0.01Sk]
−1 [I2 + 0.01Sk] xk

xk+1 = F (xk)xk

, (28)

where

Sk = S(xk) = (Jk −Rk)Φk = (J−

[
0 0

0 −
(
1− x2

1(k)
) ]

)
1

2
I2 =

1

2

[
0 −1

1
(
1− x2

1(k)
) ]

.

Note that xk+1 does not appear on the left-hand side of Eq. (28). The expression in Eq. (28) is in the explicit

form; therefore, it can be directly coded in MATLAB or other environments symbolically.

The discrete gradient proposed in Definition 4 is obtained as follows:

Φk = Φ(xk, xk+1) =
1
2Q (x)| xk+1 + xk

2

= 1
2Q (xk+1 + xk

2 )
∣∣∣ = 1

2I2

∇̄H(xk,xk+1) = Φk [xk+1 + xk] =
1
2 [xk+1 + xk] .

This expression is the same as that the discrete gradient that Definition 3 yields; therefore, the system dynamics

obtained will also be the same, which is as given in Eq. (28). Definition 5 yields the same discrete-gradient

expression as above by the following calculations.

HHess(xk) = I2

∇H(xk, xk+1) = ∇H(xk) +
1
2HHess(xk) (xk+1 − xk)

= I2xk + 1
2I2[xk+1 − xk] =

1
2 [xk+1 + xk]

Therefore, the simulations are run using the discrete-time model in Eq. (28). The results are given in Figure 1

for the initial state x0 =
[

0.5; 0.5
]
.

The simulation results for µ = 1 are given in Figure 1 for the initial state x0 =
[

0.5; 0.5
]
and

sampling period T = 0.01s.
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Figure 1. The discrete and continuous a) phase portraits and b) time responses of the van der Pol oscillator.

Example 2 (Henon–Heiles system)

The Henon–Heiles system is described by the following differential equations:

ẍ = −x− 2xy

ÿ = −y − x2 + y2
.

The energy function of the Henon–Heiles system can be written as

H =
1

2
(p2x + p2y) + V (x, y), V (x, y) =

1

2
(x2 + y2) + x2y − 1

3
y3

using the notation px = ẋ , py = ẏ , where x, y correspond to the generalized positions and px ,py correspond

to the generalized momentums. Thus, the Hamiltonian model of the system can be given as:

ẋ = [J −R] ∇H ,

with R = 0. The calculation to obtain the discrete gradients and discrete-time models are given in the

sequel. The simulations are run for a sampling period of T = 0.002s and the initial condition x0 =

[ 0.0 ; 0.2; 0.03; 0.4 ], namely for the energy level H = 0.0778, and the results are given in Figures 2–4.

Note that ∇H(x) can be written in the form of Q(x)x , as given below:

∇H(x) =


x1 + 2x1x2

x2 + x2
1
− x2

2

x3

x4

 = Q(x)x =


1 2x1 0 0

x1 1− x2 0 0

0 0 1 0

0 0 0 1




x1

x2

x3

x4

 . (29)
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Figure 2. Phase portrait of the discrete and continuous x and y variables of the Henon–Heiles system for the discrete

gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).

Hence, Definition 3 yields the following discrete gradient:

∇̄H(xk,xk+1) = Φk [xk+1 + xk]

= 1
4


2 2x1(k + 1) + 2x1(k) 0 0

x1(k + 1) + x1(k) 2− x2(k + 1)− x2(k) 0 0

0 0 1 0

0 0 0 1




x1(k + 1) + x1(k)

x2(k + 1) + x2(k)

x3(k + 1) + x3(k)

x4(k + 1) + x4(k)



= 1
4


2 (x1(k + 1) + x1(k)) + 2 (x1(k + 1) + x1(k)) (x2(k + 1) + x2(k))

(x1(k + 1) + x1(k))
2
+ (2− x2(k + 1)− x2(k)) (x2(k + 1) + x2(k))

x3(k + 1) + x3(k)

x4(k + 1) + x4(k)



,

where

Φk = Φ(xk, xk+1) =
1
4

[
Q(xk+1) +Q(xk)

]

= 1
4


2 2x1(k + 1) + 2x1(k) 0 0

x1(k + 1) + x1(k) 2− x2(k + 1)− x2(k) 0 0

0 0 1 0

0 0 0 1


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Figure 3. Phase portrait of the discrete and continuous x and p x variables of the Henon–Heiles system for the discrete

gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).

and

Q(xk+1) =


1 2x1(k + 1) 0 0

x1(k + 1) 1− x2(k + 1) 0 0

0 0 1 0

0 0 0 1

 , Q(xk) =


1 2x1(k) 0 0

x1(k) 1− x2(k) 0 0

0 0 1 0

0 0 0 1

 .

Thus, the corresponding discrete-time model is obtained as:

xk+1 = [I− T (Jk −Rk )Φk]
−1 [I+ T (Jk −Rk)Φk] xk

xk+1 = [I2 − 0.002Sk]
−1 [I2 + 0.002Sk] xk, (30)

where

Sk = S(k) = (Jk −Rk)Φk = JΦk

= 1
4


0 0 1 0

0 0 0 1

−2 − (2x1(k + 1) + 2x1(k)) 0 0

− (x1(k + 1) + x1(k)) − (2− x2(k + 1)− x2(k)) 0 0


. (31)
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Figure 4. Phase portrait of the discrete and continuous y and p y variables of the Henon–Heiles system for the discrete

gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).

For the realization of this expression, the approximation xk+1
∼= x̂k+1 = F (xk−1)xk is used for xk+1 on the

left-hand side of Eqs. (30) and (32).

Note that after obtaining Q(x), as in Eq. (29), all of the above calculations can be performed in MATLAB

by symbolically writing these expressions:

Φk = Φ(xk, xk+1) =
1
4 [Q(xk+1) +Q(xk)] ,

∇̄H(xk, xk+1) = Φk [xk+1 + xk] ,

xk+1 = [I− T (Jk −Rk )Φk]
−1 [I+ T (Jk −Rk)Φk] xk.

Above, explicit calculations are given to provide the reader better insight.

Likewise, the discrete gradient proposed in Definition 4 is obtained as follows.

Φk = Φ(xk, xk+1) = 1
2Q (x)| xk+1+xk

2

= 1
2Q (xk+1 + xk

2 )
∣∣∣

=


1 x1(k + 1) + x1(k) 0 0
x1(k+1)+x1(k)

2 1−
(

x1(k+1)+x1(k)
2

)
0 0

0 0 1 0

0 0 0 1


161
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∇̄H(xk, xk+1) = Φk [xk+1 + xk]

=


1 x1(k + 1) + x1(k) 0 0
x1(k+1)+x1(k)

2 1−
(

x1(k+1)+x1(k)
2

)
0 0

0 0 1 0
0 0 0 1




x1(k + 1) + x1(k)

x2(k + 1) + x2(k)

x3(k + 1) + x3(k)

x4(k + 1) + x4(k)



=


x1(k + 1) + x1(k) + (x1(k + 1) + x1(k)) (x2(k + 1) + x2(k))

(x1(k+1)+x1(k))
2

2 +
(
1−

(
x1(k+1)+x1(k)

2

))
(x2(k + 1) + x2(k))

x3(k + 1) + x3(k)

x4(k + 1) + x4(k)



Similar calculations can be performed as the one for the previous discrete gradient to obtain the corresponding

discrete-time model, since this discrete gradient yields a discrete-time model in the structure of Eqs. (30) and

(32).

In order to construct the discrete gradient in Definition 5, it is necessary to calculate the Hessian matrix

of the energy function, which is:

HHess =


1 + 2x2 2x1 0 0

2x1 1− 2x2 0 0

0 0 1 0

0 0 0 1

 .

Substituting

HHess(xk) =


1 + 2x2(k) 2x1(k) 0 0

2x1(k) 1− 2x2(k) 0 0

0 0 1 0

0 0 0 1

 and ∇H(xk) =


x1(k) + 2x1(k)x2(k)

x2(k) + x2
1
(k)− x2

2
(k)

x3(k)

x4(k)

 (32)

into Eq. (25) yields

∇H(xk, xk+1) = ∇H(xk) +
1
2HHess(xk) (xk+1 − xk)

=


x1(k) + 2x1(k)x2(k)

x2(k) + x2
1
(k)− x2

2
(k)

x3(k)

x4(k)

+ 1
2


1 + 2x2(k) 2x1(k) 0 0

2x1(k) 1− 2x2(k) 0 0

0 0 1 0

0 0 0 1




x1(k + 1) + x1(k)

x2(k + 1) + x2(k)

x3(k + 1) + x3(k)

x4(k + 1) + x4(k)



=


x1(k) +

1
2x2(k + 1) + 1

2x1(k + 1) + 4x1(k)x2(k) + x1(k)x2(k + 1) + x1(k + 1)x2(k)
3
2x2(k) +

1
2x2(k + 1) + 2x2

1
(k)− 2x2

2
(k) + x1(k)x1(k + 1) + x2(k + 1)x2(k)+

1
2x3(k + 1) + 3

2x3(k)
1
2x4(k + 1) + 3

2x4(k)

 .
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The corresponding discrete-time model is obtained by substituting the expressions given in Eq. (32) for the

Hessian matrix and the gradient of the energy function calculated at time instance k in the system equations:

xk+1 = xk + T

[
I − T

2
(Jk −Rk) HHess(xk)

]−1

(Jk −Rk)∇H(xk),

where Rk = 02x2 and T = 0.002.

Example 3 (double pendulum system)

The double pendulum system shown in Figure 5 is defined with the total energy

H(q,p) =
1

2
pTM−1(q)p+ V (q),

where

M =

[
l21(m1 +m2) m2l1l2cos(q1 − q2)

m2l1l2cos(q1 − q2) l22m2

]
,

V (q) = −(m2l1l2cosq2 + (m1 +m2)gl1cosq1),

with the following dissipation structure matrix:

R =

[
0 0

0 0.5I2

]
.

The system parameters are taken as m1 = m2 = 1 kg, l1 = 0.2m, l2 = 0.3m, and g = 0.98 ms−1 , and the

variables are assigned as q1 = θ1 ,q2 = θ2 . The simulation is carried out with a sampling time of T = 0.005s

and the initial state of x0 = [ 0.5; 0.3; 0.005 ; 0.005 ]. The results are illustrated in Figures 6–8.

θ1

θ2

l1

l2

m1

m2

Figure 5. The double pendulum system.
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Figure 6. Phase portrait of the discrete and continuous q 1 and q 2 variables of the double pendulum system for the

discrete gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).
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Figure 7. Phase portrait of the discrete and continuous q 1 and p 1 variables of the double pendulum systems for the

discrete gradient given in Definition 3 (a), and Definition 4 (b).
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Figure 7. Phase portrait of the discrete and continuous q 1 and p 1 variables of the double pendulum systems for the

discrete gradient given in Definition 5 (c).
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Figure 8. Phase portrait of the discrete and continuous q 2 and p 2 variables of the double pendulum system for the

discrete gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).
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Example 4 (cart and pendulum)

We also consider the cart and pendulum system shown in Figure 9 with

H(q,p) =
1

2
pTM−1(q)p+ V (q),

where

M =

[
ml2 mlcos(q1)

mlcos(q1) Ms +m

]
,

V (q) = mglcos(q1),

where q1 = θ is the pendulum angle from its upright position and q2 = s is the cart position. We assume that

the system has a dissipation structure as follows:

R =

[
0 0

0 R1

]
, R1 =

[
K1 0

0 K2

]
.

The simulation results for system parameters L = 0.2m, Ms = 0.15kg, m = 0.45kg, g = 9.8ms−1 , K1 = 0.02,

K2 = 0.01, initial condition x0 = [0.7; 2.0; 0.005; 0.03], and sampling time T = 0.005s are given in Figures

10–12.

l

q1

+

q2 +

m

M

Figure 9. The cart and pendulum system.
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Figure 10. Phase portrait of the discrete and continuous q 1 and q 2 variables of the double pendulum for the discrete

gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).
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Figure 11. Phase portrait of the discrete and continuous q 1 and p 1 variables of the double pendulum for the discrete

gradient given in Definition 3 (a), and Definition 4 (b).
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Figure 11. Phase portrait of the discrete and continuous q 1 and p 1 variables of the double pendulum for the discrete

gradient given in Definition 5 (c).
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Figure 12. Phase portrait of the discrete and continuous q 2 and p 2 variables of the double pendulum for the discrete

gradient given in Definition 3 (a), Definition 4 (b), and Definition 5 (c).

5. Conclusions

A gradient-based method was presented to achieve the discrete-time modeling of lumped-parameter Hamiltonian

systems, which is convenient to use in engineering applications. The models obtained using the proposed
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method have an energy conservation property whenever the discrete gradient of H(x), i.e. ∇̄H , satisfies the

conditions in Definition 2, and they define the symplectic difference systems when the structure matrices are

in the form of standard skew-symmetric matrix. The discrete gradients used also have the special form given

in Eq. (14) in general. As is already known, preserving the symplectic structure and the energy conservation

property simultaneously is impossible for the general case [11,12]. The first 2 discrete gradients presented here,

Definitions 3 and 4, were defined under the restriction of ∇H(x) = Q(x)x . These 2 slightly different discrete

gradients, which provide models in the same form as in Eq. (15), were proposed with motivation from the mean

value theorem and midpoint concept. The properties of these models were given in Remark 2. Moreover, a

novel discrete gradient definition was offered by taking inspiration from the quadratic approximation lemma.

The related discrete model was given and the analysis of the properties of this model was done. It should be

noted that all of the models proposed are equivalent when the energy function of the Hamiltonian system is in

the form of H(x) = xTZ(x)x with Z(x) = Z , namely a constant n× n matrix. As the expressions are handy

and quite simple in structure, the proposed discrete-time port-Hamiltonian models in the form of Eq. (27) were

successfully used utilizing the 3 proposed discrete gradients, where the explicit models are given by Eq. (19) with

(21) or (23) and (26) in [14–18], and, specifically, [17] presents results of a real application of an overhead crane

system. The simulation results demonstrate that the proposed discrete-time models satisfactorily represent the

continuous time dynamics of the considered class of systems and they are convenient to use for engineering

application purposes.
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