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Abstract: The common practice in multilevel decision-making (DM) systems is to achieve the final decision by going

through a finite number of DM levels. In this study, a new multilevel DM model is proposed. This model is called the

hierarchical DM (HDM) model and it is supposed to provide a flexible way of interaction and information flow between

the consecutive levels that allows policy changes in DM procedures if necessary. In the model, in the early levels, there

are primary agents that perform DM tasks. As the levels increase, the information associated with these agents is

combined through suitable processes and agents with higher complexity are formed to carry out the DM tasks more

elegantly. The HDM model is applied to the case study ‘Fault degree classification in a 4-tank water circulation system’.

For this case study, the processes that connect the lower levels to the higher levels are agent development processes

where a special decision fusion technique is its integral part. This decision fusion technique combines the previous level’s

decisions and their performance indicator suitably to contribute to the improvement of new agents in higher levels.

Additionally, the proposed agent development process provides flexibility both in the training and validation phases, and

less computational effort is required in the training phase compared to a single-agent development simulation carried

out for the same DM task under similar circumstances. Hence, the HDM model puts forward an enhanced performance

compared to a single agent with a more sophisticated structure. Finally, model validation and efficiency in the presence

of noise are also simulated. The adaptability of the agent development process due to the flexible structure of the model

also accounts for improved performance, as seen in the results.
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1. Introduction

The design of a decision-making (DM) system requires knowledge about the complexity and nature of the

particular DM problem under investigation. A DM system may include a single expert or multiple experts,

each of which may also be considered as DM units with special duties. Problems with high complexity are

better dealt with by separating the problem into simpler circumstances and developing fundamental DM units

for each circumstance. When multiple experts are involved in the process, the design of the overall DM system

actually depends on providing a suitable organization between these experts and finding advantageous ways of

combining their individual actions [1].

Most of the standard DM systems assess the relative importance of alternatives [2]. Similarly, advanced

expert systems employ several agents for this purpose. In expert systems, each expert takes part in different
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actions and each has a different degree of inspiration to fulfill their task. Therefore, when multiple experts are

involved in a DM task, arranging the relations between them, or briefly, how the group DM [3,4] is performed,

becomes the critical issue. Group DM systems can be created in many different ways: providing a consensus

among experts possessing different amounts of influence in a group [5,6], DM systems based on voting or

dominance of a group of experts [4], weighted averaging methods [7], and aggregation [8] are the typical actions

and the processes that help in the formation of final decisions.

When multiple experts enroll in a DM process, one of the indispensable issues is to follow intelligent

techniques to coordinate the experts’ actions and combine their decisions. Data fusion and evaluation methods

as well as artificial intelligence techniques [9] can be applied together with different DM frameworks in order to

guarantee an efficient way of decision aggregation [10].

In most of the expert system applications, interaction between experts is configured directly in a single

level. However, as the complexity of the application increases, it is difficult and inefficient to provide the

organization of experts so effortlessly. Dealing with a huge amount of data coming from different observations

[11]; the necessity of task planning, gathering, and evaluating information from different heterogeneous sources

[12]; the essentiality for applicability of a learning paradigm in different frameworks in order to handle DM

problems more accurately [13]; and the comfort in establishing organization between agents without difficulty

[14] are the typical reasons to use hierarchical and multilevel frameworks. In multilevel DM frameworks, experts

in any level have a direct or indirect impact over the actions and decision of the experts’ at other levels. The

control of lower-ranked experts by the supervision of a leader expert is the most common framework; however,

in some cases, experts with similar authority can also influence each other [15]. Hierarchical system definitions

[16] can be applied and multiagent cooperation architectures for data fusion [17] can be used for hierarchical

organizations. In [18], a complex structured DM model was put forward, which is a hierarchically organized DM

framework to represent complex structured knowledge. Developing agent structures that function as experts

for DM problems is also an important area of investigation for researchers [14,19]. Machine learning tools and

heuristic search methods like genetic algorithms (GAs) [20] are widely employed to develop agent structures.

However, integrating them into complicated multilevel DM systems is generally a demanding process. As an

alternative, classical problem-specific tools are more preferred in multilevel DM systems with respect to agent

structures.

If agents are to be employed for DM problems with a multifaceted nature, the main difficulty becomes

selecting and employing an appropriate DM model to yield a high performance. Moreover, too much compu-

tational power is necessary and too many variables should be taken into account to develop the agents. Most

of the DM systems given in the previous paragraph, although organized in a multilevel or hierarchical manner,

employ special techniques to overcome DM tasks. Moreover, we have not encountered in the literature a general

agent development process framework for hierarchical systems that combines lower-level information (decisions)

with the help of a suitable decision fusion method by utilizing machine-learning techniques as an integral part

of the development process. Hence, the formulation and construction of a suitable DM system architecture to

deal with DM problems with high complexity in a systematic and a flexible way that permits policy changes

with the help of processes are important issues. How should the DM system architecture and the processes

and procedures in this architecture be organized in order to get high performance and higher flexibility and in

order to promote the adaptation capacity of the system? In this study, a practical solution for these research

questions is sought. The main aim of this study is to establish a new multilevel DM system architecture as

in [14] for handling DM problems with high complexity. In this architecture, the main aspiration is to obtain
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and utilize agents with increasing complexity in a hierarchical manner for the DM task(s) and carry on this

procedure until the performance of the agents is sufficient. We suppose that this architecture has considerable

potential to support information flow from lower to higher levels effectively and offers high adaptation capability

and flexibility, as the processes can be reconfigured and the agent structures in the proposed DM system can

be adjusted easily to enable policy changes in problem solving.

The remainder of the paper is as follows: Section 2 is devoted to the explanation of the hierarchical DM

(HDM) model and the agent development process. In Section 3, details about the case study and DM task

are given. In Section 4, two applications are carried out: first, the proposed model with an agent development

process is applied for the DM task. In the second application, a single agent is developed for the same purpose.

Next, the HDM model’s agents and the single agent are compared in terms of performance under different

circumstances. In Section 5, the adaptation capacity of the HDM model is monitored in the presence of noise.

Interestingly, an enhancement in the performance is also observed. In Section 6, the conclusions are given and

future studies are mentioned.

2. HDM model and agent development process

The architecture of the HDM model can simply be described as in Figure 1. It is made up of k hierarchical

levels. In each level, there are a number of agents that are arranged to fulfill several DM tasks. These processes

help in combining information related to the lower-level agents in order to assist in the formation of higher-level

agents. For example, in level 1, there are n1 agents and they help in the composition of n2 agents in level 2,

and in level k-1 there are nk−1 agents and they help in the formation of nk agents in level k . The processes in

Figure 1 are problem-specific and they might be used for many different purposes. Examples of these processes

can be decision fusion, agent development, information fusion, communication, or a mixture of all of them. In

this architecture, if the processes binding lower levels to higher levels are well-organized, the DM system has

the potential to advance and form more successful agent structures. The HDM model can be applied to any

DM problem when the input-target data set for the problem is available. Hence, some experimental or real-life

input-target data are enough for its applicability.

Due to its flexible structure, the HDM model with different settings can easily be applied to a wide

range of DM problems. In this study, we prefer to apply a simpler version of the model in Figure 1 to the

case study. In the actual model, multiple numbers of agents are allowed in each level. For providing simplicity

and comparison purposes, we prefer using a single agent in each level. The customized version of the HDM

model employed for the case study is shown in Figure 2. Moreover, we also suggest a general agent development

process framework that can be applied for all types of DM problems easily with the help of the HDM model.

In this agent development process framework, we also embed an intelligent mechanism that is integrated with a

decision fusion method such that the next level’s agents are composed of an enhanced version of the components

of the previous level’s agents. The agent development process framework is described in Figures 3 and 4.

In Figure 3, the development process of a first-level agent is explained: the first-level agent is made up

of only a dynamic component. The dynamic component refers to the portion of the agent being updated or

developed through optimization and the output of optimization is the first-level agent (Agent1,1). In Figure 4,

the development process of a second-level agent is explained: 2 components contribute to the development of

the second-level agent: the first component is the dynamic component as in the first level and it is typically a

new arbitrary decision maker. This component is updated in the optimization stage. The second component

remains unchanged in the optimization stage and hence it is called the static component; briefly it is the decisions

of the first-level agent and the reliability values of these decisions computed due to a subjective performance
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Figure 1. Structure of the proposed multilevel DM system.
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Figure 2. Structure of the applied HDM model to the dealt case study.
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criterion. A suitable fusion technique is employed to fuse the decisions of the dynamic and the static components.

Updating the dynamic component concurrent with the success of the fused decisions through an optimization

of the cost function generates the second-level agent (Agent2,1). The relationship between any 2 consecutive

levels can be described in a similar fashion to the one observed between the first and second levels, as in Figure

4. The development process is carried on until the overall performance of the last agent goes above a desired

value.

Cost

Data
(Input + Targets)

Decisions of dynamic component
Dynamic 
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Input
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Figure 3. Development process of a first-level agent.
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Figure 4. Development process of a second-level agent.

The framework is a good example of the adaptation capacity and flexibility provided by the model, as the

modules of the framework can be adjusted easily due to requirements. These agent development frameworks are

extremely important, especially as they allow for modification in the agent structure, even if the optimization

stage is completely terminated. In most of the DM systems, once the agents are developed, maintaining some

procedural changes is nearly impossible. However, by changing the performance criteria and decision fusion

technique, these agents can be made more adaptable, especially for dynamic environments, even if there is

no further optimization stage. A typical example of a dynamic environment is the presence of noise and test

scenarios. Hence, our claim is that the HDM model with the proposed agent development process will increase

the adaptability of the model and increase the performance for dynamic environments.
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3. Case study

Details of the case study of ‘Determining the fault degree in a specific tank in a 4-tank water circulation system’

and the applied alternative DM model (local DM in multiple levels) to solve the same case study can be found

in [14,19]. This system is made up of 4 water tanks and a reservoir, as shown in Figure 5 [14,19]. The reservoir

feeds the tanks via 2 water pumps. The first pump feeds Tanks 1 and 4 and the second pump feeds Tanks 2

and 3. The tanks are placed such that water leaking from the holes of Tanks 3 and 4 flows to Tanks 1 and 2,

respectively, and water leaking from the holes of Tanks 1 and 2 flows to the reservoir. These holes have some

nominal values and their sizes are changed artificially; this is how faults are generated in the tanks to increase

or decrease the amount of water flow from them. These fault conditions are called scenarios. In each scenario,

a corresponding fault configuration is simulated for a predetermined duration using the mathematical model

of the dynamic system. The states of the system are taken as the water levels in each tank. The states of the

system due to different fault configurations and the actual states of the system when the system is error-free

are compared with each other. After some postprocessing, the input data (called normalized error data in [14])

are obtained. Each input data element has 2 components. These are the input and the target. The input has 4

variables and these variables represent the normalized water height difference in each tank at a specified time

instant. The target is the actual fault degree in a selected specific tank for the corresponding time instant.

The HDM model’s agents have the mission to execute a decision for each input. In other words, each agent

predicts the normalized fault degrees in the selected tank at each instant. A portion of the input-target pairs

(hence, a set of scenarios) is used in the training stage to develop the HDM model’s agents through agent

development processes and the rest is used in the validation stage to examine the efficiency of the agents. The

details of construction of scenarios and composition of the input data used in the training and validation stages

are mentioned in [14].

Figure 5. Water circulation system.

The chosen case study has a complex nature since a fault generated in a tank may affect the amount

of flow in the other tanks as well. Furthermore, the processes where the input data are obtained are governed

by nonlinear differential equations [14]. Therefore, accomplishing a sound DM is a rather difficult task; hence,

this case study is very suitable to test the effectiveness of the HDM model and the agent development process.

In order to successfully carry out the agent development processes, a suitable decision fusion method and an

appropriate performance criterion should be selected.
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4. Applications

In this section, 2 different applications are carried out. The first application is the development of the HDM

model’s agents and the second application is the development of a standard but very powerful single agent for

the DM task [19]. In order to obtain the agents in the first application, the architecture in Figure 2 is used for 6

levels and the agent development processes in Figures 3 and 4 are utilized as the processes of the HDM model. In

order to obtain the single-agent structure in the second application, the agent development process in Figure 3 is

utilized. At the end, these applications are compared in terms of the ‘computational effort spent in the training

phase’ and ‘training performance’. The single agent in the second application seems better equipped compared

to the HDM model’s agents; it has a more sophisticated structure and extended computational effort is spent

for its development. However, the simulation results prove the opposite: the HDM model’s agents outperform

the single agent. The HDM model’s agents are later modified and used for obtaining better performance in

the presence of noise in Section 5. For this purpose, without changing the dynamic components of the agents

through the new optimization stage, only the performance criteria are modified. Finally, the agents adjusted

due to the modification are applied in the presence of noise.

Before the applications, we want to identify how the agent development process modules shown in Figures

3 and 4 are carried out for the case study. These modules are explained in Sections 4.1, 4.2, 4.3, and 4.4,

respectively.

4.1. Dynamic components and decisions of the dynamic components

In the agent development processes of both applications, the dynamic components of the agents are chosen as

rule-bases. They contains rules in the form of ‘IF .. THEN ..’ statements. The structure of an arbitrary rule

is as below:

IF (e1,t=‘att1 ’ AND e2,t=‘att2 ’ AND e3,t=‘att3 ’ AND e4,t= ‘att4 ’) THEN (pt= ‘att5 ’).

Each rule contains 5 variables. Among them, e1,t , e2,t , e3,t , and e4,t are the premise variables. They

represent the input data elements at the instant t . The remaining variable pt is the consequent variable and it

corresponds to the conclusion of the rule at the same instant. Eight attributes can be assigned to the premise

variables (negative-big, negative-medium, negative-small, zero, positive-small, positive-medium, positive-big,

and not important), whereas pt can be assigned 7 attributes (not important is excluded). In Figure 6 [19], the

membership functions of the attributes are shown.

When an input data element is fed into a rule-base, a ‘min-max’ type of fuzzy logic [21] rule interpolation

[22] is followed by the defuzzification step executed by employing center of area defuzzification to yield an

output. This output is the decision of the dynamic component for the corresponding input data element.

For the particular case study we are dealing with, the input data element indicates the normalized water

height differences in each tank and the output indicates the predicted fault amount (change in the hole size)

in normalized units computed by the dynamic component for the tank where the fault degree classification is

simulated. A typical decision is a real number between –1 and 1. A positive decision value indicates that the

hole size is expected to increase, whereas a negative decision value indicates that the hole size is expected to

decrease, compared to the nominal hole size value observed at the initial instant. In Table 1, some typical

decisions and their corresponding explanations in terms of fault degrees are given.
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Figure 6. Membership functions of the attributes: negative-big (neg-big), negative-medium (neg-med), negative-small

(neg-sml), zero (zero), positive-small (pos-sml), positive-medium (pos-med), and positive-big (pos-big).

Table 1. Explanation of decisions.

Decision Explanation: fault degree (amount of variation of the hole size)
0 No change
–0.37 37% decrease in the hole size
0.78 78% increase in the hole size
1 The hole size is doubled (100% increase)
–1 The hole is totally closed (100% decrease)

4.2. Optimization and cost

The training of the agents is accomplished by updating the attributes assigned to the variables of each rule in

the rule-base in a fashion to minimize the cost function. The cost function checks the consistency of all of the

decisions altogether. In order to minimize the cost function, a GA is employed as the optimization algorithm

[23]. A chromosome in the GA represents a potential solution of the optimization problem. For the case study,

a chromosome represents a potential agent structure with both dynamic and static components. However, only

the dynamic component is encoded on the chromosome, as there is no need to encode the static component.

The optimization stage aims to update the attributes assigned to the variables of the dynamic component;

however, the cost function is chosen based on the unification of the decisions of both the static and dynamic

components. For this reason, the static component helps the development of the dynamic component, although

it is unchanged in the optimization stage. The cost of a chromosome in level l is calculated by:

Costch,l =

Ns∑
k=1

Nd∑
i=1

|pl,k,i − tk,i|, (1)

where Ns is the number of scenarios, Nd is the number of input data elements in each scenario, pl,k,i is the

decision computed in level l for the input data element i in scenario k , tk,i is the target for the input data

element i in scenario k , and Cost ch,l is the cost of the chromosome in level l . It should be noted that pl,k,i is

the unified decision. The fitness of a chromosome in level l is then:

Fitnessch,l =
1

Costch,l
, (2)

The best chromosome obtained at the end of the GA search in each level is affirmed as the agent of that level.
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4.3. Static component: performance criteria and reliability values

In order to obtain the reliability values, the previous level’s decisions ranging between 1 and –1 are divided

into several subgroups. These subgroups are called local decision regions (LDRs). For each LDR a success

rate (SR) is computed. The SR is a subjective measure of the performance of the lower-level decisions for the

corresponding LDR. The SR values help in the construction of the performance criterion. The performance

criterion is used to determine the reliability values. Computation of the SRs for each LDR can be summarized

in the following steps:

Step 1. Define the LDRs (Dj).

Step 2. For each decision pl,k,i , determine its LDR and find the number of decisions nj,l corresponding

to each Dj .

Step 3. Assign a symbolic point mj for each Dj .

Table 2 shows the LDRs and their parameters. The symbolic points of the LDRs and their sizes are

selected to be coherent with the membership function distribution shown in Figure 6.

Table 2. LDRs and their parameters. Here, pl,k,i refers to the decision computed in level l for the input data element

i in scenario k .

Decision LDRs
Number of decisions Symbolic
inside each LDR point mj

−1 ≤ pl,k,i < −0.833 D1 n1,l –1
−0.833 ≤ pl,k,i < −0.5 D2 n2,l –0.66
−0.5 ≤ pl,k,i < −0.166 D3 n3,l –0.33
−0.166 ≤ pl,k,i < 0.166 D4 n4,l 0
0.166 ≤ pl,k,i < 0.5 D5 n5,l 0.33
0.5 ≤ pl,k,i < 0.833 D6 n6,l 0.66
0.833 ≤ pl,k,i ≤ 1 D7 n7,l 1

Step 4. Assign a SR for each LDR.

sj,l = 1−

∑
pl,k,i∈Dj

|pl,k,i − tk,i|

nj,l
(3)

Here, sj,l is the SR value in level l calculated for Dj , pl,k,i ∈ Dj is any decision in the region Dj , tk,i is the

target of the input data element i of scenario k , and nj,l is the number of decisions computed in Dj .

We prefer constructing a mapping from the SR values to the reliability values. This mapping is called

the performance criterion and its graphical representation is called the performance plot. This mapping can be

summarized in the following items:

• The reliability value of any decision at the symbolic point is equal to the SR computed for the corresponding

LDR. Hence, pl,k,i = mj ⇒ r(pl,k,i) = sj,l, where r(pl,k,i) is the reliability value of decision pl,k,i .

• Define safety region [−cj +mj , cj +mj ] around the symbolic point mj for each LDR. Select cj such

that the safety region does not penetrate neighboring LDRs. The reliability value of any decision in the

safety regions is equal to the corresponding computed SR value for the LDR. Hence, −cj +mj ≤ pl,k,i ≤
cj +mj ⇒ r(pl,k,i) = sj,l .
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• Outside of the safety regions, a line interpolation is used to connect the SRs of any 2 neighboring LDRs.

Hence, if a decision is not in the safety region, its reliability value is between the SR obtained for its

corresponding LDR and the SR obtained for the neighboring LDR.

The performance plot obtained for the first level’s decisions is shown in Figure 7 [19]. Several other LDR

determination methods, interpolation techniques, merging strategies, and SR computation procedures can also

be applied for the construction of performance plots. However, it is observed throughout the simulations that

the way it is obtained here is an efficient one.
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Figure 7. The performance plot for the decisions at the first level.

4.4. Fusion

The fusion of the decisions coming from different components (static and dynamic) is accomplished via a

convex averaging equation. The convexity is provided with the help of the reliability values of the previous

level’s decisions. The fusion equation is:

pl,k,i = (pl−1,k,i × r(pl−1,k,i)) + (pl,d × (1− r(pl−1,k,i))), (4)

where pl,k,i is the decision for the scenario k and input data element i in the level l , pl−1,k,i is the decision

for the scenario k and input data element i for the level l− 1, r(pl−1,k,i) is the reliability value of pl−1,k,i and

pl,d is the decision of the dynamic component in level l . From Eq. (4), it is clear that, at the LDRs where the

decisions have poor performance (i.e. the reliability value is comparably insignificant), the dynamic component

of the agent has more autonomy and it can adjust pl,k,i more efficiently due to its weight coming from the

multiplicative factor 1− r(pl−1,k,i).

One of the examples of the structure of the fusion equation for multiagent applications can be taken as:

pl,k,i = (
1

num

num∑
s=1

ps,l−1,k,i × r(ps,l−1,k,i)) + (pl,d × (1− 1

num

num∑
s=1

r(ps,l−1,k,i))), (5)

where num represents the number of agents in level l-1 that enroll in the fusion equation, pl,k,i is the decision

for the scenario k and input data element i in the level l , ps,l−1,k,i is the decision of agent s for the scenario k

and input data element i in level l− 1, r(ps,l−1,k,i) is the reliability value of ps,l−1,k,i , and pl,d is the decision

of the dynamic component in level l.
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4.5. Application 1: HDM model

The agent in the first level is simply a developed rule-base by the agent development process in Figure 3. The

rule-base encloses 30 rules. The number of rules is determined based on our observations over the simulation
results and knowledge about the distribution of the input data used in training and validation stages. The

number of rules is sufficiently high with regards to the performance and sufficiently small with regards to the

computational complexity. The parameters and results of the GA simulations in the first level are as follows:

• Number of input data elements in the training stage: 34,170 (170 scenarios and 201 input data elements

in each scenario).

• Number of chromosomes: 40.

• Number of generations: 2000.

• The number of genes in a chromosome: 150.

• Crossover style: One point crossover within each consecutive 25 genes.

• Crossover ratio: 90%.

• Reproduction: 10% (with elitist method).

• Gene mutation probability and style: Only half of the new chromosomes obtained as the result of the

crossover operation are mutated. The mutation rate is chosen as 1% and mutation is first applied after

the tenth generation. However, if the fitness of the best chromosome obtained remains the same for

8 consecutive generations, the mutation rate is increased to 5% for the next generation, and the search

continues with this updated mutation rate for a single generation. The mutation rate subsequently returns

to its nominal value (1%).

In the higher levels, the GA parameters are taken as the same as the first level parameters. However, the

number of rules in the rule-bases is reduced to 20 rules; hence, a chromosome contains 100 variables this time.

Taking a lower number of rules will decrease the computational effort in the optimization stage; moreover, it

is consistent with the idea of obtaining gradually growing agent structures in each level. The HDM model is

applied up to 6 levels. The cost values of the developed agents in the training scenarios are shown in Table 3

[19].

Table 3. Cost values of the agents for the training scenarios.

Level 1 2 3 4 5 6
Cost 3974 3787 3559 3372 3309 3257

It is clear that the HDM model is successful in the training stage since the costs are decreasing in

consecutive levels. In Figure 8 [19], the performance plots of the 1st, 2nd, 3rd, 4th, 5th, and 6th level agents

are shown together.
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Figure 8. Performance plots of the HDM model’s agents.

The agents are also tested in 2 different sets of validation scenarios. The costs of the agents are calculated

similarly using Eq. (1) for the validation scenarios and the results are tabulated in Tables 4 and 5 [19].

Table 4. Cost values of the agents for the first set of validation scenarios.

Level 1 2 3 4 5 6
Cost 4135 4049 3814 3648 3609 3532

Table 5. Cost values of the agents for the second set of validation scenarios.

Level 1 2 3 4 5 6
Cost 3770 3589 3359 3200 3143 3091

4.6. Application 2: single agent

In the second application, only a single agent is developed. The agent is a rule-base with 70 rules. Due to having

an excessive number of rules, the agent seems better equipped compared to agents in the first application. Once

more, the GA is used in the training stage. However, different from the first application, the optimization stage

is carried out for 6000 generations. The GA parameters and the result are as follows [19]:

• Number of genes for each chromosome: 350.

• Number of chromosomes: 40.

• The crossover and mutation rates: chosen as in the first application.

• Cost of the best chromosome obtained at the training scenarios: 3800.

The single agent has a more sophisticated structure and is trained for longer generations; however, it is

outperformed by the HDM model’s agents (see Table 3). Even in the second level, the cost of the developed

agent with the use of the HDM model is better than the cost of the single agent. A 1.6 GHz laptop with 496 MB

of RAM is used to simulate both of the applications in a MATLAB software environment. The computation

time required to evaluate the fitness of each chromosome in a single generation in the optimization stage of

the second application is on average, 5 to 6 times longer than the computation time required in the evaluation

of the fitness of each chromosome in a single generation in the first application. Hence, the excessive number
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of rules turns out to be a burden for the performance and computation time. Instead of developing a very

complicated single-agent structure at one shot by optimizing too many variables for a specific task, it is more

efficient to implement a level-by-level development process: simpler agent structures are developed first in the

primary levels and then these primary agents are improved by insertion and optimization of new and simple

components.

5. Effect of noise

In this section, the influence of noise over the performance of the HDM model is investigated. Noise with 2

different distributions (uniform and Gaussian noise) and with 3 different signal-to-noise ratio (SNR) settings

(high, medium, and low) is applied to the training scenarios and the first set of validation scenarios. Details

about the noise can be found in [14,19]. The cost values of the HDM model’s agents are recalculated using Eq.

(1) in the presence of noise and the results are tabulated in Tables 6–9 [19].

Table 6. Cost values of the HDM model’s agents for the training scenarios when noise with uniform distribution is

applied.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4254 5392 6738
Second-level agent 4315 5640 7115
Third-level agent 4295 5772 7289
Fourth-level agent 4437 6079 7623
Fifth-level agent 4629 6310 7810
Sixth-level agent 4728 6395 7850

Table 7. Cost values of the HDM model’s agents for the first set of validation scenarios when noise with uniform

distribution is applied.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4416 5552 6883
Second-level agent 4586 5902 7339
Third-level agent 4557 6040 7510
Fourth-level agent 4717 6364 7857
Fifth-level agent 4920 6605 8048
Sixth-level agent 5026 6700 8093

Table 8. Cost values of the HDM model’s agents for the training scenarios when noise with Gaussian distribution is

applied.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4238 5224 6565
Second-level agent 4307 5453 6916
Third-level agent 4287 5576 7099
Fourth-level agent 4436 5869 7439
Fifth-level agent 4634 6113 7651
Sixth-level agent 4744 6231 7731

The HDM model with its current settings seems unsuccessful in the presence of noise because the cost

values are increasing in successive levels. If the agent development processes in Figures 3 and 4 are employed in
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the HDM model, the input data should be fed to the model once at each level. As the input data are perturbed

by noise, the decisions in each successive level will also be influenced. Due to the fusion style, the accumulation

of error in the levels may be the reason why the cost increases. There are several ways to overcome this problem.

An idea that can be applied for this purpose is to modify the performance criterion, as it is the main tool for

information transfer between levels. On the other hand, the results are still promising. The cost values in Tables

4 and 5 decrease in successive levels in the validation scenarios when the system is noise-free, which indicates

that the HDM model has identified the dynamics related to the case study correctly.

Table 9. Cost values of the HDM model’s agents for the first set of validation scenarios when noise with Gaussian

distribution is applied.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4397 5386 6712
Second-level agent 4566 5699 6712
Third-level agent 4541 5821 6712
Fourth-level agent 4707 6131 6712
Fifth-level agent 4919 6375 7875
Sixth-level agent 5031 6496 7954

5.1. Removing the effects of noise with the adaptation capacity of the HDM model

Several approaches can be attempted to remove the undesirable effects of noise and improve the performance.

Adjusting the modules of the agent development processes or parameters of the HDM model, applying noise

removal tools like filtering, or the use of different agent structures are some suitable approaches. The Kalman

filter [24] can be one of the choices for the removal of noise. However, the Kalman filter or extended Kalman

filter for nonlinear cases [25] requires an a priori assumption about the noise that it has Gaussian distribution.

The input data for the DM problem are obtained as the result of some intermediate processing stages [14]. For

this reason its structure is not suitable for Kalman filtering. Hence, the key issue to overcome this problem

is to take advantage of the adaptation capacity of the HDM model due the flexibility provided by the agent

development processes. It is clear that the performance plots are drawn only accounting for the input data

elements used in the training stage. As they are constructed once, they are fixed and for this reason it is unfair

to update them anew by reconsidering noisy data components. However, we can modify the performance plots

without any further reconstruction process based on our knowledge about the data. As we check the distribution

of input data in the training and validation stages, we realize that the target value for a dense group of them

is 0 and a fine decision for any of them should remain in the LDR D4 . Moreover, the SR evaluated for D4

is higher than the SRs evaluated for all of the other LDRs (s4,l ≥ si,l, i = 1, ..., 7) in all of the levels, which

indicates that the abundance of the decisions at D4 is very precise. Thus, adding noise will probably have

a more negative impact for the input data elements whose decisions lie on D4 compared to other input data

elements. Based on this observation, without any further analysis of the input data elements, we examine the

consequence of assigning a better SR s4,l for D4 in each level in the presence of noise. For this reason, s4,l is

taken to be 1 for each level and performance plots are reconstructed under this new setting. Thus, if pl−1,k,i is

in the safety region of D4 (that requires r(pl−1,k,i) = 1 due to new performance plots) then no matter what

the next level’s agent is, we will observe pl,k,i = pl−1,k,i due to Eq. (4). Hence, in the presence of noise, the

decisions residing on the safety region of D4 are unchanged in higher levels once they are determined in the

first level. Reevaluating the cost values tabulated in Tables 6–9 by taking s4,l = 1, we obtain the new cost

values for the agents, which are shown in Tables 10–13, respectively.

292
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Table 10. Cost values of the HDM model’s agents for the training scenarios when noise with uniform distribution is

applied and the SR for LDR D4 is taken as 1 in each level.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4254 5392 6738
Second-level agent 4057 5471 7012
Third-level agent 3866 5511 7139
Fourth-level agent 3737 5699 7411
Fifth-level agent 3706 5878 7582
Sixth-level agent 3654 5938 7599

Table 11. Cost values of the HDM model’s agents for the first set of validation scenarios when noise with uniform

distribution is applied and the SR for D4 is taken as 1 in each level.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4416 5552 6883
Second-level agent 4313 5718 7229
Third-level agent 4119 5768 7354
Fourth-level agent 4011 5977 7641
Fifth-level agent 3998 6171 7817
Sixth-level agent 3961 6245 7845

Table 12. Cost values of the HDM model’s agents for the training scenarios when noise with Gaussian distribution is

applied and the SR for LDR D4 is taken as 1 in each level.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4238 5224 6565
Second-level agent 4043 5267 6793
Third-level agent 3852 5286 6918
Fourth-level agent 3729 5435 7179
Fifth-level agent 3705 5608 7363
Sixth-level agent 3662 5682 7415

Table 13. Cost values of the HDM model’s agents for the first set of validation scenarios when noise with Gaussian

distribution is applied and the SR for LDR D4 is taken as 1 in each level.

Cost SNR (high) SNR (medium) SNR (low)
First-level agent 4397 5386 6712
Second-level agent 4291 5503 7012
Third-level agent 4117 5524 7137
Fourth-level agent 3997 5693 7407
Fifth-level agent 3993 5871 7592
Sixth-level agent 3958 5957 7651

As seen from Tables 10–13, if the SNR is high, new performance criteria help in decreasing the cost values

in successive levels. As we decrease the SNR, the cost values slightly increase in successive levels. However, the

rate of increase is not as significant as those observed in Tables 6–9. Hence, the modification of the performance

criteria is a supportive tool for providing robustness in the presence of noise. In Figure 9, the modified version

of the performance plots of each agent of the HDM model whens4,l = 1 is shown.
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Figure 9. Performance plots of the modified HDM model’s agents when the SR for the LDR D4 is taken as 1.

It is also possible to increase the performance for low or medium SNR levels by further modifications in

the performance plots. This time we prefer redefining the safety region for the LDR D4 while keeping s4,l = 1

and assume that the safety region for D4 is augmented such that it includes the whole LDR D4 . In this case,

if we reevaluate the cost values for the agents, we will obtain the results shown in Tables 14–17. The modified

versions of the performance plots of each agent of the HDM model with these further modifications are shown

in Figure 10.

Table 14. Cost values of the HDM model’s agents for the training scenarios when noise with uniform distribution is

applied and the SR for LDR D4 is taken as 1 and the safety region for D4 includes the whole LDR in the performance

plots in each level.

Cost SNR (medium) SNR (low)
First-level agent 5392 6738
Second-level agent 5276 6836
Third-level agent 5231 6898
Fourth-level agent 5147 7042
Fifth-level agent 5128 7130
Sixth-level agent 5099 7134

Table 15. Cost values of the HDM model’s agents for the first set of validation scenarios when noise with uniform

distribution is applied and the SR for LDR D4 is taken as 1 and the safety region for D4 includes the whole LDR in the

performance plots in each level.

Cost SNR (medium) SNR (low)
First-level agent 5552 6883
Second-level agent 5502 7042
Third-level agent 5432 7105
Fourth-level agent 5391 7261
Fifth-level agent 5389 7359
Sixth-level agent 5377 7375

From Tables 14–17, it is clear that the undesirable effect of noise is extremely removed and a continuous

tendency of enhancement in the cost values, except for a few level transitions, is observed when the SNR is
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medium. Moreover, even though the undesirable effects of noise are not totally removed for the cases with low

SNR levels, the increase in the cost values is decelerated.

Table 16. Cost values of the HDM models agents for the training scenarios when noise with Gaussian distribution is

applied and the SR for LDR D4 is taken as 1 and the safety region for D4 includes the whole LDR in the performance

plots in each level.

Cost SNR (medium) SNR (low)
First-level agent 5224 6565
Second-level agent 5116 6627
Third-level agent 5054 6676
Fourth-level agent 5013 6791
Fifth-level agent 5008 6875
Sixth-level agent 4992 6895

Table 17. Cost values of the HDM models agents for the first set of validation scenarios when noise with Gaussian

distribution is applied and the SR for LDR D4 is taken as 1 and the safety region for D4 includes the whole LDR in

the performance plots in each level.

Cost SNR (medium) SNR (low)
First-level agent 5386 6712
Second-level agent 5339 6832
Third-level agent 5281 6884
Fourth-level agent 5259 7011
Fifth-level agent 5266 7100
Sixth-level agent 5265 7133

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

Decision

R
el

ia
b

il
it

y 
V

al
u

e

Performance Plot of HDM Model Agents

First level agent
Second level agent
"ird level agent
Fourth level agent
Fi#h level agent
Sixth level agent

Figure 10. Performance plots of the modified HDM model’s agents when the SR for the LDR D4 is taken as 1 and the

safety region of the decision region D4 includes the whole decision region.

6. Conclusions

The HDM model has satisfactory results for the training and the 2 sets of validation scenarios. Cost values

improve at all of the hierarchical levels and the HDM model also outperforms the single-level agent. However,

in the presence of noise, the unmodified HDM model’s agents are unable to improve the cost values as the

hierarchical levels increase. The flexibility provided by the agent development processes in this model is
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employed to deal with this problem. Without new optimization stages, only the static component in the

agent development process is modified to make the information transfer between hierarchical levels more robust

to noise. The modification of the performance criterion depends on experimentation and a priori information

about the input data elements. It is observed that too many input data elements are concentrated in a specific

region. Based on this information, the performance criterion is adapted and enhanced cost values are obtained

for high and medium SNR levels without the application of special techniques (i.e. filtering). For a low SNR, the

results are still not at desired levels, but they are promising, as the increase in cost values are not as significant

as they are observed when the original unmodified performance criterion is employed.

In the future, we will focus on improving the performance of the HDM model, especially in the presence

of noise, by new strategies. For this purpose, new agent structures that can contribute to further improvement

can be used. The decision may be a combination of different preferences due to different agents, which might

boost the robustness. However, there is always an extra computational effort necessary in order to develop new

agents for overcoming the noise problem.

DM problems where more than one criterion has to be considered together are called multicriteria DM

problems. Multicriteria DM methods focus on achieving a balance point that satisfies each criterion at a desired

or at least sufficient level by relaxing, or reducing the importance, or assigning a consensus degree of satisfaction

[26]. Experts are extensively employed for multicriteria DM problems in order to quantize different alternatives

and to combine the alternatives via weights to assess the relative importance of criteria [27]. The HDM model

is also very suitable for multicriteria DM problems.

In this study, the agent structure utilizes a single input data element to perform its decision for an instant.

However, the agent structure can be modified in such a way that it can use a sequence of data to perform the

decision at a particular instant. These agents can be more effective in noisy environments. However, as agents

turn out to be more complex, the computation time required to develop such agents is expected to be larger.
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