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Abstract: The main objective of this manuscript is to design a high-order sliding-mode observer to provide finite time

estimation of unmeasurable states (x4 : oxygen mass, x5 : nitrogen mass) together with the oxygen excess ratio (ratio of

the input oxygen flow to the reacted oxygen flow in the cathode). This is done by applying second-order sliding modes

through either super twisting or suboptimal controllers to control the proton exchange membrane fuel cell’s breathing.

The estimated oxygen excess ratio is controlled in a closed-loop system using 2 distinct sliding-mode approaches: a

cascaded super twisting controller and a single-loop suboptimal structure. Simulation results are presented to make

a quantitative comparison between the cascade and the single-loop configuration. The results verify that the cascade

provides accurate reference tracking while the single-loop presents faster convergence.

Key words: Proton exchange membrane fuel cell, oxygen excess ratio, high-order sliding-mode observer, cascade control,

second-order sliding mode

1. Introduction

A fuel cell is an electrochemical device to convert chemical energy into electrical energy with thermal dissipation

[1]. In comparison with regular power resources, this offers several advantages, such as high efficiency and a

flexible modular structure [2]. However, as a drawback, the reaction time constant is dominated by temperature

and oxygen starvation during rapid load transients [3]. Therefore, the proton exchange membrane fuel cell

(PEMFC) performance is closely related to the type of control system.

Oxygen starvation is a complicated phenomenon that causes a rapid decrease in the cell voltage, which

creates hot spots in severe cases or even burns the surface of the membrane. Pukrushpan et al. [4,5] reported

that acceptable amounts for the oxygen excess ratio (λO2) are within 2–2.4 based on the stack power. Therefore,

it must be regulated around the constant value to cope with the oxygen starvation. This may be fulfilled through

control of the oxygen-providing mechanism, i.e. the compressor PEMFC, to achieve a satisfactory performance.

As a necessary condition, the dynamic response of the compressor motor controller has to be fast.

Recently, several control strategies were proposed for PEMFC systems. Among them, feedback lineariza-

tion [6–8], feed forward control [5,9], sliding-mode control [10], and the super twisting algorithm with and

without feedforward control [11,12] are such important and efficient techniques. Although an air mass flow

sensor may be used to assess the oxygen excess ratio, it ruins the performance. This is because its time re-
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sponse is about 1–2 s, which produces a long delay in the controller. The most common interest in [11–13] was

using the airflow sensor specifically in a real-time application. However, sensor-based control has the following

shortcomings:

• Slow response time (1–2 s),

• Short life time (6 months to 3 years),

• Less accuracy (1%–10%),

• Price (US$1000),

• Inevitable instrumental noise.

These restrictions are also applicable when the oxygen excess ratio is controlled through an inlet oxygen

flow in the cathode (WO2,in) measurement. Therefore, a sensorless approach is of interest in the current work.

Talj et al. [14], in 2009, used a cascade structure for a PEMFC. Although their work had the advantages of a

high-order sliding-mode (HOSM) controller, it again faced the following restrictions:

1. Sensor-based scheme has the above-mentioned drawbacks.

2. Instrumentation lag occurs in the overall system dynamic.

3. Since a nonsmooth input signal is generated to drive the motor, a ripple on the angular speed and then a

ripple on the air flow are produced.

In the meantime, another cascade configuration was implemented by Matraji and Laghrouche [15]. A

pressure and voltage transducer works with a fast time response, e.g., less than 1 ms. However, the air flow

measurement needs a longer time lag of 1–2 s, which produces more lag on the system time response. This lag

complicates the dynamic characteristics, especially when a sudden change in the load takes place. Since this

effect is sensed after the prescribed lag, more force will act on the fuel cell and burn the membrane electrode

assembly. Consequently, a finite time observer is required to estimate the oxygen excess ratio and some other

unavailable states to improve the efficiency of the closed-loop system, and, in order to improve the dynamic

response of a closed-loop feedback, a Kalman filter was used in [5,9]. In these works, primarily, the system is

linearized about the operating point. Next, a Kalman observer is designed in the closed loop based on state

feedback. However, the Kalman observer needs a linearized model with high accuracy that is still sensitive to

uncertainties. This problem may be solved using Luenberger observers in state estimation [9,16]. In [17,18], a

first-order sliding-mode observer was designed to estimate the states of a PEMFC system. The sliding-mode

observer was based on a nonlinear model since it is robust to mismatched modeling errors and uncertainties.

Unfortunately, the first-order sliding-mode approach has the following disadvantages [19]:

• For observation, filtering is needed, which corrupts the results.

• The need for filtering in the observation process destroys the finite time convergence property.

Furthermore, special attention must be paid to keeping the separation principle valid during the desig-

nation. In the current research, a finite time observer based on high-order sliding mode is proposed to estimate

the oxygen excess ratio and some other relevant system states. A sixth-order model of the PEMFC system
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is considered. The measured outputs are the compressor angular speed and the supply and return manifold

pressures. The load current and input DC motor voltage are considered as the measured disturbance and control

input, respectively. The observer control inputs are then constructed through a proper high-order sliding-mode

algorithm. It will be shown that the state variables are estimated in finite time without the need for filtering

or transformation in a regular form to ensure satisfaction of the separation principle.

The estimated oxygen excess ratio is then manipulated by 2 control approaches. Both control approaches

propose to regulate the compressor supply voltage, vcm , using sliding-mode control. The first approach uses

2 cascaded loops of second-order sliding mode (SOSM) based on a super twisting controller. This structure

provides good tracking performance under large uncertainty of the motor parameters, fuel cell coefficients,

and load current. The second approach uses a suboptimal controller in a single-loop structure. To verify

the performance of the cascade structure, a comparison is made with respect to the suboptimal controller.

Ultimately, the super twisting controller provides stability of the cascade structure. In order to address the

above topics, this paper is organized as follows: A nonlinear model of the PEMFC is briefly introduced in

Section 2. An observer is designed for a PEMFC system in Section 3, while the overall structure of the control

scheme is designed in Section 4. In Section 5, simulation results are given to show the performance of the

proposed scheme. Finally, a conclusion is given in Section 6.

2. Nonlinear dynamic of the PEMFC

A nonlinear model of a PEMFC stack in combination with some auxiliary equipment will be developed.

Auxiliaries contain models of the compressor, air supply manifold, cathode humidifier, and fuel cell stack

channels. Primarily, a ninth-order nonlinear model of the fuel cell system is considered [4,5,9]. This model

describes the details of 75-kW fuel cell stack dynamics, fed by a 14-kW motor compressor.

2.1. Assumptions within the model

It is assumed that the fuel cell works under normal conditions. During normal conditions, the following

assumptions are made. A1: The anode pressure is assumed to be constant. A2: The operating temperature

and humidity of the air at the inlet of the fuel cell stack are constant. A3: Electric dynamics of the DC motor

driving the compressor are also neglected. It should be noted that independent loops keep these assumptions

valid.

The ninth-order model [4,5,9] is more complex and includes interactions (even if negligible) between 9

states, which makes the control harder. Therefore, order reduction from the ninth to sixth order usually takes

place, e.g., as in [11] and [20]. Under the above assumptions, the model is reduced from the ninth order to

the sixth while considering the states x = [ωcp Psm msm mO2 mN2 Prm]
T
, whereas the concerned variables

are defined in Table 1. These interconnections are theoretically investigated [4–8,11,13,21–23] such that the

following compact form of the nonlinear state is derived. It is worth noting that the accuracy of the model is

verified by comparing it with those in [11].

ẋ1 = τcm − τcp =
ηcm
Jcp

kt
Rcm

(vcm − kvx1)−
τcp
Jcp

(1)

ẋ2 = γRa

Vsm
(−Ksm,outx2 +Ksm,outPv,ca +Ksm,out

x5

MN2

(RN2Tst)
Vca

+Ksm,out
x4

MO2

(RO2Tst)
Vca

)γx2

x3
+Wcp(Tatm + Tatm

ηcp
( x2

Patm
)

γ−1
γ − 1))

(2)
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Table 1. Key variables’ descriptions.

State definition Unit Expresses
x1 = ωcp rad/s Angular speed of the compressor
x2 = Psm Pa Supply manifold pressure
x3 = msm kg Supply manifold air mass
x4 = mO2 kg Oxygen mass at the cathode side
x5 = mN2 kg Nitrogen mass at the cathode side
x6 = Prm Pa Return manifold pressure
u = vcm V Compressor supply voltage; plant input
d = Ist A Stack current; measurable disturbance.

ẋ3 = Wcp −Ksm,outx2 +Ksm,outPv,ca +Ksm,out
x5

MN2

(RN2Tst)

Vca
+Ksm,out

x4

MO2

(RO2Tst)

Vca
(3)

ẋ4 = − x4

x4+x5+
Pv,caVcaMv

RvTst

Kca,out(−x6 + Pv,ca +
x5

MN2

(RN2Tst)
Vca

+ x4

MO2

(RO2Tst)
Vca

)

+yO2,inKsm,out(x2 − x4

MO2

(RO2Tst)
Vca

− Pv,ca − x5

MN2

(RN2Tst)
Vca

)− nMO2

4 F Ist

(4)

ẋ5 = (1−XO2,in)(1+Ωatm)−1Ksm,out(x2 − x4

MO2

RO2Tst

Vca
− x5

MN2

RN2Tst

Vca
− Pv,ca)

− x5

x4+x5+
Pv,caVcaMv

RvTst

Kca,out(−x6 +
x4

MO2

RO2Tst

Vca
+ x5

MN2

RN2Tst

Vca
+ Pv,ca)

(5)

ẋ6 = RaTrm

Vrm
(Kca,out(

x4

MO2

RO2Tst

Vca
+ x5

MN2

RN2Tst

Vca
+ Pv,ca − x6)

−(Pa6x
5
6 + Pa5x

4
6 + Pa4x

3
6 + Pa3x

2
6 + Pa2x6 + Pa1))

(6)

Here, τcm is the accelerating torque provided by the motor and τcp is the load torque, as in the following [22]:

τcp =
π

30
(A0 +A1x1 +A00 +A10x1 +A20(x1)

2 +A01x2 +A11x2x1 +A02(x2)
2)), (7)

where Wcp in Eq. (3) is the compressor air flow rate that depends on the compressor speed and the supply

manifold pressure according to the following [22]:

Wcp = B00 +B10x2 +B20(x2)
2 +B01x1 +B11x2x1 +B02(x1)

2, (8)

where Matm
a = yO2,inMO2 + (1 − yO2,in)MN2 is the molar mass of the air and Pv,ca =

mv,ca,maxRvTst

Vca
stands

for the vapor pressure in the cathode. The humidity ratio is defined by Ωatm = Mv

Matm
a

ΦatmPsat,Tatm

Patm
(1 −

ΦatmPsat,Tatm

Patm
)−1 . Reference values for the PEMFC model parameters are given in Tables 2, 3, and 4. Eqs.

(1)–(6) can be written in the following general form, where x ∈ R6 is the system state and f ∈ R6 → R6 is a

continuous vector function representing the dynamics of the autonomous system.

ẋ =



f1(x1, x2)

f2(x1, x2, x3, x4, x5)

f3(x1, x2, x4, x5)

f4(x2, x4, x5, x6)

f5(x2, x4, x5, x6)

f6(x4, x5, x6)


+



ηcm
kt

JcpRcm

0

0

0

0

0


vcm +



0

0

0

−nMO2

4 F

0

0


Ist (9)
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Table 2. General parameters in the modeling of PEMFC.

Parameter Symbol SI units Value

Atmospheric pressure Patm Pa 101,325

Average ambient air relative humidity Φatm −− 0. 5

Saturation pressure Psat,Tatm Pa 3.1404× 103

Atmospheric temperature Tatm K 298. 15

Air-specific heat ratio γ −− 1. 4

Air density Cp J kg−1K−1 1004

Universal gas constant R J mol−1K−1 8. 31451

Air gas constant Ra J mol−1K−1 286. 9

Oxygen gas constant RO2 J kg−1K−1 259. 8

Nitrogen gas constant RN2 J kg−1K−1 296. 8

Vapor gas constant Rv J kg−1K−1 461. 5

Molar mass of air Ma kg/mol 28.97× 10−3

Molar mass of oxygen MO2 kg/mol 32× 10−3

Molar mass of nitrogen MN2 kg/mol 28× 10−3

Molar mass of vapor Mv kg/mol 18.02× 10−3

Faraday’s constant F C/mol 96,487

Temperature of the fuel cell Tfc K 353

Table 3. Input parameters in the modeling of the PEMFC.

Parameter Symbol SI units Value

Motor constant Kt Nm/A 0. 0153

Motor constant Rcm ohm 0. 82

Motor constant Kv V/ (rad/s) 0. 0153

Compressor efficiency ηcp −− 0. 8

Compressor motor mechanical efficiency ηcm −− 0. 98

Number of cells in fuel cell stack n −− 381

Fuel cell active area Afc m2 280× 10−4

Supply manifold volume Vsm m3 0. 02

Single stack cathode volume Vca m3 0. 005

Return manifold volume Vrm m3 0. 005

Supply manifold outlet orifice constant Ksm,out kg s−1 Pa−1 0.3629× 10−5

Cathode outlet orifice constant Kca,out kg s−1 Pa−1 0.2177× 10−5

Compressor diameter dc m 0. 2286

Compressor and motor inertia Jcp Nm 2× 10−7

Oxygen mole fraction at cathode inlet yO2,in −− 0. 21

3. HOSM observer for a PEMFC

3.1. Observer objective

The starvation phenomenon is an undesired issue that leads to the aging and degeneration of the fuel cell stack.

Starvation takes place during transient changes in the stack current while reactants are consumed faster than
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they are supplied, causing a severe decrease in the air flow in the cathode side. The best way to avoid oxygen

starvation is fast regulation of the oxygen excess ratio through increasing the air mass flow in the cathode.

Thus, the compressor must present a fast response against rapid variations in the load current. As a control

objective, having accurate knowledge of the value of λO2 is required. It depends on the ratio of 2 mass flows

of inlet (WO2,in) and reacting (WO2,reacted) oxygen in the cathode side [10–12]. The oxygen excess ratio is

defined via the following equation:

λO2=
OxygenSupplied

Oxygenreacted
=

WO2,in

WO2,reacted
. (10)

One way to calculate λO2 is by measuring inlet oxygen mass flow. Accordingly, the data must be acquired

through sensors. However, practical mass flow measurement causes a time delay of about 1–2 s. Furthermore,

available commercial mass flow meters are based on volumetric measurement, which is dependent on the liquid

temperature. These direct methods have some restrictions in practical applications. The other way to evaluate

λO2 is to calculate the inlet and reacting oxygen mass flow through Eqs. (11) and (12). The reacting oxygen

flow in the fuel cell stack is directly relevant to the measured stack current (Ist) [10]. Thus, it is calculated

through Eq. (11).

WO2,reacted = n
MO2

4 F
Ist (11)

However, computation of the inlet oxygen flow is not straightforward, as it depends on states x2, x4 , andx5 .

Meanwhile, WO2,in is calculated via Eq. (12) as:

WO2,in = XO2,in
1

(1 + Ωatm)
Ksm,out(x2 −

x4

MO2

RO2Tst

Vca
− x5

MN2

RN2Tst

Vca
− Pv,ca). (12)

A substitution of Eqs. (11) and (12) into Eq. (10) immediately yields λO2 . Governing constant parameters

are defined in Tables 2–4. According to calculation of λO2 , it is seen that λO2 is related to the unmeasurable

states x4 and x5 . In this paper, due to the measurement problem of λO2 , the unavailable states are estimated

using an observer. Thus, a fast estimation of the air mass flow is required.

Table 4. Polynomial coefficients of equations.

B00 4.83× 10−5kg/sec Pa6 0. 07804 A00 0

B10 −5.42× 10−5kg
/
sec2 Pa5 0. 02772 A10 0.0058Nm sec

B20 8.79× 10−6kg
/
sec3 Pa4 0. 002122 A20 −0.0013Nm sec2

B01 3.49× 10−7kg/sec
2/
bar Pa3 −0.001524 A01 3.25× 10−6Nm/bar

B11 3.55× 10−13kg/sec Pa2 −0.001967 A11 −2.80× 10−6Nm sec /bar

B02 −4.11× 10−10kg/sec/bar Pa1 0. 001248 A02 −1.37× 10−9Nm sec /bar2

A0 4.1× 10−4Nm A1 3.92× 10−6Nm sec

3.2. Observability design requirements

The main aim of implementing an observer in our research is to estimate the oxygen and nitrogen masses at the

cathode side, which form the oxygen excess ratio. Meanwhile, the HOSM observer estimates the oxygen excess

ratio using pressure and angular speed measurements, as shown in Figure 1. Its observability is evaluated when
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the compressor angular speed, supply, and return manifold pressures are regarded as measurable outputs and

the stack current as a disturbance. Since these signals are usually available and easily measured, an output

transformation for the system in Eq. (9) is applied as follows:

d=Ist

Disturbance

Compre s s or

 
1 cpx ω=

Ang ula r 
Motor S pe e d

X2=Ps m

X3=Ms m

X4=Mo2
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X6=Prm

HOS M_Obs e rve r

PEM Fue l Ce ll 
S ys te m
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+
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Figure 1. Plant with the observer configuration.

y = h(x) =

 h1(x)
h2(x)
h3(x)

 = Cx,C = [1 0 0 0 0 0 ; 0 1 0 0 0 0 ; 0 0 0 0 0 1]
T
. (13)

The observability needs the rank of the following matrix with a size of 12 × 6 to be of full rank.

Osq(x̂) =

([
dh1, · · · , dLr1−1

f h1, dh2, · · · , dLr2−1
f h2, dh3, · · · , dLr3−1

f h3

]T)
12×6

3∑
i=1

ri = 6, 0 ≤ ri ≤ 6, i = 1, 2, 3

(14)

With reference to a generic scalar function, hi with vector argument x is defined on an open set Ω ∈ Rn and

hi : R
n → R, where dhi denotes: dhi =

dhi

dx = [ dhi

dx1
, dhi

dx2
, ..., dhi

dxn
] . Lfhi is called the Lie derivative along f(x)

[24]. Due to the complexity of the defining system dynamics in Eqs. (1)–(6), the analytical evaluation of the

rank of matrices in Eq. (14) appears to be an exhausting job. Accordingly, the rank of all possible submatrices

is assessed. These are provided by any proper combination of rows in Eq. (14) in set M of the system state,

including operation conditions, in the presence of possible admissible perturbations.

M =
{
x ∈ R6 : |xi − x∗

i | < Mi, i =1,2,...,6
}

(15)

Here, Mi(i =1,2,...,6) are known positive constants. Bound xi can be found from prior knowledge of the

system. For instance, the current can be increased up to Ist ≤ 250[A] , 5000 ≤ x1 ≤ 12000[rad/ sec], 1.4×105 ≤
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x2 ≤ 3.2 × 105[Pa], 0.025 ≤ x3 ≤ 0.05[kg], 1 × 10−3 ≤ x4 ≤ 3.5 × 10−3[kg], 0.006 ≤ x5 ≤ 0.022[kg] , and

1.2× 105 ≤ x6 ≤ 2.6× 105[Pa] .

Therefore, an alternative analytical approach is chosen to numerically assess the operation set M to find

the minimum determinant of each square submatrix in Eq. (17). This means a solution for the following

minimization problem:

J(xopt) = min
x∈M

J(x), J(x) =
2

det(Osq(x̂)) ̸= 0, (16)

where det stands for the determinant. To guarantee possible numerical, singularities are avoided, i.e. the

precision is chosen to be large enough. If J(xopt) is sufficiently far from 0, then the system of Eqs. (1)–(6) with

the output in Eq. (13) are observable for any x ∈ M . As a result, the following reduced square observability

matrix is found as nonsingular.

Osq(x̂) =
[
dh1, dh2, dLfh2, dh3, dLfh3, dL

2
fh3

]T
(6×6)

(17)

This means that states can be estimated through a properly designed observer. The matrix in Eq. (17) is full

rank in a sufficiently large set of working conditions. In the second stage, the minimum of Eq. (17) is assessed

to verify the achievement, where the minimum of the index in Eq. (16) is listed in Table 5 for different randomly

chosen starting conditions. An observer is inspired by Eq. (9) with scalar output y ∈ R, y = h(x). It is designed

using the model including an extra additive output injection term. The acting observer dynamic is written as

follows:

Table 5. Resuming for minimization.

Starting points
Minimized value

J(x) = det2(Osq(x̂))

x1(0) = 5100;x2(0) = 1.48× 105;x3(0) = 0.03;x4(0) = 1.2× 10−3;x5(0) = 0.008;x6(0) = 1.28× 105 fmin = 6.8472× 1046

x1(0) = 8100;x2(0) = 1.97× 105;x3(0) = 0.06;x4(0) = 1.7× 10−3;x5(0) = 0.01;x6(0) = 1.77× 105 fmin = 1.5350× 1047

x1(0) = 11100;x2(0) = 0.49× 105;x3(0) = 0.1;x4(0) = 2.7× 10−3;x5(0) = 0.09;x6(0) = 2.46× 105 fmin = 4.9088× 1039

x1(0) = 500;x2(0) = 5.42× 105;x3(0) = 0.03;x4(0) = 1.2× 10−3;x5(0) = 0.8;x6(0) = 4.24× 105 fmin = 2.0368× 1052

˙̂x = f(x̂) + gu+G(x̂) v, ŷ = h(x̂), (18)

where vector G(x̂) is the inverse of the last column of the observability matrix in Eq. (22). An output and

state estimation error is defined by:

ε̄ = ŷ − y = h(x̂)− h(x), ex = x̂− x, (19)

ε̄(j) = Lj
f(x̂)h(x̂)− Lj

f(x)h(x), 1 ≤ j ≤ n− 1

ε̄(n) = Ln
f(x̂)h(x̂)− Ln

f(x)h(x) + v
(20)

It is our aim to show that the error dynamic in Eq. (20) can be stabilized and converged in a finite time

via an n−order sliding-mode algorithm. The required derivatives of the output error in the algorithm are
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estimated through another high-order sliding-mode differentiator [25]. It is necessary to extend the approach

to multiinput-multioutput (MIMO) systems [26], where the output injection gain matrix is designed such that

the following relationship is met:

Osq(x̂)G(x̂) = N =


 0 0 ... 0

...
1 0 ... 0


r1×p

 0 0 ... 0
...
0 1 ... 0


r2×p

· · ·

 0 0 ... 0
...
0 0 ... 1


rp×p


T

︸ ︷︷ ︸
N Matrix

, (21)

G(x̂) = (Osq(x̂))
−1N, (22)

where p is the dimension of the output vector and ri(i = 1, 2, ..., p). This shows that the observation indices of

the nonsingular matrix are of full rank.

Assumption 1 Matrix Osq(x̂) in Eq. (21) is nonsingular for every possible value of x̂ .

The proposed analytical approach in the previous subsection shows the observability indices as r1 =

1, r2 = 2, and r3 = 3 for the PEMFC model in Eqs. (1)–(6) and (13). Therefore, the condition in Eq. (21) of

the output injection gain matrix G(x̂) has the following form:

Osq(x̂)G(x̂) = N = [1 0 0 ; 0 0 0 ; 0 1 0 ; 0 0 0 ; 0 0 0 ; 0 0 1]
T
. (23)

Lemma 1 Consider system Eq. (9) and assume Osq(x̂) to be nonsingular for every possible value of M . Next,

the following implication holds:

ε̄ = 0 ⇔ ex = 0. (24)

The state of the system in Eq. (9) can be reconstructed in finite time by applying the observers in Eqs. (18)

and (22), provided that the correction term vi is designed in such a way that error vector ε̄ will be steered to 0

in finite time. 2

Indeed, Lemma 1 proves the finite time convergence of the proposed observer. This means that the

estimated states approach the real states in a limited time when the output injected terms vi force the output

error vector to tend to 0 in finite time. The proof of Lemma 1 is stated in Appendix 1.

3.3. Observer input design

An observer for the PEMFC can be designed according to the general form in Eqs. (18) and (22) as follows:

˙̂x1 = ˙̂ωcp

˙̂x2 =
˙̂
Psm

˙̂x3 =
˙̂
Msm

˙̂x4 =
˙̂
MO2

˙̂x5 =
˙̂
MN2

˙̂x6 =
˙̂
Prm


=



f1(x̂1, x̂2)

f2(x̂1, x̂2, x̂3, x̂4, x̂5)

f3(x̂1, x̂2, x̂4, x̂5)

f4(x̂2, x̂4, x̂5, x̂6)

f5(x̂2, x̂4, x̂5, x̂6)

f6(x̂4, x̂5, x̂6)


+



ηcm
kt

JcpRcm

0

0

0

0

0


u+



0

0

0

−nMO2

4 F

0

0


Ist +O−1

sq (x̂)



1 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1


︸ ︷︷ ︸

G(x̂)

v.

(25)
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The estimation error dynamics include the relative degree of the vector by r={1, 2, 3} . The output vector

ŷ = [ŷ1 = ω̂cp, ŷ2 = P̂rm, ŷ3 = P̂sm] forms output derivatives by:

e1 = ŷ1 − y1 = ω̂cp − ωcp, e2 = ŷ2 − y2 = P̂rm − Prm, e3 = ŷ3 − y3 = P̂sm − Psm. (26)

The vector of relative degree of {1, 2, 3} is respectively relevant to the output vector {y1, y2, y3} . It drives the
observer control input vi to be selected according to the relative degree. Each output injection term vi can

be designed by a high-order sliding-mode algorithm, such that the estimation error approaches 0 in a finite

time. Therefore, output injection laws in the following are chosen according to each specific value of ri (i.e. the

relative degree):

• r1 = 1 allows for using a super twisting algorithm [27] by

v1 = −α1 |e1|
1
2 sign(e1)− λ1

∫
sign(e1)dt. (27)

• r2= 2 permits the use of a suboptimal algorithm [27] as

v2 = −α2U2sign(e2 − β2.e2,M ), β2 ∈ [0, 1) . (28)

• r3= 3 is suggested [28] to use a quasicontinuous algorithm. Since the output error e3 = ŷ3−y3 = P̂sm−Psm

contains a relative degree of 3, values are selected according to the third-order quasicontinuous sliding-

mode algorithm as:

v3 = −α3
ë3 + 2(|ė3|+ |e3|

2
3 )

1
2 (ė3 + |e3|

2
3 sign(e3))

|ë3|+ 2(|ė3|+ |e3|
2
3 )

1
2

. (29)

To implement the algorithm in Eq. (29), the values of e3, ė3 , and ë3 must be configured. Since these

terms are not actually available, a robust differentiation of e3 is used to reconstruct the nonmeasurable variables.

The following homogeneous differentiator of e3 is proposed:

ż3,0 = v3,0 where v3,0 = −λ3,0 |z3,0 − e3|
2
3 sign(z3,0 − e3) + z3,1

ż3,1 = v3,1 and v3,1 = −λ3,1 |z3,1 − v3,0|
1
2 sign(z3,1 − v3,0) + z3,2

(30)

Parameters of the algorithm in Eq. (29) and differentiator in Eq. (30) are tuned according to the bounds

of the observer dynamics. Proper positive constant coefficients λ3,i are chosen large enough in the given

order [25] under the assumption that a constant L exists such that
∣∣e(n)∣∣ < L . After a finite-time transient

process, the following equalities are satisfied, of course in the absence of measurement noise:
∣∣∣Z3 − e

(i)
3

∣∣∣ = 0

and i = 0, 1, ..., n . It was demonstrated by Levant in [25] that nonidealities, such as measurement noise and

finite frequency commutation, cause a bounded error in the estimated derivatives. As a result, a bounded loss

of accuracy occurs, which causes the algorithm to use ‘noisy’ derivative estimates [25,28].
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4. Structure of the overall control scheme

Starvation is one of the main causes of aging of the fuel cell. Oxygen starvation causes performance degradation

in the fuel cell and a cell voltage drop occurs. To avoid the oxygen starvation phenomenon, the oxygen excess

ratio should be adjusted quickly. Thus, regulating the compressor voltage vcm causes a rapid increase in the

mass flow into the cathode and the prevention of oxygen starvation. This regulation prolongs the fuel cell life

and optimizes the performance. When a step change in current Ist occurs, compressor voltage vcm has to

be properly adjusted to regulate the oxygen excess ratio. The proposed overall control scheme consists of the

following 2 nested loops using SOSM-based control:

1. An inner loop generates the reference compressor voltage by controlling the angular speed.

2. An outer loop provides a reference angular motor speed by controlling the oxygen excess ratio.

An effective solution to stabilize the control loop is a cascade structure via using a super twisting

controller. In this configuration, 2 nested loops are provided, as shown in Figure 2. The inner loop forms

a proper control signal to accordingly change the angular speed of the motor. The outer loop is designed to

control the excess ratio when the constructed λO2 is compared with the reference λ∗
O2 to form the error signal.

The error is then processed by a super twisting controller to generate an angular speed reference applied to the

inner loop.
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Figure 2. Block diagram of the proposed cascade structure using a super twisting controller.

4.1. Cascade structure

The super twisting controller consists of a control output u with 2 terms, without the need for information on

Ṡ . The first term is a discontinuous time-derivative term, while the second is a continuous function of a sliding

variable. Thus, the ucontrol law is defined by the following expression:

u = −λ |S|
1
2
sign(S)−W

t∫
0

sign(S(τ))dτ, (31)

where W and λ are design parameters. The first-time derivative of the sliding variable is expressed by

Ṡ = ϕ(t, x) + γ(t, x)u . Terms γ(t, x) and ϕ(t, x) are functions in time and the states. For PEMFC system

applications, they are bounded smooth functions as 0 < Γm ≤ γ(t, x) ≤ ΓM and |ϕ(t, x)| ≤ Φ, where Φ, ΓM ,

and Γmare appropriate bounds. Sufficient conditions for finite time convergence of the sliding manifold S can

be seen in [29]:

W >
Φ

Γm
, λ2 ≥ 4Φ

Γ2
m

ΓM (W +Φ)

Γm(W − Φ)
. (32)
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The required controller parameters are properly designed to meet the conditions in Eq. (32). Therefore, conver-

gence of the super twisting controller in finite time is guaranteed. This controller provides proper performance

in systems with relative degrees of 1 and shows good robustness against disturbances and uncertainties [27].

Furthermore, this is found effective for chattering attenuation purposes.

4.1.1. Inner control loop

The aim of this loop is to provide the oxygen ratio through the compressor. The inner loop provides the measured

angular speed (ωcp) in a quicker time through a separate controller using the reference angular speed(ω∗
cp).

This loop produces an actual control input vcm to ensure quick convergence of the measured angular speed to

the reference angular speed. This control objective will be achieved under the variable structure system (VSS)

theory framework, i.e. sliding-mode control. To implement this controller, first a sliding surface must be defined

as a discrepancy between the real motor speed and that of the command. This can be found by:

S2 = ωcp − ω∗
cp. (33)

Once the differentiation of the sliding variable S2 = ωcp−ω∗
cp of the inner loop is complete, the control input vcm

will appear in the first derivative, as seen in Eq. (A7) of Appendix 2. This equation verifies that the relative

degree between the angular speed and the compressor voltage is 1. A detailed description of the first-order

derivative Ṡ2 along with coefficients γ2(t, x) and φ2(t, x) is given in Appendix 2.

0 < Γ2,m ≤ γ2(t, x) ≤ Γ2,M , |ϕ2(t, x)| ≤ Φ2 (34)

To form the control in Eq. (34), the parameters of the controller have to be determined using sufficient conditions

in Eq. (32). Therefore, it is necessary to find the bound of the first derivative of the sliding surface, such that

the following bounded conditions on the sliding dynamics are satisfied. The closed-loop error dynamics are then

bounded by:

Ṡ2 ∈ [−Φ2,Φ2] + [−Γ2,m,Γ2,M ] vcm, (35)

considering the positive constants Γ2,m,Γ2,M , and Φ2 . Substitution of the states in Ṡ2 (Appendix 2) evaluates

the bounds of γ2 and Φ2 in 0 < Γ2,m ≤ γ2(t, x) ≤ Γ2,M and |ϕ2(t, x)| ≤ Φ2 . On the other hand, a bound for the

sliding surface is arbitrarily chosen, which is seen here as S2,0 = 1× 10−3 . This yields 5717.69 ≤ γ2 ≤ 6675.88

and Φ2 = 0.6455. To achieve finite time convergence of the angular speed, the following theorem must be

satisfied.

Theorem 1 The error of the angular speed tracking in the inner loop converges to S2 = 0 in finite time. An

upper bound of the convergence time is assessed by the following:

T0,inner =
2 V

1
2 (ζinner(0))

α
=

2
√
ζTinner(0) Q ζinner(0)

α
, α =

λmin {Q} λ
1
2

min {P}
2λmax {P}

, (36)

where ζinner(0) is an initial condition of ζinner . 2
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Proof of Theorem 1:

Consider the following super twisting controller:

Ż1 = −K1 |Z1|
1
2 sign(Z1) + Z2, Ż2 = −K2sign(Z1), (37)

where Z1 ∈ R and Z2 ∈ R concerning the equilibrium point at (Z1, Z2) = (0, 0). A detailed stability proof of

the super twisting controller can be found in [30–32]. Now consider the following family of quadratic Lyapunov

functions [30]:

V = ζTPζ, (38)

such that ζ = [|Z1|
1
2 sign(Z1), Z2]

T , where P is a positive definite matrix [33]. Function V (t) is continuous and

differentiable, except when Z1 = 0. In fact, for Z1 ̸= 0, its derivative, V̇ (ζ, t), exists and is negative-definite.

It can be seen that although the state trajectory of Eq. (38) attaches to the surfaceS2 , it cannot stay on it.

Before reaching the equilibrium point (Z1, Z2) = (0, 0), Eq. (37) coincides with the line Z1 = 0 for Z2 ̸= 0.

This means that the derivative of the Lyapunov function exists everywhere until the state trajectory reaches

the equilibrium point. In accordance with [30,31,33], V (t) is a strong Lyapunov function of the form of Eq.

(38) for Eq. (37). Although this Lyapunov function is positive-definite, it is radially unbounded.

λmin(P ) ∥ζ∥22 ≤ V ≤ λmax(P ) ∥ζ∥22 , (39)

when ∥ζ∥22 = |Z1|+Z2
2 stands for an Euclidian norm of ζ . The construction of proper positive definite matrices

P = PT solves the algebraic Lyapunov equation (ALE) of [30,31,33]:

ATP + PA = −Q, (40)

where A =

[
−K1 1
−K2 0

]
, K1 > 0 and K2 > 0, are positive gains. This means that matrix A is Hurwitz,

where Q = QT > 0 is an arbitrary chosen symmetric and positive definite matrix. Using the vector ζ =

[|Z1|
1
2 sign(Z1), Z2]

T , since ζ̇ =

[
−K1 1
−K2 0

]
ζ

/
(2 |Z1|

1
2 ) = Aζ

/
(2 |Z1|

1
2 ), the derivative of the Lyapunov

function is obtained as:

V̇ (ζ) = ζ̇TPζ + ζTP ζ̇ =
1

2 |Z1|
1
2

ζT (ATP + PA)ζ = − 1

2 |Z1|
1
2

ζTQζ. (41)

According to Eq. (39) and the Euclidian norm of ζ , it is seen that ∥ζ∥2 ≤ V
1
2 (ζ)

/
(λ

1
2

min {P}). Therefore,

V̇ (ζ, t) is deduced by:

V̇ (ζ) = − 1

2 |Z1|
1
2

ζTQζ ≤ −λmin {Q}
2 |Z1|

1
2

∥ζ∥22 ≤ −λmin {Q}λ
1
2

min {P}

2λ
1
2
max {P}

V
1
2 (ζ), (42)

where α = λmin {Q}λ
1
2

min {P}
/
(2λ

1
2
max {P}) and V̇ ≤ −αV

1
2 (ζ). Therefore, the finite time convergence of

vector (Z1, Z2) to 0 is guaranteed and bounded by T0 = 2V
1
2 (ζ(0))

/
α , assuming that ζ(0) is the initial value
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ofζ . It was suggested in [32] that the identity matrix selection as Q = I is a proper choice to achieve a minimum

time for a class of Lyapunov functions. Choosing K1 = 0.45 and K2 = 0.8 results in P =
[
2 1
2 ;−

1
22.781

]T
by

P = PT > 0 as a solution of the ALE. The initial conditions of Z1(0) = 0.69 and Z2(0) = 0.14, an estimation

of the upper bound of the convergence time T0,inner = 2V
1
2 (ζinner(0))

/
α , is found as T0,inner = 3.46.

4.1.2. Outer control loop

The main task of the outer loop is to derive the oxygen excess ratio λO2 to its desired oxygen excess ratio

reference value λ∗
O2 through the generation and adjustment of the compressor angular speed. Indeed, a super

twisting controller must force the sliding variables S1 = λO2 − λ∗
O2 to 0 in finite time. Primarily, a relative

degree is equal to 1 when the first derivative of variable S1 is taken (Eq. (A8) of Appendix 2). By replacing ẋ2

from Eq. (2) into Eq. (A8), a direct relationship between λ̇O2 and ωcp will be achieved. The result shows the

relative degree of 1 between the oxygen excess ratio and the angular motor speed. Similarly, there is a relative

degree of 2 between the oxygen excess ratio and the compressor voltage. The closed-loop error dynamics in the

outer loop are then bounded by:

Ṡ1 ∈ [−Φ1,Φ1] + [−Γ1,m,Γ1,M ]ωcp. (43)

The system bound, similar to S2,0 , is arbitrarily chosen as S1,0 = 1 × 10−3 . This again obtains the following

bound:

0 < Γ1,m ≤ γ1(t, x) ≤ Γ1, M , |ϕ1(t, x)| ≤ Φ1

3.492× 10−7 ≤ γ1 ≤ 6.984× 10− 5 , Φ1 = 2.345× 10− 7
. (44)

Detailed descriptions of the first-order derivatives Ṡ1 and Ṡ2 , along with the coefficients γ1(t, x), ϕ1(t, x), and

γ2(t, x), ϕ2(t, x), are given in Appendix 2. In order to obtain a finite-time convergence of reaching the estimated

oxygen excess ratio to the sliding surface, the following theorem must be valid.

Theorem 2 Similar to the method in Theorem 1, the oxygen excess ratio in the outer loop converges to

equilibrium λ∗
O2 in a finite time of T0,outer , which is expressed in the following:

T0,outer =
2
√

ζTouter(0) Q ζouter(0)

α
, α =

λmin {Q} λ
1
2

min {P}
2λmax {P}

. (45)

Proof The determination of the convergence time of the outer loop can be proven in the same way as in

Theorem 1.

Coefficients of super twisting in the inner and outer loops of the cascade structure are found by a trade-off

between the dynamic performance and chattering as λ1 = 2,W1 = 2, and λ2 = 4,W2 = 4.

Proposition 1 The sliding mode controller in Eq. (31) guarantees that the system in Eq. (9) tracks and

converges to the reference command in finite time if the observer in Eq. (25) constructs unavailable states in

finite time. On the other hand, when the observer dynamics are fast enough to provide an accurate evaluation

of the modes, the controller stabilizes the whole closed-loop system.
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Satisfaction 1 According to Lemma 1 and the finite time convergence of observer, it is not necessary to prove

the separation principle [25,34,35]. Considering the separation principle using HOSM observers in a VSS, a

general statement is that if the observation is achieved in a finite time and the system is bounded-input bounded-

output stable, it is possible to design an observer and controller separately. This means that after a finite time,

the estimation error vanishes and, therefore, the state feedback can be implemented using the state estimates

[34,35]. Next, it is sufficient to prove a finite time convergence of the observer (Lemma 1) and the stability of

the system in a closed loop (Section 4.1) with super twisting control separately.

4.2. Suboptimal controller

To investigate the validity and performance of the proposed cascade structure, a suboptimal controller is used

as an alternative technique. The control objective is S(x, t) = λO2 − λ∗
O2 , which again needs to become 0.

As previously stated, the control signal u = vcm appears in the second-order derivative of the sliding variable

S(x, t) = λO2 − λ∗
O2 ; therefore, the relative degree is again found as 2. A block diagram of the system under

suboptimal control is shown in Figure 3. Moreover, during a real-time application, the suboptimal controller

only requires knowledge of the sign of the sliding variable. The main advantage of this approach relies on its

robustness against some parametric uncertainties and external disturbances. This controller is used for plants

with a relative degree of 2, as in the following [27]:
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Figure 3. Block diagram of the controlled system with a suboptimal controller.

u (t) = −α(t)U sign(S − βSM )

β ∈ [0, 1) , α (t) =

{
1 if (S − βSM )SM ≥ 0

α∗ if (S − βSM )SM < 0

, (46)

where α∗, β , and U are controller parameters. These must be tuned according to the following inequalities:

U >
Φ

Γm
, α∗ ∈ [1,+∞) ∩

[
Φ+ (1− β)ΓMU

βΓmU
,+∞

)
. (47)

Finally, the parameters of the suboptimal controller in Eq. (47) are selected as β = 0.9, U = 1, and α∗ = 1.
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5. Simulation results

In order to verify the performance of the proposed configuration, including 2 individual controllers (used in the

cascade and also the suboptimal) in combination with the proposed finite-time observer, several simulations are

carried out. Since the temperature and humidity are assumed to be constant, a separate controller is designed to

keep them unchanged to validate those assumptions. Meanwhile, the bounds of the estimation error dynamics

are overestimated due to consideration of the worst-case design during the state variations within set M in Eq.

(16). Meanwhile, the parameters of the output injection law in Eqs. (27)–(30) are manually tuned. All of the

simulations are performed in Table 6 with the set configuration and parameters of the output injection law.

The load current is stepped up from 100 A to 150 A at t = 20 s, after 35 s. It is again stepped down to 120 A,

and, finally, at time t = 80 s, the current is stepped up from 120 A to 190 A (Figure 4).

Table 6. Output injectors and parameter settings according to the relative degrees.

Relative degree Type of controller Parameter tunings

r1 = 1 Super twisting algorithm λ1 = 3, α1 = 3

r2 = 2 Suboptimal algorithm β2 = 0.5, U2 = 0.1, α2 = 1

r3 = 3 Quasi-continuous algorithm
n = 2, λ3,0 = 15.9, λ3,1 = 33.5,

λ3,2 = 550, α3 = 1500
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Figure 4. Load current variation profile.

5.1. Observer analysis for estimation of the oxygen excess ratio

In the observer analysis, the voltage driving the DC motor of the compressor is maintained constant at 150 V.

The goal of the observer design is to estimate an unmeasurable state of the PEMFC, i.e. the oxygen excess ratio,

which is expressed from Eqs. (10) through (12). Actual and estimated values of the oxygen excess ratio are

illustrated in Figure 5. It is seen that the important variable to improve the efficiency of the PEMFC is precisely

estimated. To verify the tracking ability of the observer, the oxygen excess ratio is estimated using the HOSM

observer, which is depicted in Figure 5. Since the error band is narrow, the outcome of the estimation is found

satisfactory. Figure 5 also shows that the estimator follows the oxygen excess ratio with an acceptable lag. The

observer converges to the correct amount of the oxygen excess ratio in a finite time, i.e. after approximately 3

s. It is seen that the proposed observer is capable to estimate some important states of the PEMFC and the

oxygen excess ratio in finite time. Furthermore, a sliding-mode technique is developed in the observer design.

This also produces an output injection with a high switching frequency and zero mean value.
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Figure 5. Estimation of the oxygen excess ratio signal.

5.2. Output feedback control system

An optimum value of λ∗
O2 = 2.05 [4,5] is assumed as a reference. It can be assured that the system works at its

maximum net power for each load variation. To verify the performance of the proposed control structure, some

simulations are carried out. The following results are achieved from different implementations of the closed-loop

system.

In TEST 1, since the relative degree equals 2, a suboptimal controller is implemented as in Figure 6a.
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Figure 6. a) Oxygen excess ratio control via the suboptimal controller, b) cascade structure, and c) oxygen excess ratio

control with an observer and without an observer.
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In TEST 2, a cascade structure with a super twisting controller is implemented. The dynamic behavior

of the oxygen excess ratio under different load conditions is also depicted in Figure 6b. It can be observed that

this variable follows the reference well enough with satisfactory tracking performance.

According to the graphs, it is found that the suboptimal controller produces a faster time response with

respect to the cascade structure. However, the error band in the cascade structure using the super twisting

controller is found as smaller and narrower with respect to the suboptimal controller. From the simulation

results, it can be stated that the suboptimal controller presents good dynamic behavior. This controller reduces

the rise time and settling time of tuning the oxygen excess ratio during the transient step changes of the current

with respect to the cascade structure (Table 7).

Table 7. Time domain performance specifications.

Controller type Rise time (ms) Settling time (ms) (3%) Output deviations

Cascade 3950 5130 ±2.5× 10−4

Suboptimal 61 1220 ±3× 10−3

In the meantime, the performance of the proposed observer can be compared with that of the actual

states in [11]. The result in Figure 6c shows that without using the observer, the system tracks the reference

value of λO2 in about 3 s, whereas in the closed-loop implementation, using the observer significantly reduces

the tracking time to 0.4 s.

However, this produces a control input with a high switching voltage, which is undesired for the motor of

the compressor (Figure 7a). Furthermore, a large variation in the control input is undesired in the control

applications. In contrast to the suboptimal controller, the cascade implementation of the super twisting

controller provides a smooth voltage input in Figure 7b. Sliding surface variations S(t) during the control

procedure are also illustrated in Figures 8a and 8b when suboptimal control and the cascade structure are of

interest, respectively. For a small error signal, surface S(t) reaches a value close to 0, which means that the

oxygen excess ratio follows the reference command. Meanwhile, system trajectories are plotted in the phase

plane in terms of Ṡ(t) and S(t) for the suboptimal control system. Those Ṡ(t) and S(t) values for the super

twisting controller in the cascade structure are also plotted in Figures 9a and 9b, respectively. The phase

portrait of the system Ṡ(t)− S(t) presents a nonuniform characteristic of the super twisting controller. Those

results confirm that both Ṡ(t) and S(t) converge to 0 via the super twisting and suboptimal controller.
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Figure 9. Phase portrait Ṡ(t) and S(t) of the a) suboptimal controller and b) cascade structure.

To verify the system tracking performance, the closed-loop system undergoes a further test in an optimal

oxygen excess ratio range of 2.05–2.5. Accordingly, a square wave with an amplitude of between 2.05 and 2.5 is

applied to the system. Results are shown in Figures 10a and 10b for the suboptimal control system and another

controller in the cascade structure, respectively. The results confirm that the controller in the cascade structure

provides better tracking performance when it presents less variation in the steady state with respect to the

suboptimal controller. Nonetheless, the suboptimal controller converges faster than the cascade structure.

6. Conclusion

In this paper, a proper MIMO nonlinear observer, based on high-order sliding mode, was applied in a PEMFC.

The observer was shown to be convergent in finite time without the need for transformation. It is based on

an analysis of the structural properties of the observability matrix of the system. The estimated oxygen excess

ratio was controlled in a closed-loop system using 2 distinct approaches of cascade and suboptimal structures.

These approaches showed improvement in the transient response.

In the cascade structure, it could be observed that the oxygen excess ratio satisfactorily tracked the

reference. In addition, the error band in the cascade scheme with super twisting was narrower. In comparison,

the proposed suboptimal application provided faster convergence to the sliding surface. Use of the proposed

control schemes gains the following benefits:

1. It enhances the dynamic characteristics; the use of an observer-based feedback controller reduces the rise

time and settling time for the oxygen excess ratio during the transient load variation.

2. During the estimation of the state, instrumentation noise has less affect in the system with respect to the

case when states are measured.
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Figure 10. Tracking results of the suboptimal and cascade structures.

Due to the close relation between the current study and practical implementation, a hardware control is

promising but complex.

Appendix 1. Proof of Lemma 1.

Define the output and state observation errors:

ε̄ = ŷ − y = [ē1ē2 ˙̄e2ē3 ˙̄e3 ¨̄e3]
T

, ex = x̂− x = [ex1ex2ex3ex4ex5ex6 ]
T
. (A1)

The output error ε̄ = ŷ − ypossesses the same relative degree sr1 = 1, r2 = 2, and r3 = 3 with respect

to v1 , v2 , and v3 .

ex = x̂− x = [ex1ex2ex3ex4ex5ex6 ]
T ⇒ ėx = ˙̂x− ẋ = f(x̂)− f(x) + g(x̂).u , ε̄ = h(x̂)− h(x) (A2)

Let us derive the expression for the successive derivatives of the output observation error ε̄ = ŷ − y up
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to the order n , which yields:



ē1

ē2

˙̄e2

ē3

˙̄e3

¨̄e3


=



h1(x̂)− h1(x)

h2(x̂)− h2(x)

L1
f(x̂)h2(x̂)− L1

f(x)h2(x)

h3(x̂)− h3(x)

L1
f(x̂)h3(x̂)− L1

f(x)h3(x)

L2
f(x̂)h3(x̂)− L2

f(x)h3(x)


,


˙̄e1

¨̄e2

ē3

 =


L1
f(x̂)h1(x̂)− L1

f(x)h1(x)

L2
f(x̂)h2(x̂)− L2

f(x)h2(x)

L3
f(x̂)h3(x̂)− L3

f(x)h3(x)

+

 v1

v2

v3

 . (A3)

If ex = x̂ − x ⇒ x = x̂ − ex , the above equations allow for constructing diffeomorphic mappings [24] in

the following:

ε̄ = Φ(ex, x̂) =



ē1

ē2

˙̄e2

ē3

˙̄e3

¨̄e3


=



Φ11(ex, x̂)

Φ21(ex, x̂)

Φ22(ex, x̂)

Φ31(ex, x̂)

Φ32(ex, x̂)

Φ33(ex, x̂)


=



h1(x̂)− h1(x̂− ex)

h2(x̂)− h2(x̂− ex)

L1
f(x̂)h2(x̂)− L1

f(x̂−ex)
h2(x̂− ex)

h3(x̂)− h3(x̂− ex)

L1
f(x̂)h3(x̂)− L1

f(x)h3(x̂− ex)

L2
f(x̂)h3(x̂)− L2

f(x)h3(x̂− ex)


. (A4)

If ex = 0, then all components of vector ε̄ are identically 0 irrespectively of x̂ , i.e. Φ(0 , x̂) = 0. For the

details of the proof, see [36]. Lemma 1 is guaranteed provided that the mapping Φ(ex , x̂) is locally bijective

in the neighborhood of ex = 0. The bijectivity of the mapping will be defined as detJ(0, x̂) ̸= 0, ∀x̂ using the

Jacobean matrix J(ex, x̂) =
∂(Φ(ex , x̂))

∂ex
[36]. The Jacobean matrix is expressed as:

J(ex, x̂) =
∂(Φ(ex, x̂))

∂ex
=



∂(Φ11(ex, x̂))/∂ex

∂(Φ21(ex, x̂))/∂ex

∂(Φ22(ex, x̂))/∂ex

∂(Φ31(ex, x̂))/∂ex

∂(Φ32(ex, x̂))/∂ex

∂(Φ33(ex, x̂))/∂ex


=



∂(−h1(x̂− ex))/∂ex

∂(−h2(x̂− ex))/∂ex

∂(−L1
f(x̂−ex)

h2(x̂− ex))
/
∂ex

∂(−h3(x̂− ex))/∂ex

∂(−L1
f(x)h3(x̂− ex))

/
∂ex

∂(−L2
f(x)h3(x̂− ex))

/
∂ex


, (A5)

∂(Φ11(ex, x̂))

∂ex
= −∂(h1(x))

∂x

∂(x̂− ex)

∂ex
. (A6)

The replacement of x = x̂ − ex in the above equation, and equating ex = 0 and ∂(x̂− ex)/∂ex = −1,

yields J(ex, x̂)|ex=0 = Osq(x̂). This confirms the nonsingularity of J(ex, x̂)|ex=0 = Osq(x̂), as stated in

Assumption 1. Therefore, the observer in Eq. (18) with the observability matrix in Eq. (21) reconstructs the

state of the system in Eq. (9) in finite time. It is seen that the observer input vi is selected in such a way that

the vector ε̄ is steered to 0 in finite time.
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Appendix 2. Sliding variable and its time derivatives

• Inner loop:

Ṡ2 = ω̇cp − ω̇∗
cp ⇒ Ṡ2 = ϕ2(t, x) + γ2(t, x) vcm

γ2(t, x) =
π

30 Jcp
(ηcm

kt

JcpRcm
)

ϕ2(t, x) =
π

30 Jcp
(−ηcm

kt

JcpRcm
kvx1

−(A0 +A1x1 +A00 +A10x1 +A20(x1)
2 +A01x2 +A11x2x1 +A02(x2)

2))

(A7)

• Outer loop:

Ṡ1 = λ̇O2 − λ̇∗
O2 = ϕ1(t, x) + γ1(t, x)ωcp

Ṡ1 = λ̇O2 − λ̇∗
O2 =

XO2,in(1+Ωatm)−1 Ksm,out(ẋ2− ẋ4
MO2

RO2.Tst
Vca

− ẋ5
MN2

RN2Tst
Vca

−Pv,ca)

WO2,reacted

γ1 =
XO2,in

WO2,reacted

Ksm,outB01(Tatm−Tatm
ηcp

)

1+Ωatm

(A8)

The detailed calculation of ϕ1 is similar to that of ϕ2 . Therefore, the detailed calculation of ϕ1 is ignored

to avoid complexity.

ϕ1 =

[
∂S1

∂x1

∂S1

∂x2

∂S1

∂x3

∂S1

∂x4

∂S1

∂x5

∂S1

∂x6

]
× [f(x, t) + g(x, t)ωcp] (A9)
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