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Abstract: The overall system status calculated by power flow analysis is the most basic information used for all decisions

taken by power system operators and planners. While conventional AC power flow solutions are computationally

tractable, approximate DC models are employed in many applications, such as optimal power flow studies and unit

commitment problems, mainly due to the linear nature of DC models. These models do not provide any information

on the reactive power and voltage magnitude quantities and occasionally inaccurate results of the active power values.

This paper presents an efficient power flow approach compromising both the conflicting aspects of speed and accuracy.

The proposed model adopts bus voltage magnitudes and phase angles as state variables. Given the nonlinear nature

of transmission system losses, an iterative method for solving the problem is proposed. Simulation results reveal that

the proposed method outperforms conventional methods from an execution time viewpoint, while preserving acceptable

accuracy. Different system conditions are also investigated to reveal the robustness and reliability of the proposed model.
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1. Introduction

Power flow is the most underlying requirement in the present energy management systems (EMSs) and planning

tools. Mathematically, power flow calculations require the solution of a set of nonlinear algebraic equations,

where numerical methods should be used to approximate the solutions. These methods fall into 2 categories:

starting methods and higher order methods. The most popular approaches are Gauss–Seidel from the 1st

class and Newton–Raphson from the 2nd class. The performances of all power flow models are assessed from

3 aspects: convergence rate, possibility of divergence in abnormal conditions, and complexity of expressions.

Gauss–Seidel was the first power flow method used in digital computers. This method suffers from a slow

convergence rate along with the inability to cope with unusual conditions such as negative reactance branches

[1]. Newton–Raphson, the most common technique in power system analysis packages, assumes small signal

linearity to deal with nonlinear algebraic relationships. Although this method has a good convergence rate,

it can be diverged when the power system is highly loaded [2]. Moreover, solutions obtained from Newton–

Raphson are highly dependent on the initial guess [2]. With the DC power flow model, although it considerably

simplifies the solutions, it leads to approximate results. Moreover, the DC power flow model is not applicable

in voltage-dependent problems such as reactive power planning.

To overcome the aforementioned difficulties, various tricks have so far been proposed in the literature.

To reduce the probability of divergence of the power flow problem, specifically in abnormal operating situations
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and ill-conditioned systems, the following techniques were employed: optimization techniques and mathematical

procedures such as Levenberg–Marquardt [3], quadratic programming [4], nonlinear programming (NLP) [5],

principal component analysis [6], the optimal multiplier method [7], and heuristic methods such as genetic

algorithm [2], particle swarm optimization [8], and biogeography-based optimization [9]. These techniques,

despite an acceptable performance in reducing the risk of divergence, are still of very low convergence speed.

Moreover, their performance is highly dependent on user expertise.

In addition to the above techniques, various strategies including initial voltage selection [10], rectangular

relations accommodation [11], Jacobian matrix modification [12], and node ordering [13] have been investigated

in order to improve the convergence speed of the power flow. The authors in [14] reviewed some approaches

and compared their effectiveness on convergence speed enhancement and divergence chance reduction. The

authors in [15] formulated the power flow problem as a set of autonomous ordinary differential equations to

solve ill-conditioned or badly initialized power flow cases.

Parallel processing schemes were exploited in [16–21] to accelerate the computation of the power flow

solution. In [22–24], different versions of the generalized minimal residual method equipped with some acceler-

ating schemes were used to speed up the traditional Newton method. The necessity of advanced technology and

communication protocols are the main weaknesses of these approaches. An efficient framework for updating

the Jacobian matrix, resulting in a power flow solution in a faster manner, was proposed in [25]. In [26], a

combination of the Newton–Raphson method and successive substitution technique was used to achieve a rapid

solution.

Among the conducted research, [27] and [28] proposed suitable models from the view point of relationship

complexity. Empirical knowledge of the system was used in [27] to enhance the accuracy of the DC power flow.

However, the proposed methodology is not applicable in cases where adequate information is not available.

Moreover, the method is not sufficiently accurate, specifically in voltage magnitudes and reactive powers. A

linear power flow model with line flows and square of voltage magnitudes as state variables was introduced in

[28]. Similar to the DC model, the developed formulation is linear but incorporates both active and reactive

quantities similar to the conventional AC model. This method has a large number of variables/equations, which

is undesirable in large-scale networks.

Techniques reviewed above have particular pros and cons. Some suffer from the computational complexity

and burden, while others suffer from bad convergence in abnormal conditions. Metaheuristic methods do not

guarantee a feasible solution and their performance strongly depends on the user experiences.

Taking into account the above issues, it is very desirable to develop an approach with the advantages of

low computational burden as well as high convergence rate. In this paper, this requirement is focused on devising

a new mathematical power flow model. The proposed method adopts voltage magnitudes and phase angles as

the problem state variables and uses approximate relationships. Given the nonlinear nature of transmission

system losses, an iterative method for solving the problem is proposed. Numerical analyses are conducted

through 3 case studies, and the obtained results are compared with those of conventional approaches.

The paper is outlined as follows. A brief description of the present power flow models is given in Section 2.

The proposed framework is drawn in Section 3. Simulation results are presented in Section 4. The importance

of the proposed model is discussed in Section 5 and Section 6 outlines the concluding remarks.
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2. Review of traditional power flow methods

The power flow model consists of a set of nonlinear equations. These equations formulate active and reactive

line flows based on bus voltage magnitudes and phase angles. In most power system studies, transmission lines

are represented by a pi-equivalent circuit, shown in Figure 1. Using this representation, the equations of the

active and reactive flows at the sending and receiving ends of line l , connecting bus i to bus j , are written as:

psl = gl V
2
i − gl Vi Vj cos(δi − δj)− bl Vi Vj sin(δi − δj), (1)

prl = −gl V
2
j + gl Vj Vi cos(δj − δi) + bl Vj Vi sin(δj − δi), (2)

qsl = −bl V
2
i − gl Vi Vj sin(δi − δj) + bl Vi Vj cos(δi − δj), (3)

qrl = bl V
2
j + gl Vj Vi sin(δj − δi)− bl Vj Vi cos(δj − δi). (4)

s

lp ll jxr +
r

lp

2

ll jbg +

2

ll jbg +
iV jV

Figure 1. The pi-equivalent circuit of a transmission line.

In the literature, many different techniques have been proposed for solving the above equations and

deriving system state variables, i.e. bus voltage magnitudes and phase angles. In the following subsections, the

most popular methods for the power flow problem are briefly reviewed. Their comprehensive presentations are

accessible in most power system analysis textbooks.

2.1. The Newton–Raphson power flow model

In this method, an error function using the Taylor expansion of the bus power injections is formed. Next, a set

of starting values for the system variables, usually 1 per unit for the voltage magnitudes and 0 radians for the

phase angles, is picked. At the end, the mismatch of known quantities with the calculated values should be 0 by

adjusting the independent variables. Setting the mismatches to 0 necessitates an iterative procedure. In each

iteration, a set of linear equations should be solved. The coefficients of these equations form the well-known

Jacobian matrix. In addition to the probable drawbacks discussed in the introduction, calculating all entries of

the Jacobian matrix in each step is computationally expensive [1].

2.2. The fast decoupled power flow model

A fast decoupled power flow model is a way to speed up the previous model. The method neglects interactions

between the active power and voltage magnitude, as well as between the reactive power and voltage phase

angle. Since the differences between the bus voltage phase angles of a line end are usually small, it assumes

that cos(δi − δj) = 1. Further assumptions of the fast decoupled method are available in [1]. Using these

simplifications, the Jacobian matrix will be constant and it is therefore calculated just once. While the fast

decoupled method needs less arithmetic to solve the power flow problem, it may fail to converge, especially

when some of the underlying assumptions are not correct [1].
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2.3. The DC power flow model

Further simplification over the previous model is performed by assuming that the voltage magnitude at all of

the buses is equal to 1 per unit. This assumption leads to dropping equations associated with the reactive

power and voltage magnitude criteria. Considering that the resulting equations are linear, they are providing

a noniterative power flow algorithm. The DC power flow is attractive from the computational burden aspect;

however, it gives no indication of the reactive powers and voltage magnitudes.

2.4. Line flow-based power flow model

In this subsection, the line flow-based power flow model is discussed in brief and interested readers are referred

to [28] for a detailed explanation. Contrary to conventional models, the line flow-based power flow adopts active

line flows, reactive line flows, and the square of the voltage magnitudes as state variables. In the following, the

relationships between these variables are provided to declare the model.

Bus i  suB j 

r
l

r
l q jp +  

ll jxr +  

Figure 2. Branch l connecting bus i to bus j .

Referring to Figure 2, the branch voltage drop yields to:

Vi∠δi = Vj∠δj +
psl − j.qsl
Vj∠− δj

. (rl + j.xl). (5)

Eq. (5) can be rewritten as follows:

2(rl.p
s
l + xl.q

s
l ) + V 2

j − V 2
i = −(rl. p

loss
l + xl . q

loss
l ). (6)

In Eq. (6), the number of equations is equal to the number of branches. Bus phase angles across a branch are

related to the problem variables as:

sin(δi − δj) =
xl.p

s
l − rl.q

s
l

Vi. Vj
. (7)

Assuming Vi = Vj = 1 and sin(δi − δj) = δi − δj , Eq. (7) can be rewritten as:

δi − δj = xl.p
s
l − rl.q

s
l . (8)

As the sum of the phase angle differences in the branches of a loop is equal to 0, Eq. (8) leads to the following

statement: ∑
l∈L

Cmlxl . p
s
l −

∑
l∈L

Cmlrl . q
s
l = 0. (9)

In Eq. (9), the number of equations is equal to the number of links in the network representative graph.

Active and reactive power balance equations at bus i are expressed in Eqs. (10) and (11), respectively.

Note that the last term in the reactive power balance equation is considered to model shunt compensators and

line charging susceptances.

pgi − pdi −
∑
l∈L

Ail . p
s
l −

∑
l∈L

A′
il . p

loss
l = 0 (10)
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qgi − qdi −
∑
l∈L

Ail . q
s
l −

∑
l∈L

A′
il . q

loss
l + qshunti = 0 (11)

The active and reactive power balance equations are written in all of the buses, except the slack bus. Therefore,

the total number of power balance equations is equal to twice the number of buses minus 2.

Eqs. (6) and (8)–(10) provide linear relationships between the active and reactive line flows, square of

bus voltage magnitudes, and active and reactive line losses. The total number of variables and equations in

these expressions are n + 4nb − 1 and n + 2nb − 1, respectively. Given the greater number of variables, the

system of equations can still not be solved. Active and reactive power losses corresponding to line l , from bus

i to bus j , are determined as:

plossl =
ps

2

l + qs
2

l

V 2
i

rl, (12)

qlossl =
ps

2

l + qs
2

l

V 2
i

xl. (13)

The number of above equations is 2nb ; hence, a system of formulations with an equal number of variables and

equations is now developed. However, given the nonlinear nature of Eqs. (12) and (13), an iterative method

for solving the problem should be developed. To this end, the loss values are treated as known parameters and

updated after each iteration. This assumption makes the model linear, and it can be solved easily. Note that

the initial values of the losses are set to 0. The iterations should continue until the settlement of the losses.

Coefficients of the line flow-based model are constant and calculated just once. The results obtained by

this technique are relatively accurate; however, the number of variables and equations are greater than those in

the previous approaches.

3. Proposed formulation

The importance of providing a computationally efficient power flow model that simultaneously addresses voltage

and reactive power criteria was stressed in the preceding sections. The purpose of this section is to present a

new power flow model in which neither voltage nor reactive power quantities are sacrificed, such as what is done

in the DC model, nor does the number of equations increase like the line flow-based model.

In the first step, let:

Vi Vj sin(δi − δj) = δi − δj , (14)

which is a good approximation since (δi− δj) is usually small and voltage magnitudes are near 1 per unit. Note

that the above approximation is used in both DC- and line flow-based power flow models [28]. Substituting Eq.

(14) into Eqs. (1)–(4):

psl = gl V
2
i − gl Vi Vj cos(δi − δj)− bl δi + bl δj , (15)

prl = −gl V
2
j + gl Vj Vi cos(δj − δi) + bl δj − bl δi, (16)

qsl = −bl V
2
i − gl δi + gl δj + bl Vi Vj cos(δi − δj), (17)

qrl = bl V
2
j + gl δj − gl δi − bl Vj Vi cos(δj − δi), (18)

The power exchange in a transmission line in both active and reactive forms is shown in Figure 3. The direction

of the arrow indicates the direction of the flow. According to Figure 3, one can derive active and reactive power
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losses in a transmission line using the following equations:

plossl = psl − prl , (19)

qlossl = qsl − qrl . (20)

By replacing power flows from Eqs. (15)–(18) into Eqs. (19) and (20), the active and reactive losses could be

written as:

plossl = gl V
2
i − gl Vi Vj cos(δi − δj)− bl δi + bl δj + gl V

2
j − gl Vj Vi cos(δj − δi)− bl δj + bl δi, (21)

qlossl = −bl V
2
i − gl δi + gl δj + bl Vi Vj cos(δi − δj)− bl V

2
j − gl δj + gl δi + bl Vj Vi cos(δj − δi), (22)

from which:

plossl = gl V
2
i + gl V

2
j − 2 gl Vi Vj cos(δi − δj), (23)

qlossl = −bl V
2
i − bl V

2
j + 2 bl Vi Vj cos(δi − δj). (24)

The above equations can be rearranged to form the following equivalents for Vi Vj cos(δi − δj):

Vi Vj cos(δi − δj) =
1

2

(
V 2
i + V 2

j

)
− 1

2gl
plossl , (25)

Vi Vj cos(δi − δj) =
1

2

(
V 2
i + V 2

j

)
+

1

2bl
qlossl . (26)

By substituting Eq. (25) into Eqs. (15) and (16) and Eq. (26) into Eqs. (17) and (18), the equations of the

active and reactive flows are derived as:

psl =
1

2

(
gl V

2
i − gl V

2
j

)
+

1

2
plossl − bl δi + bl δj , (27)

prl = −1

2

(
gl V

2
j − gl V

2
i

)
− 1

2
plossl + bl δj − bl δi, (28)

qsl = −1

2

(
bl V

2
i − bl V

2
j

)
− gl δi + gl δj +

1

2
qlossl , (29)

qrl =
1

2

(
bl V

2
j − bl V

2
i

)
+ gl δj − gl δi −

1

2
qlossl . (30)

So far, the power flow equations are linearized in terms of the bus voltage phase angles, square of the bus voltage

magnitudes, and active and reactive line losses.

It is worth noting that the only approximation used in the proposed formulation is to replace Vi Vj sin(δi−
δj) with δi − δj , which does not threaten the accuracy of the results. This can clearly be seen in the results

presented in the subsequent section.

The derived formulation is in terms of the square bus voltage magnitudes. This parameter, although

adopted as a state variable in the line flow-based power flow [28], does not reflect the ultimately required
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practical knowledge of the network condition. Therefore, since the voltage magnitudes at all of the buses are

always around unity, any function in terms of Vi , e.g., f(Vi) = V 2
i , could be approximated by the Taylor series:

f(Vi)
∼= f(1) +

df

dVi

∣∣∣∣
(1)

. (Vi − 1). (31)

Accordingly,

V 2
i
∼= 2Vi − 1. (32)

Next, Eqs. (27)–(30) can be expressed as follows:

psl = gl Vi − gl Vj +
1

2
plossl − bl δi + bl δj , (33)

prl = −gl Vj + gl Vi −
1

2
plossl + bl δj − bl δi, (34)

qsl = −bl Vi + bl Vj − gl δi + gl δj +
1

2
qlossl , (35)

qrl = bl Vj − bl Vi + gl δj − gl δi −
1

2
qlossl . (36)

Zl 
IS IR

s
l

s
l q jp + r

l
r
l qjp +

 

loss
l

loss
l q jp +

Figure 3. Active and reactive power flow in a transmission line.

So far, the active and reactive line flows in both the sending and receiving ends are linearly expressed in

terms of the bus voltage magnitudes, phase angles, and line losses.

Substituting Eqs. (33)–(36) into Eqs. (10) and (11) and arranging that in a matrix representation, the

active and reactive power injections at the load buses and active power injection in the voltage-controlled buses

are as follows:  p1
p2
...

 = [G]

 V1

V2

...

− [B]

 δ1
δ2
...

+A′ Ploss, (37)

 q1
q2
...

 = −1 . [B]

 V1

V2

...

− [G]

 δ1
δ2
...

+A′ Qloss, (38)

where
Gij = −gl|

i
l−→j

, (39)

Gii = −
∑
j

Gij , (40)
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Bij = −bl|
i

l−→j
, (41)

Bii = −
∑
j

Bij . (42)

At a load bus, the active and reactive power injections are known and the voltage magnitude and phase angle are

unknown. Moreover, at a voltage-controlled bus, the unknown quantities are the reactive power injection and

voltage phase angle, while the active power injection and voltage magnitude are known. Removing equations

associated with the slack bus and those associated with the reactive power injection at the voltage-controlled

buses, the number of unknown variables and equations is 2nb + 2npq + npv and 2npq + npv , respectively.

Since the active and reactive power losses, expressed in Eqs. (12) and (13), are nonlinear, the proposed

power flow model is nonlinear and cannot be solved using the direct matrix inversion technique. Three different

alternatives exist to overcome this difficulty.

a) Neglecting losses: In this approach, plossl and qlossl at all lines are assumed to be 0 and the problem is

solved just by a single matrix inversion. Based on numerical evidences, the error level of this method is

noticeably less than that of the DC model.

b) Iterative approach: Loss values are initially set to 0 and updated after each iteration using Eqs. (12) and

(13). Hence, they are treated as known parameters in each iteration. This assumption makes the model

linear and solvable by means of the matrix inversion technique. The process is terminated when the losses

do not change in successive iterations.

c) Linearized loss equations: Eqs. (12) and (13) are linearized around the point obtained in the last iteration;

then the loss terms are considered in the linear model as the problem variable.

The 1st and 3rd solutions result in a linear format and thus are appropriate for applications in which the

nonlinearity of the conventional AC model leads to an excessive complexity. The unit commitment problem is

an example for such applications.

In this paper, the second alternative is adopted since it incorporates the line losses, while not imposing

further calculations. Accordingly, the active and reactive power losses at all lines are neglected in the first

iteration. Next, the remained set of linear equations is solved, and losses are accordingly updated. The iterative

process is followed until a settlement in the transmission line losses is achieved.

It is worth noting that the main reason behind the divergence occurrence of the Newton–Raphson or

Gauss–Seidel methods relates to the feature of starting the procedure from an initial guess. These approaches

assume a starting point for unknown voltage magnitudes and phase angles, usually 1 per unit with a 0 radian.

In highly loaded or ill-conditioned systems, these assumptions may be inappropriate, causing divergence of the

solution. In contrast, 0 losses are assumed as the initial values in the line flow-based and the proposed power

flow models, which is a more realistic assumption. Therefore, the convergence of these methodologies is very

likely.1

4. Simulation results

In this section, 3 case studies, consisting of the Wood Wollenberg 6-bus system, the IEEE 118-bus network, and

the Polish power grid are conducted. For the sake of the comparison and verification of the proposed model, the

1 Indeed, no diverged case was observed during our various simulations.
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results obtained from the Newton–Raphson, fast decoupled, line flow-based, and DC power flow solutions are

presented as well. All of the simulations are conducted in MATLAB on an Intel Core 2 Duo 2.20-GHz processor

with 2-GB RAM.

The mean absolute error of the parameters are calculated and compared in various models. The final

results of the Newton–Raphson technique are taken as the benchmark for comparison. As only active line flows

are calculated in the DC model, bus voltage magnitudes and reactive line flows are assumed to be 1 per unit

and 0 MVAR, respectively. The robustness of the proposed formulation is investigated at different loading

conditions on the Wood Wollenberg system.

5. The Wood Wollenberg 6-bus system

The 6-bus test system, depicted in Figure 4, is a small 230-kV power system including 11 transmission lines, 3

generating buses, and 3 load buses. The technical data of the components and the operating conditions were

taken from [1].

Bus 2 

Bus 1 

Bus 4 

Bus 3 

Bus 6 

Bus 5 

G 

G 

G 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10

11

Figure 4. Single-line diagram of the Wood Wollenberg 6-bus system.

The results obtained by different methods are given in Tables 1–3, where bolded columns show the worst

result from the accuracy aspect.

Table 1. Voltage magnitudes obtained by different methodologies for the Wood Wollenberg 6-bus system (kV).

Bus #
Power flow technique
Newton-Raphson Fast decoupled Line flow-based DC model Proposed model

1 241.5 241.5 241.5 230 241.5
2 241.5 241.5 241.5 230 241.5
3 246.1 246.1 246.1 230 246.1
4 227.6 227.4 227.6 230 227.2
5 226.7 226.5 226.6 230 226.2
6 231.0 230.9 231.0 230 230.5

Compared to the results associated with the Newton–Raphson method, all of the approximate iterative

approaches, i.e. fast decoupled, line flow-based, and the proposed model, lead to acceptable solutions from

an accuracy point of view. However, the DC method has more error in the active powers and provides no

implication of the voltage and reactive power values.

60



SAFDARIAN et al./Turk J Elec Eng & Comp Sci

Table 2. Active line flows obtained by different methodologies for the Wood Wollenberg 6-bus system (MW).

Line #
Power flow technique
Newton–Raphson Fast decoupled Line flow-based DC model Proposed model

1 28.7 28.8 27.6 25.3 27.5
2 43.6 43.4 44.0 41.6 44.0
3 35.6 35.5 36.0 33.1 35.9
4 2.9 2.9 2.4 1.9 2.4
5 33.1 32.9 32.8 32.5 32.8
6 15.5 15.4 15.4 16.2 15.4
7 26.2 26.2 26.1 24.8 26.1
8 19.1 19.1 18.9 16.9 18.9
9 43.8 43.6 43.5 44.9 43.5
10 4.1 4.1 4.3 4.0 4.3
11 1.6 1.7 2.1 0.3 2.0

Table 3. Reactive line flows obtained by different methodologies for the Wood Wollenberg 6-bus system (MVAR).

Line #
Power flow technique
Newton–Raphson Fast decoupled Line flow-based DC model Proposed model

1 –15.4 –15.5 –14.9 0 –14.9
2 20.1 20.7 19.9 0 19.9
3 11.3 11.7 11.0 0 11.1
4 –12.3 –12.3 –12.1 0 –11.6
5 46.1 47.9 46.0 0 46.0
6 15.4 15.8 15.2 0 15.4
7 12.8 12.4 12.3 0 12.7
8 23.7 23.2 23.0 0 22.7
9 61.5 60.7 60.6 0 60.1
10 –4.9 –4.9 –5.0 0 –4.9
11 –9.9 –9.7 –9.7 0 –9.6

Based on Table 1, the voltage magnitudes obtained by the proposed method are almost accurate. The

most inaccurate voltage magnitudes using the proposed methodology are associated with buses 5 and 6 with

a 0.5-kV error. While the maximum error indices for the fast decoupled and line flow-based methods are 0.2

and 0.1 kV, respectively, it should be noted that all of these errors are negligible; hence, all of the approximate

methods, except for the DC model, are acceptable from a voltage magnitude accuracy aspect.

As shown in Table 2, the accuracy of the results obtained by the proposed and conventional methods is

almost identical and higher than that of the DC model. The maximum error in the active line flows obtained

by the fast decoupled method is related to lines 2, 5, and 9, which is equal to 0.2 MW. The less accurate active

line flow associated with the line flow-based model, the DC model, and the proposed methodology occurs in

line 1, where the errors are 1.1, 3.4, and 1.2 MW, respectively.

Referring to Table 3, the reactive power flows obtained by all of the methods, except for the DC model,

are relatively accurate. The most inaccurate result of the fast decoupled method relates to line 5 with a 1.8-

MVAR error. The worst performance of the developed technique and line flow-based model relates to the line

9 reactive flow with errors of 1.4 and 0.9 MVAR, respectively.

Table 4 provides the mean absolute error level of the results obtained by the proposed methodology and

its comparison with the conventional methods.
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Table 4. Error comparison of the methods for the Wood Wollenberg 6-bus system.

Parameter
Mean absolute error
Fast decoupled Line flow-based DC model Proposed model

Voltage magnitude (kV) 0.083 0.017 7.633 0.165
Active line flow (MW) 0.091 0.373 1.482 0.337
Reactive line flow (MVAR) 0.473 0.182 21.045 0.287

According to Table 4, the DC model experiences bigger error values in comparison with the others. In

the case of voltage magnitudes, the fast decoupled, line flow-based, and proposed methods have almost similar

accuracy. However, in the case of active and reactive line flows, the accuracy of the fast decoupled method

is much better, while the line flow-based and proposed formulations lead to results with relatively the same

accuracy. Consequently, the approximation of the proposed model is trivial and is not a trouble maker.

Table 5 outlines other measures to compare the proposed methodology with the existing ones.

Table 5. Comparison of other measures for the Wood Wollenberg 6-bus system.

Parameter
Power flow technique
Newton–Raphson Fast decoupled Line flow-based DC model Proposed model

Variable no. 8 8 15 5 8
Equation no. 8 8 15 5 8
Iteration no. 3 5 5 1 3
Run time (s) 0.0059 0.00400 0.00396 0.00014 0.00032

Referring to Table 5, the least computational time and the least number of variables, equations, and

iterations belong to the DC model; however, the accuracy of the results is the worst. The proposed technique

significantly decreases the computational time of the power flow study. In addition, compared to the line flow-

based model, the proposed model has a lower number of variables, equations, and needed iterations. Accordingly,

the effectiveness of the proposed formulation is verified.

5.1. The IEEE 118-bus test system

This system has 118 buses and 186 transmission lines. The system demand is served through 99 buses and the

generation capacity of 9966.2 MW is distributed among 54 buses. The annual peak load of the system is equal

to 4242 MW. Moreover, the system has 3 voltage levels of 138, 161, and 345 kV. Because of the system’s large

dimension, just the mean absolute errors associated with 4 techniques are presented in Table 6.

Table 6. Error comparison of methods for the IEEE 118-bus system.

Parameter
Mean absolute error
Fast decoupled Line flow-based DC model Proposed model

Voltage magnitude (p.u.) 0.00005 0.00002 0.0231 0.00009
Active line flow (MW) 0.0951 0.4910 3.6107 0.4944
Reactive line flow (MVAR) 0.1007 0.1624 15.117 0.3742

The results presented in Table 6 also verify the satisfactory performance of the proposed methodology.

It can be seen that the most and least accurate methods are the fast decoupled method and the DC model,

respectively. Dimension measures, iteration numbers, and the execution time associated with various methods,

including the proposed technique, are given in Table 7.
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Table 7. Comparison of other measures for the IEEE 118-bus system.

Parameter
Power flow technique
Newton–Raphson Fast decoupled Line flow-based DC model Proposed model

Variable no. 181 181 436 117 181
Equation no. 181 181 436 117 181
Iteration no. 3 5 5 1 4
Run time (s) 0.0594 0.03738 0.05317 0.00125 0.00213

Likewise, for the Wood Wollenberg 6-bus system, numerical evidence verifies that the proposed technique

makes a significant improvement in the computational burden without endangering the accuracy. It is worth

noting that the computational burden of the conventional Newton–Raphson method is considerably heavier

than that of the new algorithm. The reason goes back to the computational effort required for updating the

coefficient matrix at each iteration, in which all elements of the matrix are achieved by nonlinear expressions

and in terms of the results associated with the previous iteration. In the case of the fast decoupled method,

the large number of iterations for convergence increases the run time. This case study, owing to its dimension,

demonstrates the applicability of the proposed method for real-world problems.

5.2. The Polish power grid

Here, the proposed method is applied to the Polish power grid, corresponding to the configuration in the winter

2003–2004 evening peak condition. The system comprises 3 voltage levels, including 110, 220, and 400 kV,

and has 2746 buses and 3279 transmission lines. The system demand is served through 370 buses and the

demanded load of 24,873 MW is distributed among 1993 buses. The technical data for the system are available

at http://www.pserc.cornell.edu/matpower/case2746wp.m. Given the large dimension of the grid, just the mean

absolute errors associated with 4 techniques are provided in Table 8.

Table 8. Error comparison of methods for the Polish power grid.

Parameter
Mean absolute error
Fast decoupled Line flow-based DC model Proposed model

Voltage magnitude (p.u.) 0.00002 0.00363 0.0614 0.00815
Active line flow (MW) 0.00071 0.1024 1.8131 0.1270
Reactive line flow (MVAR) 0.00605 0.2701 25.607 0.1900

The results presented support the satisfactory performance of the proposed technique. Similar to the

preceding case studies, the fast decoupled method and the DC model are the most and least accurate methodolo-

gies, respectively. Table 9 provides dimension measures, iteration numbers, and the execution time associated

with various techniques, including the proposed one.

Table 9. Comparison of other measures for the Polish power grid.

Parameter
Power flow technique
Newton–Raphson Fast decoupled Line flow-based DC model Proposed model

Variable no. 5121 5121 8934 2745 5121
Equation no. 5121 5121 8934 2745 5121
Iteration no. 4 15 6 1 4
Run time (s) 0.72 1.14 0.46 0.08 0.21
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Like the Wood Wollenberg 6-bus and IEEE 118-bus systems, the proposed method brings a significant

reduction in the run time without jeopardizing the accuracy. Referring to the results, the fast decoupled method

has the largest run time, mainly due to the large number of iterations required for convergence.

5.3. Different loading conditions

To reveal the robustness and reliability of the proposed method, the Wood Wollenberg 6-bus test system is

adopted and repeated at the following loading conditions: 40%, 60%, 80%, 100%, and 120% of the base case.

Table 10 outlines the mean absolute error associated with all of the parameters. The results indicate that by

changing the system loading condition, the accuracy of the results obtained by the new methodology is not

degraded.

Table 10. Performance of the proposed method at various loading conditions - mean absolute error.

Parameter 120% loading 100% loading 80% loading 60% loading 40% loading
Voltage magnitude (kV) 0.13113 0.16493 0.17584 0.15770 0.11304
Active line flow (MW) 0.59481 0.33746 0.23592 0.12791 0.06531
Reactive line flow (MVAR) 0.33278 0.28670 0.24050 0.22841 0.22176

6. Discussion

The numerical evidence in support of the effectiveness of the new proposed power flow model was presented in

the preceding section. However, one might ask the following questions. What is the necessity of developing a

new linear power flow model? Why do we need to reduce the power flow execution time?

At first glance, one might deduce that the runtime reduction from 0.72 s to 0.21 s, in the case of the

Polish power grid, is a minor improvement and not strong enough for involving some level of approximation.

In response, we should say that errors introduced in the outcomes of the proposed method are trivial. On the

other hand, power flow equations are the basis for many other applications such as unit commitment problems

and composite system reliability evaluation studies. In these problems, having a nonlinear conventional AC

model leads to an excessive complexity and avoids the utilization of efficient numerical tools. Accordingly, the

proposed power flow method could be helpful.

Talking about the unit commitment problem, conventional AC equations cause the entire model to lie

within the mixed integer NLP format, which is very rigorous to solve. However, applying the proposed power

flow model, the unit commitment problem is converted to the mixed linear programming fashion and can be

tackled using powerful commercial solvers.

Composite system reliability assessment encounters a tremendous number of contingencies, which should

be analyzed and judged to see whether they result in system success or failure. The judgment is based on the

power flow solutions. In such a case, even a marginal improvement in the computational burden and execution

time of the power flow problem is extremely desirable. Owing to the considerable acceleration observed by the

proposed model, it could hence be an effective tool in enhancing the reliability studies.

7. Conclusion

A new formulation for the power flow studies is proposed in this paper. The new approach is more attractive

in terms of calculation effort and execution time. The presented technique offers a system of approximate

equations wherein the cumbersome system of nonlinear equations related to the conventional AC power flow

model is avoided. A comparative study with conventional models of Newton–Raphson, fast decoupled, line
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flow-based, and DC model is conducted in the paper. Moreover, simulations on different loading conditions are

conducted to demonstrate the robustness of the proposed model. Numerical evidence verifies the acceptable

accuracy of the developed formulation. The superiority of the proposed methodology appears more, implying the

point that its results are obtained in a faster procedure. While the Newton–Raphson and fast decoupled methods

suffer from a computational burden, the line flow-based method suffers from a huge number of variables and

equations, and the DC model has inaccurate results, while the developed formulation provides an appropriate

compromise between accuracy and speed. The presented method, due to the high speed and low error results, is

suitable for studies such as power system reliability assessment, in which thousands of possible outage scenarios

must be analyzed in a reasonable time span. Future works will be focused on the application of the model in

the reliability evaluation of composite generation and transmission systems.

Nomenclature

Indices and sets
i, j Indices of the bus
l Index of the branch
m Index of the loop

Parameters
n Number of buses
npv Number of voltage-controlled buses
npq Number of load buses
nb Number of branches
Ail Element of the bus-line incidence matrix,

which is equal to 1, if bus i is the sending bus
of line l , –1 if bus i is the receiving bus of line
l , and 0 otherwise

A′
il Modified Ail with all ‘+1’ set to 0

Cml Element of loop-line incidence matrix, which is
equal to 1 if loop m and line l are collinear,
–1 if loop m and line l are not collinear, and 0
otherwise

xl Reactance of line l
rl Resistance of line l

gl Real part of the admittance of line l
bl Imaginary part of the admittance of line l
B Imaginary part of the system admittance matrix
G Real part of the system admittance matrix

Variables
Vi Voltage magnitude of bus i
δi Voltage phase angle of bus i
qshunti Shunt compensator and line charging

susceptance reactive power generation at bus i
pi Active power injection at bus i
qi Reactive power injection at bus i
pgi Active power generation at bus i
qgi Reactive power generation at bus i
pdi Active power demand at bus i
qdi Reactive power demand at bus i
psl Active power flow of line l at the sending end
qsl Reactive power flow of line l at the sending

end
prl Active power flow of line l at receiving end
qrl Reactive power flow of line l at the receiving

end
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