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Abstract: A novel short-term load forecasting method based on the lazy learning (LL) algorithm is proposed. The

LL algorithm’s input data are electrical load information, daily electricity consumption patterns, and temperatures

in a specified region. In order to verify the ability of the proposed method, a load forecasting problem, using the

Pennsylvania-New Jersey-Maryland Interconnection electrical load data, is carried out. Three LL models are proposed:

constant, linear, and mixed models. First, the performances of the 3 developed models are compared using the root

mean square error technique. The best technique is then selected to compete with the state-of-the-art neural network

(NN) load forecasting models. A comparison is made between the performances of the proposed mixed-model LL as the

superior LL model and the radial basis function and multilayer perceptron NN models. The results reveal significant

improvements in the precision and efficiency of the proposed forecasting model when compared with the NN techniques.

Key words: Lazy learning, radial basis function, multilayer perceptron, neural networks, mixed model lazy learning,

electric power load forecasting

1. Introduction

Accurate load forecasting models are essential for the planning and development of power systems. The purchase,

sale, production, and distribution of electrical energy depend on the accurate forecasting of the demand patterns

[1]. Electrical load forecasting techniques are designed for short-term (i.e. from 1 h to 1 week), mid-term (i.e.

from 1 week to 1 year), and long-term (i.e. for more than 1 year) time frames.

Short-term load forecasting is used to determine the capacity and the level of electrical energy provisioning

to meet the expected demand. Automatic generation control and cost-effective load distribution depend on the

accuracy and efficiency of short-term load forecasting. Researchers and practitioners have proposed a wide

range of techniques to forecast short-term electrical loads and demands. The techniques are mostly based on

statistical and time-series analysis [1], learning algorithms, or expert systems [2]. Neural networks (NNs) [3–7],

fuzzy expert systems [8–10], wavelet-based networks [11–13], or a combination of these methods [14–17] are

examples of expert systems that have been investigated for short-term prediction in the literature.

The lazy learning (LL) method is a local learning technique where a prediction is extracted by locally

interpolating the neighboring examples of a received query [18,19]. The query is considered to be related

according to a distance measure. When a prediction for a specific query point is required, a set of local models,

each with a different polynomial degree (i.e. constant, linear, or squared), is defined. The polynomials include
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a different number of neighbors. The generalization ability of each model is then assessed through a local cross-

validation process. A prediction is then obtained either by combining or selecting the different models based on

the statistics of their cross-validation errors. This method has been widely used in many applications, such as

multilabel learning, systems modeling and control [20,21], [22], air quality measurements and predictions [23],

time-series prediction [24–27], and data labeling and filtering [26].

In this paper, a novel LL method using constant, linear, and mixed (linear and constant) models is applied

to predict the electric load of the Pennsylvania-New Jersey-Maryland (PJM) Interconnection for the 2005–2007

period. The PJM Interconnection is a regional US transmission organization that coordinates the movement of

wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey,

North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District of Columbia [28].

The data available for the year 2001 through to the first half of 2004 are used to train the model. Short-term

load forecasting is performed for the following 2 years (i.e. 2005 and 2006). Finally, a comparison is made

between the simulation results of the 3 proposed LL methods with that of the existing radial basis function

(RBF) and multilayer perceptron (MLP) NN techniques. All of the simulations are performed in the MATLAB

environment.

In the following section, the LL algorithm is introduced. In Section 3, important factors in electric load

forecasting are discussed. Application of the LL method to the short-term load forecasting and simulation

results are discussed in Section 4. Section 5 is dedicated to a comparison of the proposed method with the RBF

and MLP NN techniques. Conclusions of this research are discussed in Section 6.

2. The LL algorithm

LL suspends all of the computations until an explicit request for a prediction is received. Once a request is

made, LL interpolates the local samples. The interpolation is conducted including the relevant samples and

in accordance with a specified distance measure. Each prediction therefore requires a local modeling process

consisting of a parametric and a structural identification [18,29]. The parametric identification involves the

parameters’ optimization process of the local approximation, and the structural identification involves the

selection of [27,30]:

• a family of local approximations,

• a metric to evaluate and select the relevant samples, and

• a bandwidth by indicating the size of the region.

The structural identification determines whether the data are correctly modeled from the members of the

chosen family of approximations. In other words, when a prediction is required for a specific query point, a set

of local models is identified, each with a different polynomial degree and different number of neighbors. The

suitability of each model is then assessed through a local cross-validation process. The local model can be built

around the points where the approximation is requested. Finally, a prediction is obtained either by combining

or selecting the different models based on the cross-validation error statistics of the models.

The least square error is normally used for identification of the local models. The key advantage of the

LL models is in their simplicity and low computational requirements.
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2.1. Local weighted regression

Consider 2 variables and y ∈ R , where the mapping f : Rm → R , is known only through a set of n samples,

obtained as follows:
yi = f(xi) + εi, (1)

where ∀i, εi is a random variable, such that E[εi] = 0 and E[εi εj ] = 0, ∀j ̸= i (E denotes the expectation

operator), E[εri ] = µ(xi), ∀r ≥ 2, and µr(.) is the unknown r th moment of the distribution of εi that is

defined as a function of xi . The problem of local regression can be stated as the problem of estimating the

value that the regression function,f(x) = E[y |x] , assumes for a specific query point xq , using the information

pertaining only to a neighborhood of x.

For example, for a polynomial of degree 1, given a query point xq , the parameters β1 of a local first-

degree polynomial approximating f(.) in the neighborhood of the query point can be obtained by solving the

following local polynomial regression:

n∑
i=1

{(yi − x
′

1,iβ1)
2K(

D(xi, xq)

h
)}, (2)

where given a metric on the space Rm , D(xi, xq) is the distance from the query point to the ith sample, K(.)

a weight function, and hthe bandwidth. The vectors x1,i can be obtained by preappending a constant value of

1 to each vector as a constant in the regression. The matrix from the above solution for the stated weighted

least square problem is expressed by Eq. (3):

⌢

β 1 = (X
′

1W
′
WX1)

−1X
′

1W
′
Wy = (ZTZ)−1ZT v = V ZT v, (3)

where X is a matrix in which the ith row is x(i)T ; y is a vector in which the ith element is y(i); W is a

diagonal matrix in which the ith diagonal element is Wii =
√
K(D(xi, xq)/h), Z = WX , v = Wy ; and the

matrix XTWTWX = ZTZ is assumed to be nonsingular, so that V = (ZTZ)−1 can be defined.

Once obtained, the local first-degree polynomial approximation, a prediction of yq = f(xq), is finally

given by:

⌢
y 1,q = x

′

1,q

⌢

β 1. (4)

This process is summarized in Figure 1, where the RLSE denotes the relative least square error.
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Figure 1. The LL process.
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2.2. Local mode generation

The principle aim of the model is to generate a set of suitable candidate model structures for our problem.

Traditionally, there have been a number of popular ways to search for the best model from a large collection

of model structures. Maron and Moore [31] distinguished between 2 main categories of the model generation

procedure: 1) brute force methods, which require a heavy computational effort to perform an exhaustive search

in the space of model structures, and 2) search methods, which generate a number of possible candidates within

a space defined with respect to some structural parameter, e.g., the number of neurons in a feedforward NN or

the number of basis functions in a block-feedback NN.

The problem of local structural identification can be considered as a problem of bandwidth selection.

Subsequently, the problem of bandwidth selection can be described as a search problem in the space of B(k),

so that the number of neighbors lies between km and kM , where the latter is the minimum and the former is

the maximum neighborhood area.

By specifying the range of quantity k over the interval [km, kM ] , the local model generation process

returns a set of local models where the parameters of the model are fit in the set of neighbors within the

bandwidth B(k).

Both the constant and linear model generation are applied to the situations where parametric identifica-

tion is conducted using Eq. (5):

⌢
y q =

N∑
i=1

K(xi, q, B)yi

N∑
i=1

K(xi, q, B)

, (5)

where N is the number of samples in the training set. Figures 2a and 2b show the constant and linear fitting

models, respectively. In the constant model, constant parameters are used for modeling, while in the linear

model, a linear fitting is employed.

2.3. Recursive least squares for model generation

The adoption of recursive least square (RLS) algorithms for model identification and adaptive control systems

was explained in [32]. The LL procedure does not include a temporal sequence. In order to provide a spatial

sequence in linear models, RLS is deployed when observations are made at specific time intervals rather than

in batches. The query neighbors are sorted according to the distance d(xi, q).

(a) (b)
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Figure 2. The constant (a) and linear (b) model’s generations for different numbers of neighbors.
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By using the sorted neighbors, a standard RLS can be used to obtain the parameters of the model that

are fitted on the k+1 nearest neighbors by updating the parameters of the model with k samples. Note that

the RLS is not used here to update a model from time t to time t+1. With this concept, one can describe this

method as RLSs in space, as opposed to the more traditional RLSs in time. The main assumption to be made

for using a recursive approach in the local model generation is the adoption of a uniform weight kernel function,

expressed as:

K(xi, q, B) =

{
1 d(xi, q) ≤ B

0 others
. (6)

The main advantage for adopting the weighting kernel function is using a direct method to obtain the parameters

for the model with the k+1 as the nearest neighbors by simply updating the parameters of the estimated model

using theknearest neighbors. For the constant LL (CLL) model, the RLS can be defined as:

⌢
y

c

q(k + 1) =
k

⌢
y

c

q(k) + y(k + 1)

k + 1
. (7)

Considering the linear LL (LLL) model, let
⌢

β (k) be the least square vector of parameters
⌢

β identified with

kneighbors in Eq. (3). The RLS algorithm allows for an efficient way to identify the vector
⌢

β (k + 1), using

the k+1 nearest neighbors. This is achieved on the basis that the vector
⌢

β (k) is estimated by the k nearest

neighbors.

By implementing one step of the standard RLS algorithm, one can obtain the following:

V (k + 1) = V (k)− V (k)x(k+1)xT (k+1)V (k)
1+xT (k+1)V (k)x(k+1)

,

γ(k + 1) = V (k + 1)x(k + 1),

e(k + 1) = y(k + 1)− xT (k + 1)
⌢

β(k),
⌢

β(k + 1) =
⌢

β(k) + γ(k + 1)e(k + 1),

⌢
y
l

q(k + 1) = qT
⌢

β(k + 1),

(8)

where V (k) = (ZTZ)−1 , x(k + 1) is the (k+1 )th nearest neighbors of the query point, and
⌢
y

l

q(k) represents

the predicted query point returned by a linear model estimated on the basis of the k nearest neighbors.

3. Important factors in electric load forecasting

The electric load of a system may be influenced by a number of factors that can be categorized into 4 categories

[32,33]:

1. Long-term socioeconomic factors (i.e. growth-contraction, price fluctuation, and demographics),

2. Time factors (i.e. demand patterns due to seasonal, peak, or off-peak weekly consumptions),

3. Weather and climate factors (i.e. weather, humidity, or environmental and climate changes), and

4. Other random events (mean time between failures, down times, and sudden and unplanned changes in

consumption patterns).

Obtaining all of the data is important in achieving an accurate load forecasting.
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4. Application of the LL method to short-term load forecasting

As previously mentioned, electrical short-term load forecasting plays a decisive role in the planning, cost-saving,

and improvement of the security operation condition of a power system. LL, as introduced in Section 2, has

been shown to be viable for nonlinear time series prediction and, in particular, for electrical short-term load

forecasting. The strengths of the LL approach in load forecasting are its predictive accuracy, its fast design,

the easy model update procedure, and the readability of the model structure.

In this study, the CLL, LLL, and mixed-model LL (MLL) methods, the last of which is a combination of

the CLL and LLL methods, for short-term electrical load forecasting are discussed. In the proposed method, at

least one important factor in each category of load forecasting mentioned in Section 3 is considered. The obtained

data are processed and analyzed statistically. The adopted factors are price fluctuation; seasonal, week-day, and

week-end demand patterns; and the temperature profile of the working environment. The correlation factors

between these factors and the electrical load are then integrated into a weight matrix in the LL forecasting

models.

In the following subsection, first the CLL and LLL methods are described, and then the MLL method

for short-term load is employed for electrical load forecasting.

4.1. imulation and discussions of the proposed CLL, LLL, and MLL methods

To evaluate the proposed method, the hourly electrical load data extracted from the PJM system are used.

Each obtained data point can be considered as a point in the multidimensional Rm space. The electric power

load data at each hour is denoted as y (output), as shown in Figure 3.

The available data for a 4-year period are used as the training set. The information about the following 2

years is used for model validation purposes. The data and their associated weights obtained by the correlation

analysis algorithm described previously are fed into the CLL, LLL, and MLL models. Figures 4–7 show sample

results of the proposed methods and provide a comparison of the forecast results of the 3 models.

In all of the figures, the red dotted line shows the actual load, the gray line shows the prediction results

obtained by the CLL, the blue line plots the LLL results, and the black solid line shows the load forecasting

result for the MLL model, where the demand values are divided by 10,000 MW. Table 1 demonstrates the root

mean square error (RMSE) for the resultant load forecast values of the 3 models. Table 1 reveals that the MLL

model provides a more accurate forecast of the electric power load compared with the CLL and the LLL models.

However, the accuracy of the MLL forecast model depends on the best levels-of-mix of the constant and linear

methods. The proposed MLL model is selected in this paper as the superior LL technique to compete with the

state-of-the-art RBF and MLP NN techniques for electrical power load forecasting.
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Load peaks 

 

Seasonal 
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Figure 3. Load forecasting scheme via LL.
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Figure 4. Electrical load forecast for the first week of

autumn 2005.

Figure 5. Electrical load forecast for the first week of

summer 2005.
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Figure 6. Electrical load forecast for the first week of

spring 2006.

Figure 7. Electrical load forecast for the first week of

winter 2007.

Table 1. RMSE for different load forecasts.

Method/week Autumn 2005 Summer 2005 Spring 2006 Winter 2007
CLL 3.752% 3.638% 3.507% 6.407%
LLL 3.420% 3.036% 3.205% 5.673%
MLL 3.402% 2.983% 2.341% 4.015%

5. Comparison of the MLL and NN-based approaches

In this section, the simulation results from the proposed MLL are compared with those of the RBF and MLP

NN models. NNs have been widely applied for the purpose of electrical load forecasting [5–7,34–36]. RBF

NNs adopt RBFs as activation functions [37,38]. RBF NNs have been adopted for function approximation [39],

time-series prediction [36], and control systems.

In addition to the actual values (observed) of the electrical power load, Figure 8 displays the electrical

power load forecast by both the RBF NN technique and the proposed MLL for the first day of June 2007. The

RMSEs against the actual values of the load are 7.397% for RBF and 2.182% for MLL at the same computational

rate (see Table 2). The results of the simulation show a 5.215% improvement in the accuracy of the electrical

power load forecasting by the proposed MLL. Comparing the MLP NN [40,41] with the MLL, the RMSE is also

reduced by 5.217%, showing a good improvement in the accuracy of the forecasting technique (see Figure 9 and

Table 2). Moreover, the computation time for the proposed MLL technique is 5 times faster than the existing

MLP NN technique.

The results of the simulation run, RMSE values, and simulation run times for the 5 tested techniques are

reported in Table 2. The simulation time is measured based on a 3.3-GHz Pentium 5 processor.

Figure 10 shows the differences between the RMSE of the forecast values against the actual electric power
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load of the 5 discussed techniques for a typical week in April 2007. The results are proof of the superiority of

the proposed MLL method against the other 4 methods, i.e. LLL, CLL, RBF NN, and MP NN.
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Figure 8. Comparison of the proposed MLL method and the RBF NN for a) the first day of June and b) the third

week of April 2007.
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Figure 9. Comparison of the proposed method and the MLP NN (first day of January 2007).
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Figure 10. Comparison of the RMSE values of the proposed methods, RBF, and MLP (third week of April 2007).

6. Conclusion

A novel method based on the LL algorithm is proposed in this paper to forecast short-term electrical power

loads. Each hourly load is assigned to a point where the state space is determined by the influencing factors

of the daily demand on electricity. A weight matrix is derived based on the correlations between these factors

and the load demand (inputs). The inputs are then fed into the lazy predictor using the derived weighting

matrix. The proposed LL models are implemented and compared with the prevalent RBF NN and MLP NN

load forecasting models.
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Table 2. Detailed values of different load forecasting methods on the first day of January 2007.

Forecasted load (MW) Actual load
Hour CLL LLL MLL RBF MLP (MW)
1 70,658 67,027 65,699 67,560 67,560 64,037
2 69,192 65,112 62,659 64,871 64,871 62,040
3 68,225 63,849 60,583 63,392 63,392 61,196
4 67,831 63,198 59,906 63,004 63,004 60,973
5 68,402 63,930 59,774 64,115 64,115 61,098
6 69,955 65,447 61,373 67,613 67,613 63,343
7 72,331 67,728 64,538 73,300 73,300 66,548
8 74,971 70,275 68,780 76,990 76,990 71,411
9 77,909 72,670 72,580 79,510 79,510 73,733
10 79,054 74,503 75,358 80,549 80,549 74,758
11 79,540 75,754 76,149 80,651 80,651 74,918
12 79,181 76,053 76,042 79,641 79,641 74,213
13 78,396 75,657 75,288 78,321 78,321 73,329
14 77,375 74,991 74,167 77,251 77,251 72,701
15 76,575 74,440 73,032 76,185 76,185 71,160
16 76,235 74,288 72,381 75,714 75,714 70,385
17 76,261 74,641 72,481 79,277 79,277 70,362
18 77,514 75,246 73,794 86,316 86,316 71,082
19 79,873 75,832 76,296 87,161 87,161 72,316
20 81,597 76,568 77,864 86,756 86,756 74,692
21 81,849 77,108 78,139 85,794 85,794 75,091
22 80,968 76,821 76,925 82,623 82,623 73,845
23 80,023 76,055 74,077 77,735 77,735 71,383
24 71,547 69,864 68,175 71,667 71,667 65,126
RMSE 6.194% 2.858% 2.182% 7.397% 7.399% —
Simulation
time (s) 12.5 12.5 12.5 13 120 —

The simulation results show a significant improvement in both reduced RMSE and computational speed.

An overall 5% improvement in the accuracy of load forecasting using the MLL technique compared with the

RBF and MLP NN techniques has been achieved. A further improvement is observed in the computation rate

of the proposed MLL technique. It is 5 times faster than the MLP NN technique.
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