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Abstract:This study improves the performance of primal–dual interior-point method in inverse conductivity problems

via replacing the conventional, complicatedly calculated scalar regularization parameter with a diagonal matrix termed

“multi-regularization parameter matrix” here. The solution of the PD–IPM depends considerably on the choice of the

regularization parameter. Calculation of the optimal regularization parameter, which yields the most accurate solution,

is not simple due to the long iterative nature of the algorithm. The objective optimization, which is implemented by

minimizing error in the solutions over an extensive range of the regularization parameters, yields the most accurate

solution that can be achieved, although this method is not applicable in reality due to lack of knowledge about the actual

conductivity field. However, the modified algorithm not only solves the problem independently using the regularization

parameter, but also increases the accuracy of the solution, as well as its sharpness in comparison to the objective

optimization.

Key words: Inverse conductivity problem, primal–dual interior-point method, multi-regularization parameter matrix,

regularization parameter

1. Introduction

Electrical impedance tomography (EIT) seeks to determine internal conductivity distribution within a medium

by successively injecting low amplitude currents and reading the resulting voltages through a number of

electrodes attached to the surface of the medium. The calculation of conductivity from the boundary data

is a highly ill-posed inverse problem, and must therefore be regularized. Classical smoothness regularization

techniques often act as low-pass filters on linearized forward operators in order to dampen higher singular values

producing noisy observations [1]. The resulting model is thus spanned by the singular vectors with slow spatial

changes. Concisely, quadratic regularization stabilizes the solution at the expense of spatial resolution.

However, total variation (TV) regularization can stabilize the ill-posed problem without imposing any

smoothness on the solution. This method thus preserves discontinuities on the reconstructed profiles, producing

a sharp transition of conductivity over the intermedium boundaries [2].

Minimization of the TV function was first introduced by Rudin et al. [3] and Dobson and Santosa [4]

in the context of image restoration. The solution was iteratively approached based on the steepest descent
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method, with time as an evolution parameter and a fixed step size forced to take small value to preserve the

solution around the trust region. As a result, the convergence of this algorithm was slow.

To overcome non-differentiability of the absolute TV function at zero, Acar and Vogel [5] and Dobson

and Santosa [6] substituted the absolute gradient function |∇f | with a polynomial (

√
|∇f |2 + β). However,

this may impose some numerical errors on the solution.

Newton’s method was employed by Vogel and Oman [7] and Chan et al. [8,9]. This algorithm is more

stable than the steepest descent, but has a small convergence region with respect to β [10]. Chan et al. [8]

modified this algorithm so that it is initialized with larger values for β , and continues with decreasing values.

Chan et al. [9] applied a line search to the algorithm as well. Vogel and Oman [7] proposed a new algorithm, the

so-called lagged diffusivity, which overcame the poor performance of the steepest descent method, as well as the

small stability region of Newton’s method. The algorithm was primarily formulated as a fixed-point iteration,

directly setting the gradient of the objective function to zero. However, it still converges slightly and becomes

unstable for the small values of β .

Addressing the problem of minimizing the sum of Euclidean norms based on a technique, the so-called

primal–dual interior-point method (PD–IPM) provides a new class of methods for TV regularization [11–12].

Nowadays, the PD–IPM is widely employed in biomedical inverse problems [13,14]. Borsic [1] applied this

algorithm to 2D EIT problems, while Graham [15] modified the algorithm so that it could be applied to 3D

EIT models. Borsic et al. [16] showed that this algorithm works better than the lagged diffusivity method

with regard to both stability and accuracy. This algorithm involves 2 objective functions, the so-called primal

(P) and dual (D). The primal function takes greater values than the dual over all feasible points of the dual

variables, except for a single point on which the 2 functions take the same value [11,17–19].

The primal variables are initialized by a 1-step quadratic reconstruction controlled by regularization

parameter αL , while αT is employed to tune the amount of TV regularization for the 2 discussed objective

functions with the same value. A challenge for the PD–IPM algorithm is that estimation of the optimal

regularization parameter is more complicated than in the classical regularized problems, since the PD–IPM

algorithm involves 2 distinct objective functions. The example in the EIDORS website entitled “Total Variation:

choice of hyperparameters” is devoted to this difficulty, and shows that the solution is considerably contingent

on the choice of the TV regularization parameter αT , while variations in αL give rise to smaller changes in the

solution [20].

Applying the classical quadratic regularizations, subjective methods such as the “fixed noise figure”

proposed by Adler and Guardo [21] or objective methods like the “Best RES” introduced by Graham and Adler

[22] are the most efficient methods for optimizing the solution. Blur radius or RES, however, is merely efficient

for measuring the spatial resolution of images reconstructed by traditional quadratic regularization techniques

[21,23,24], being unable to measure piecewise constant images produced by the TV regularized algorithms. In

such cases, calculation of relative error (RE) is more efficient. However, the objective method is time-consuming

as well as impracticable in reality due to lack of information about the actual conductivity field. Furthermore,

the present study shows that the fixed noise figure method yields solutions that do not adapt for the amount

of noise in data, under- or over-regularizing the solution.

This study proposes a straightforward scheme in which the scalar regularization parameter αT is replaced

by a diagonal matrix extracted from the square sensitivity matrix JTJ. Graham [15] and Javaherian et al. [25]

showed that the optimal amount of regularization needed for varied positioning of a contrast moving throughout
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the underlying domain is not constant. For example, applying the algorithm to the side contrasts requires a

greater amount of regularization to reach the optimized solution in comparison to the central contrasts. In the

present study, the square sensitivity matrix is divided into multiple submatrices so that the mean of entries in

each of the resulting submatrices is the regularization parameter to be assigned to the region of the domain

corresponding to that submatrix. Bera et al. [26] previously proposed a diagonal regularization matrix whose

diagonal entries are determined by the maximal values of each of the acquired submatrices. They demonstrated

the preference of their method over the identity regularization matrix for a number of regularization parameters

through an iterative Gauss–Newton algorithm regularized by the quadratic norm [26]. Javaherian et al. [27]

proposed a 2-step smoothness penalty for a 1-step quadratic algorithm, in which the first step shows that the

mean of the submatrices rather than the maximum of those suitably moderates the condition number of the

Hessian matrix, so that the sensitivity of the solution to the regularization parameter changes is considerably

reduced. However, the need for the regularization parameter selection was not removed. Here, a modified

variant of the technique is applied to an iterative total variation regularized solver, i.e. the PD–IPM, in a

promoted way so that it directly tunes the amounts of regularization needed over the various regions of the

domain, without the need for the selection of the scalar regularization parameter.

Applying simulated or experimental data, the images are reconstructed until a specified stopping criterion

is satisfied. The amount of regularization in the PD–IPM algorithm is conducted by the MRPM matrix, as

well as multiple specified scalar TV regularization parameters, i.e. the value selected in the EIDORS website,

the optimal value calculated by objectively minimizing the RE over a wide range of regularization parameters,

and the value calculated by the fixed noise figure method (NF = 1) (see [15,21,22,28,29]). The objective

optimization yields the most accurate solution among all the scalar regularization parameters. Note that the

objective optimization and the fixed noise figure methods are quite lengthy, being inefficient for such an iterative

algorithm. Furthermore, the objective optimization cannot be applicable in reality since the actual conductivity

distribution is unknown. However, the modified algorithm does not need to be optimized, straightforwardly

solving the problem. The results clarify that the proposed multi-regularized approach has, surprisingly, increased

the accuracy of the reconstructed images as well as their sharpness when compared to all the selected scalar

regularization parameters, even those optimistically calculated by the objective optimization.

2. Method

2.1. PD–IPM (standard algorithm)

The PD–IPM algorithm is implemented in the present study as a class of normalized difference algorithms, which

are widely applied to EIT applications, owing to their stability with respect to boundary errors. The PD–IPM

has been previously employed in EIT by Borsic et al. [16]. Total variation function TV (σ) is considered as

jumps of conductivity changes over all edges of the finite element mesh. This function is made up in the form:

TV (σ) =
∑
i

|Liσ|, (1)

where L is a sparse matrix with a size e × n , in which each row corresponds to each edge in the FEM mesh,

being formed as Li = [0, . . . , 0, li, 0, . . . , 0,−li, 0 . . . 0]. The 2 non-zero entries pertain to the 2 finite elements

connected by edge i, noting that li is the length of edge i in the mesh.
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The 2 objective functions, the so-called primal and dual, are defined as:

P (σ) = argmin
σ

1

2
∥Jσ −V∥2 + αT

∑
i

|Liσ|, (2)

D(σ) = max
χ:|χi|≤1

min
σ

1

2
∥Jσ −V∥2 + αT

∑
i

χi |Liσ|, (3)

where σ is the vector of the sought-after conductivity changes of the FEM elements with a size n × 1, V is

the normalized measurement data having a size m× 1, J is the normalized Jacobian matrix with a size m×n ,

and χ is the vector of bounded scalar dual variables with a size e× 1, which satisfies the following equation for

each i .
|Liσ| = max

χi:|χi|≤1
χiLiσ. (4)

The primal objective function typically takes greater values than the dual function. Exceptionally, the 2

functions take the same value on a single point, which is the optimal point for both primal and dual. Setting

the difference between the primal and dual objective functions to zero, the solution of the algorithm will be the

joint vectors (σ, χ), which satisfy the 3 conditions:

|χi| ≤ 1i = 1, . . . , e; (5)

JT (Jα−V) + αTLα = 0 (6)

(|Liσ| − χi |Liσ|) = 0i = 1, . . . , e. (7)

Eq. (5) is feasibility condition, Eq. (6) is first order condition for the inner minimization on σ , and

Eq. (7) maintains a condition called “complementarity condition”. The non-differentiability of |Liσ| in the

neighborhood of zero is addressed by replacing that with

√
|Liσ|2 + β , leading to a smoother condition, the

so-called “centering condition”.

Applying the Gauss–Newton method yields an iterative algorithm with the following updates at iteration

k :

δσk = −
(
JTJ+ αT

[
LTE−1

k FkL
])−1 (

JT (Jδσk −V) + αT

[
LTE−1

k Lσk

])
, (8)

δχk = −χk +E−1
k Lσk +EkFkLδσk, (9)

where

Ek = diag

(√
|Liσ|2 + β

)
, (10)

Fk = diag

1− χ
(k)
i Liσk√

|Liσk|2 + β

 . (11)

The primal values are initialized by a 1-step quadratic reconstruction conducted by regularization parameter

αL , while the dual values start at zero, the inner point of the bounded region. To update the dual variables in

a way in which the dual feasibility condition is retained, Borsic et al. [16] calculated the exact step length to

the dual bounds by applying a method proposed by Andersen et al. [12], the so-called step length rule.
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The high stability of the algorithm allows its progression with a greater number of iterations. The primal

objective function iteratively converges with the progression of the algorithm until the iteration where the

following stopping criterion, the convergence condition, is satisfied.

[
P (σk+1)

P (σk)
− 1

]
≤ 0.01. (12)

2.2. MRPM (modified algorithm)

According to Section 1, estimation of the regularization parameter for the PD–IPM algorithm is more compli-

cated than that of the classical quadratic regularized algorithms. To evade selection of this parameter, the scalar

TV regularization parameter (αT ) is replaced by a diagonal matrix, the MRPM. The proposed scheme suitably

reduces the condition number of the augmented Hessian matrix
(
JTJ+ [MRPM] LTE−1

k FkL
)
through the

updates of the primal function in a way in which accuracy is retained.

Step 1. The square sensitivity matrix Z = JTJ is calculated, and the diagonal entries are then extracted.

Each diagonal entry corresponds to each element in the FEM mesh. The diagonal entries are sorted in ascending

order, and the finite elements are mutually numbered according to their values on the diagonal of the square

sensitivity matrix.

Step 2. By calculating the new Jacobian matrix (J) around a homogeneous conductivity over the modified

FEM mesh, the new square sensitivity matrix Zsorted will again have a size equal to the number of FEM

elements. By dividing the square sensitivity matrix of size n into X submatrices of size Y , the FEM mesh

made up of n elements is segmented to X distinct subdomains having Y elements as follows:

Zsorted =



S11 · · · S1j · · · S1X

...
. . .

... · · ·
...

Si1 · · · Sii · · · SiX

... · · ·
...

. . .
...

SX1 · · · SXj · · · SXX

 , (13)

where the submatrices are denoted by Sij , and their subscript indicates the location of each submatrix over

the square sensitivity matrix.X and Y are often selected such that n = XY and X − Y take the minimum

value. In this study, the FEM models are constructed by employing m-file “mk common model”, available on

the EIDORS website [24]. This m-file produces 2D meshes in which the total number of elements is square, so

that X and Y are selected such that X = Y =
√
n . This situation fails when the algorithm is applied to 3D

FEM models, so the minimal of X − Y is calculated.

Step 3. Each submatrix [Sij ]Y×Y is replaced by a matrix Wijwith equal size, i.e.

Wij =


γijI i = j[

0 · · ·
... 0

]
Y×Y

i ̸= j
, (14)

where γij is the mean of the entries over the submatrix Sij , and I is the identity matrix of size Y .

Step 4. The multi-regularization parameter matrix, the so-called MRPM here, is made up of matrices
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Wij as follows.

MRPM =



W11 · · · 0 · · · 0
...

. . .
... · · ·

...
0 · · · Wii · · · 0
... · · ·

...
. . .

...
0 · · · 0 · · · WXX

 . (15)

Step 5. The scalar TV regularization parameter (αT ) in Eq. (8) is replaced by the MRPM matrix so

that the updates of the primal and dual variables are conducted by the elaborated matrix.

2.3. How does the scheme work?

Suppose that an impulse contrast moves from the center to the boundary of a circular finite element model

made up of 1024 elements, and 16 frames of this movement are taken so that finite elements aligning a radius of

the model are successively selected to represent an impulse contrast with a conductivity of 0.85 Sm−1 for each

of the taken frames. To calculate the optimal regularization for each of the frames, a classical quadratic norm

regularized algorithm, the maximum a posteriori, is successively applied to the frames over an extensive range of

the regularization parameters. This attempt has been objectively implemented based on the Best RES method

discussed in Graham and Adler [22] by applying 51 regularization parameters evenly spaced from –5 to 0 on a

logarithmic scale. Generally, this method does not regard practical issues such as execution time or efficiency,

but focuses merely on accuracy of the optimization. Figure 1 reveals that the calculated optimal regularization

parameters are not constant over the entire domain, but depend on the normalized radial positioning of the

impulse contrast at each frame. This fact implies that the amount of regularization applied to various regions

of the model must not be kept constant. According to Figure 1, the optimal regularization calculated at each

frame appreciably increases from the centre to the surface, reflecting the fact that the optimal regularization

depends considerably on the sensitivity of the surface data to the selected impulse contrasts. It was shown here

that the optimal regularization parameter to be assigned to each subdomain can be extracted directly from the

Jacobian (sensitivity) matrix. Accordingly, dividing the square sensitivity matrix having a size equal to the

number of finite elements divides the overall domain into multiple subdomains so that different regularization

parameters are assigned to those subdomains. The regularization parameter assigned to each region is the mean

of entries over the submatrix pertaining to that region.
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Figure 1. The optimal regularization parameter versus the normalized radial positioning of the impulse inclusion.
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3. Results

The PD–IPM algorithm was previously employed in the context of EIT by Borsic et al. [16]. Applying all the

simulated and experimental data, the standard algorithm has first been applied as discussed in Section 2.1. The

modifications were then exerted on the reconstruction algorithm in order to reconstruct images based on the

MRPM scheme discussed in Section 2.2.

3.1. Figures of merits

Relative Error (RE). Applying data for which actual conductivity distribution over the model is known, the

accuracy of the reconstructed image is calculated precisely in terms of RE as:

RE =
∥σreconstructed − σtrue∥

∥σtrue∥
× 100%. (16)

Total variation (TV). This measure is the L1 norm of the conductivity change jumps over the whole domain.

The TV is considered the regularizing term in the primal objective function and is calculated by Eq. (1). This

measure was considered a parameter for comparing the different TV algorithms in Borsic et al. [16]. However,

the present study shows that the TV function is consistently reduced by increases in the regularization parameter

as shown in Figure 2; thus, this measure cannot be robust enough to make a fair comparison between algorithms

with different amounts of regularization. Moreover, artifacts occurring over the whole image are falsely taken

into account by measuring this criterion. It can, however, properly deal with convergence and stability of

iterative TV algorithms.
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Figure 2. The total variation (TV) as a function of the regularization parameter at the14th iteration of the PD–IPM

algorithm applied to the 2D simulated phantom.

Sharpness. The square L2 norm of conductivity jumps (∥Lσ∥2) over the whole of an image will yield a

good estimate of the sharpness of that image, if the number of artifacts over the image is not significant. In other

words, if the image is sufficiently accurate, the sharpness will be a good measure of discontinuity preservation

over the image. For more details, see [16].

3.2. 2D simulated phantom

3.2.1. Forward modeling

The 2D phantom was simulated similarly to those applied by Borsic et al. [16]. The simulated phantom is an

FEM mesh made up of 576 triangular elements. The electrodes were defined based on the shunt electrode model
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(SEM) for convenience, as this approximation does not affect the comparison between the 2 algorithms [30]. A

16-electrode system was simulated, whereby injecting currents and measuring the corresponding voltages was

conducted based on the adjacent drive pattern. The distribution of the conductivity is similar to that defined in

Borsic et al. [16], which is a narrow gap between 2 specified more conductive and less conductive regions, thus

providing a challenge for the reconstruction. The model has a background conductivity of 1 Sm−1 . Borsic et al.

[16] provided sharp conductivity jumps on the interdomain interfaces, so the more conductive and less conductive

regions had conductivities of 1.5 Sm−1 and 0.5 Sm−1 , respectively. However, a more difficult situation in which

the conductivities of the inclusions are moderated to be 1.1 Sm−1 and 0.9 Sm−1 was considered in this study in

order to show that the proposed scheme has the capability of reconstructing smaller conductivity jumps as well.

Note that the TV regularization is typically applicable to piecewise constant conductivity fields having sharp

transitions on their interfaces [6,16]. Figure 3 shows the conductivity distribution of the simulated phantom.

The noise contributed to the measurement data is an additive white Gaussian noise (AWGN). Considering the

difference imaging, which is applied in this study, AWGN is simulated as

Noise = NL× std(V2 −V1)× randn, (17)

where NL is the noise level, std is standard deviation of difference between 2 frames of data, and randn is

pseudorandom values drawn over a standard Gaussian distribution. The data were simulated with 1%, 2%, and

3% noise levels, similar to Borsic et al. [16], as well as 5% in order to appraise the performance of the standard

and the modified algorithms over data with high levels of noise.

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

Figure 3. The 2D simulated phantom made up of 576 elements.

3.2.2. Image reconstruction

The images of the simulated phantom were reconstructed on a mesh matching the forward mesh by applying the

normalized difference method [15,22]. Employing the standard algorithm, the images have been reconstructed

from the simulated noisy data by applying various regularization parameters as follows.

1- Neglecting the less conductive contrast, the 2D model to be imaged is exactly identical to that presented

in the EIDORS example entitled “Total Variation reconstruction 2D”, and the value applied to this special model
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in that example is αT = 10−3 [29]. This value was constantly applied to all the noisy data in the present study.

Since the conductivity distribution as well as the noise level affects the amount of required regularization to

some extent, this value does not yield the most accurate solution.

2- The optimal value was objectively calculated for each instance of the noisy data as follows. The

standard algorithm was successively implemented by a range of the regularization parameter values evenly

spaced with a distance of 0.1 on a logarithmic scale (αT = logspace(−5, 0, 51)), and the RE of the reconstructed

images at the iteration where Eq. (12) is satisfied, i.e. the 14th iteration, was calculated for each of the selected

regularization parameters. Figure 4 shows the RE of the reconstructed images against the applied regularization

parameters. Figures 4(a), 4(b), 4(c), and 4(d) pertain to the images reconstructed by the simulated data

containing 1%, 2%, 3%, and 5% noise levels, respectively. The optimal regularization parameter is the point

that results in the minimum RE over each of these plots. It is clear that the resulting optimal regularization

parameters have been suitably adapted for the different amounts of noise levels in the data, producing the most

accurate image. Although this method is not applicable in real situations since conductivity distribution of

actual models is often unknown, it provides the most accurate solution that can be achieved in simulation, thus

making the most optimistic comparison of the standard algorithm to the modified scheme.
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Figure 4. The relative error of the images versus the logarithmic scaled regularization parameter, reconstructed at the

14th iteration of the PD–IPM algorithm. The data have been corrupted with noise levels of (a) 1%, (b) 2%, (c) 3%, and

(d) 5%.

3- The third value has been calculated by employing the fixed noise figure method using the EIDORS

software. The noise figure is a measure of noise amplification from the data to the reconstructed image; see

[21,28] for more details. Graham and Adler [22] showed that the regularization parameter which leads to

NF = 1 is the best approximation of the optimal regularization. However, this method lacks the ability to
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adapt for the different noise levels in data, resulting in a fixed value for all noise levels. The value calculated

for the 2D model in the present study is αT = 10−4 .

On the other hand, employing the modified scheme, the image has been reconstructed via direct substi-

tution of the scalar regularization parameter by the MRPM matrix, as discussed in Section 2.2.

3.2.3. Observations

Figure 5 shows the images of the 2D phantom, reconstructed at the 14th iteration of the algorithm from the

simulated noisy data having a noise level of 3%. Figure 5(a) shows the image reconstructed by the regularization

parameter assigned to a similar phantom on the EIDORS website [29]; Figure 5(b) exhibits the optimal image

obtained by minimization of the RE values over an extensive range of the regularization parameters; Figure

5(c) has been produced by the fixed noise figure method. However, Figure 5(d), which has resulted from the

direct application of the MRPM matrix, yielded the most accurate image. The images reconstructed from the

other simulated noisy data have not been shown in this manuscript due to space constraints.
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Figure 5. The images of the 2D simulated phantom, reconstructed after the 14th iteration of the PD–IPM algorithm.

The data have been simulated with a noise level of 3%. The amounts of regularization are conducted by: (a) EIDORS

(αT = 10−3) , (b) the objective optimization (αT = 2 × 10−3) , (c) NF=1 (αT = 10−4) , and (d) the modified scheme

(MRPM matrix).
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Figure 6(a) shows the RE of the reconstructed images with the progression of the algorithm for the noisy

data simulated with a noise level of 2%. Figure 6(b) exhibits the sharpness of these images in the same way. The

green curves relate to the images reconstructed by applying the regularization parameter on the EIDORS site,

i.e. αT = 10−3 ; the blue curves correspond to the regularization parameter calculated by the fixed noise figure

method, i.e.αT = 10−4 ; the red curves pertain to the optimal regularization parameter objectively calculated

by the RE minimization. Finally, the black curves have resulted from the images directly reconstructed by

applying the MRPM matrix. Figures 7(a) and 7(b) quantify the images reconstructed from the data simulated

by a noise level of 3% in the same way as Figures 6(a) and 6(b). Similarly, Figures 8(a) and 8(b) pertain to the

images reconstructed from the 5% noisy data. Figure 8(a) clarifies that the fixed noise figure method cannot

adapt for the high levels of noise in data, producing images far from true. Accordingly, the blue curve was

ignored in Figure 8(b), since the sharpness is merely acceptable as long as accuracy is retained, according to

what is discussed in Section 3.1.
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Figure 6. The procedure of the changes in the reconstructed images of the 2D simulated phantom with the progression

of the algorithm in terms of: (a) relative error, and (b) sharpness. The data have been simulated with a noise level of

2%.
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Figure 7. The procedure of the changes in the reconstructed images of the 2D simulated phantom with the progression

of the algorithm in terms of: (a) relative error, and (b) sharpness. The data have been simulated with a noise level of

3%.

It must be remembered that the purpose of employing the TV reconstruction algorithms is to reconstruct

an image with the highest possible preservation of edges. This is performed via minimizing the L1 norm of

conductivity jumps in a way in which the accuracy does not fail. As shown in Figures 6, 7, and 8, using

the standard algorithm, the RE iteratively decreases with the progression of the algorithm through the initial
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iterations, but then slightly increases to produce higher sharpness at the expense of accuracy. In other words,

the accuracy of the images has degraded in a trade-off with preserving the discontinuities over the simulated

domain. This is due to some numerical errors occurring during estimation of the intermedium boundaries.

However, by exerting the proposed scheme based on the MRPM matrix, both the sharpness and the accuracy

have been consistently improved through all the iterations, and the trade-off has been overridden, so that the

interfaces have been reconstructed with much higher accuracy.
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Figure 8. The procedure of the changes in the reconstructed images of the 2D simulated phantom with the progression

of the algorithm in terms of: (a) relative error, and (b) sharpness. The data have been simulated with a noise level of

5%.

It can be seen in Figures 6(b), 7(b), and 8(b) that the MRPM scheme enhances the sharpness of the

images with the iterative progression of the algorithm as well. Applying the simulated noisy data, the sharpness

has been slightly reduced until the 7th iteration, and has then been enhanced abruptly. The fast increases have

then been moderated with the convergence of the algorithm until Eq. (12) is satisfied. It is clear that applying

the modified algorithm based on the MRPM matrix has given rise to a much higher sharpness, producing a

more explicit estimation of discontinuities over the images for all the noisy data, as compared to the standard

algorithm using the scalar regularization parameters.

The merits of the standard and the modified algorithms have also been optimistically compared in Table 1,

as the objective optimization yields the most accurate solution that can be obtained from applying all the scalar

regularization parameters. Note that the objective optimization based on RE minimization is not applicable in

reality due to the lack of information about the actual conductivity distribution. According to this table, when

applying all the simulated noisy data, the modified algorithm has outperformed the standard algorithm in terms

of the RE as well as the sharpness. Note that the modified algorithm is directly implemented by applying the

MRPM matrix, whereas the standard algorithm needs to be optimized by employing numerous regularization

parameters in order to find the optimal regularization point. The accuracy of the MRPM matrix has even held

for much higher levels of noise in data, as will be shown for the 3D simulated phantom.

Table 1. Quantification of the images of the 2D phantom, reconstructed at the 14th iteration of the algorithm.

Objective optimization MRPM optimization

Noise level αT RE (%) TV (σ) ∥Lσ∥2 RE (%) TV (σ) ∥Lσ∥2

1% 2e–5 1.95 5.42× 10−1 3.43× 10−3 1.93 4.68× 10−1 3.36× 10−3

2% 2e–4 2.12 5.00× 10−1 2.78× 10−3 1.96 4.68× 10−1 3.34× 10−3

3% 2e–3 2.20 4.64× 10−1 3.06× 10−3 2.01 4.68× 10−1 3.33× 10−3

5% 2.5e–3 2.29 4.60× 10−1 2.98× 10−3 2.10 4.73× 10−1 3.21× 10−3
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3.3. 3D simulated phantom

3.3.1. Forward modeling

The 3D phantom has been simulated similarly to that presented in the EIDORS example entitled “Compare 3D

image reconstruction”, as it may be more typical for EIT researchers [31]. The simulated phantom is a cylindrical

FEM model, 1 in radius and 3 in height, which is made up of 828 tetrahedral elements. The electrodes were

simulated based on the complete electrode model (CEM) so that each of the electrodes was assumed to have an

area of 0.196× 1, and a contact impedance of 100Ω [30]. The 32 electrodes are equally divided into 2 planes.

The placement of the electrodes as well as the measurement protocol was conducted based on the planar strategy

discussed in Graham and Adler [32]. The model has a background conductivity of 1 Sm−1 . A challenge has

been considered so that the conductivities of the contrast regions have been moderated to be 1.1 Sm−1 and

0.9 Sm−1 , similar to those applied to the 2D phantom, in order to demonstrate that the modified algorithm

has the capability to reconstruct smaller conductivity jumps as well. With the exception of this modification,

the simulated model is exactly the same as the 3D model shown in the mentioned EIDORS example [31], and is

therefore not exhibited in this manuscript due to space constraints. The data were simulated with noise levels

of 2%, 3%, 5%, and 10% in order to compare the performance of the standard and the modified algorithms by

noisy data with different amounts of noise levels.

3.3.2. Image reconstruction

The images of the simulated phantom were reconstructed on a mesh matching the forward mesh by applying the

difference method. Applying each simulated noisy datum, the images have first been reconstructed by applying

the standard algorithm optimized via objectively calculating the optimal regularization parameter. The optimal

regularization parameter is the point that produces the image with the minimal RE at the 20th iteration of the

algorithm, similarly to those applied to the 2D phantom. Note that the convergence condition has been satisfied

at the 20th iteration. The regularization parameter applied in the EIDORS example entitled “Compare 3D

image reconstruction” [31], and the one calculated by the fixed noise figure, have been ignored since they have

given solutions far from the optimal solution.

The modified algorithm has been subsequently employed such that the MRPM matrix was straightfor-

wardly applied to the algorithm in order to adjust the amount of regularization to be applied to various regions

of the model.

3.3.3. Observations

Figures 9(a) and 9(b) show the images reconstructed by applying the objective optimization to the data con-

taining 5% and 10% noise levels, respectively. Mutually, Figures 9(c) and 9(d) display the images reconstructed

by exerting the MRPM scheme on those data. From these figures, the modified algorithm has produced images

with much higher accuracy in comparison to the objective optimization, yielding a more accurate vision of

the contrasts. Note that the exact simulated model can be seen in the example titled “Compare 3D image

reconstruction” on the EIDORS website [31].

Figure 10(a) shows the procedure of the changes in the RE of the images reconstructed from the data

containing a 5% noise level. The red curve corresponds to the images reconstructed by the optimal regularization,

while the black curve pertains to the images reconstructed by applying the MRPM matrix. Furthermore, Figure

10(b) shows the sharpness of these reconstructed images in the same way as in Figure 10(a).
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Figure 9. The reconstructed images of the 3D simulated phantom after the 20th iteration of the algorithm, considering:

(a) 5% noise level in data, objective optimization; (b) 10% noise level in data, objective optimization; (c) 5% noise level

in data, MRPM scheme; (d) 10% noise level in data, MRPM scheme.
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Figure 10. The procedure of the changes in the reconstructed images of the 3D simulated phantom with the progression

of the algorithm in terms of: (a) relative error, and (b) sharpness. The data have been simulated with a noise level of

5%.

As shown in these figures, the modified algorithm has successfully improved the RE, as well as the

sharpness of the images after expiration of a few initial iterations, compared to the standard algorithm. In

applying the other noisy data, the procedure of the changes was similar to that occurring for the noise level of

5%, yielding the values exhibited in Table 2 for the 20th iteration of the algorithm. As shown in this table, the

modified scheme has outperformed the standard algorithm in reducing the RE of the reconstructed images, as

well as enhancing their sharpness.

Table 2. Quantification of the images of the 3D phantom, reconstructed at the 20th iteration of the algorithm.

Noise Objective optimization MRPM optimization

level αT RE (%) TV (σ) ∥Lσ∥2 RE (%) TV (σ) ∥Lσ∥2

2% 1.25e–7 2.22× 10−1 4.91× 10−1 6.45× 10−3 2.20× 10−1 4.75× 10−1 6.32× 10−3

3% 2e–7 2.90× 10−1 4.90× 10−1 6.18× 10−3 2.23× 10−1 4.76× 10−1 6.29× 10−3

5% 4e–7 4.46× 10−1 4.84× 10−1 5.55× 10−3 2.45× 10−1 4.87× 10−1 6.19× 10−3

10% 1e–6 8.65× 10−1 4.63× 10−1 4.38× 10−3 3.74× 10−1 5.46× 10−1 6.04× 10−3

3.4. Experimental results

3.4.1. Golf balls in a pail

A package of experimental data available on the EIDORS website has been considered in order to evaluate

the performance of the modified algorithm in comparison with the standard objectively optimized algorithm

in experimental applications [33]. This package was created at the University of Ottawa. The phantom is a

polyethylene pail, 30 cm in height and diameter, which is filled with 0.9% saline solution. The challenge is to

recover images of 2 small nonconductive contrasts. The contrasts are 2 golf balls, 2 cm in radius, which were

suspended in the solution. Two setups of this package have been selected. Figure 11 shows the reconstructed

images of these setups. Figures 11(a) and 11(b) are the images reconstructed by the objective optimization.

Figure 11(a) pertains to the first setup, while the second setup has led to the image presented in Figure 11(b).

The positioning of the balls is represented by the red circles. These images have either become magnified or have

shifted in comparison to the red circles. Mutually, Figures 11(c) and 11(d) have been reconstructed by applying

the MRPM matrix. Unlike the objective optimization, the images reconstructed by applying the MRPM matrix

have been approximately matched with the red circles. The merits of the 2 algorithms have been compared in

Table 3, in which the reconstructed images after the 15th iteration of the algorithm have been quantified. As

473



JAVAHERIAN et al./Turk J Elec Eng & Comp Sci

shown in this table, in applying both setups, the modified algorithm has successfully improved the accuracy of

the images in terms of the RE as well as the sharpness, compared to the objectively optimized algorithm. In

order to calculate the RE in this experiment, σtrue in Eq. (16) has been approximated by interpolations in

which the finite elements are part of the red circles.
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Figure 11. The images of the golf balls, reconstructed after the 15th iteration of the PD–IPM algorithm. The images

have been reconstructed by the objective optimization, applying (a) Setup 1: A single ball has been placed in the pail,

matching the red circle; (b) Setup 2: Two balls have been placed in the pail, matching the 2 red circles. The images

have been reconstructed by the MRPM matrix, applying (c) Setup 1, (d) Setup 2.

Table 3. Quantification of the images of the golf balls, reconstructed at the 15th iteration of the algorithm.

Objective optimization MRPM optimization

Setups αT RE (%) TV (σ) ∥Lσ∥2 RE (%) TV (σ) ∥Lσ∥2

One ball 4e–4 4.10 5.45× 10−1 7.20× 10−3 3.74 5.41× 10−1 1.02× 10−2

Two balls 4e–4 11.26 1.22 2.23× 10−2 5.76 1.19 2.59× 10−2
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3.4.2. Human lung

At the end of this study, the algorithms were employed in order to reconstruct images of a human lung. The

extracted data are available on the EIDORS website for 34 frames of a breathing cycle of a male subject. The

data have been embedded in an m-file, namely “montreal data-1995” [28]. A challenge arose since the actual

conductivity distribution of the lung frames was not available. Therefore, the accuracy of the images could not

be calculated by the RE introduced in Section 3.1, but was approximately estimated as follows.

Contrast to noise ratio (CNR). Assuming the inhomogeneity area as the one-fourth amplitude set defined

by Adler et al. [24], CNR is written as [34,35]:

CNR =
|meanIR −meanBR|(

ωIRSD
2
IR + ωBRSD

2
BR

)1/2 , (18)

where ωIR is the inhomogeneity area divided by the overall image area, ωBR is the background area divided

by the overall image area, meanIR and SD2
IR are respectively the mean and the square standard deviation of

finite element conductivities that are within the inhomogeneity area, and meanBR and SD2
BR are respectively

the mean and the square standard deviation of elements within the background area.

Coefficient of contrast (COC). COC is defined as the absolute ratio of the mean contrast conductivity to

the mean background conductivity [27], considering the one-fourth amplitude set as the contrast conductivity

[24]. COC is written as:

COC =

∣∣∣∣meanIR

meanBR

∣∣∣∣ . (19)

Figure 12 shows the reconstructed images of the 18th and the 22nd frames of the human breathing data available

on the EIDORS website. The images have been reconstructed by applying the PD–IPM algorithm to a mesh

matching the geometry of the thorax and using the normalized difference method such that the first frame

has been employed as the reference measurement. The images were reconstructed at the 12th iteration of the

PD–IPM algorithm, where Eq. (12) has been satisfied. Considering Figures 12(a) and 12(b), the amount of

regularization has been controlled by the optimal regularization parameter, which results in the maximum value

of CNR over a wide range of the scalar regularization parameters (αT = 1 × 10−3). Figure 12(a) pertains to

the 18th frame of data, and Figure 12(b) has been produced from the 22nd frame. The reconstructed images

depended considerably on the choices of the regularization parameters, so that regularization parameters smaller

than 7× 10−4 or those greater than 2× 10−3 falsely produced indistinguishable images.

Replacing the scalar regularization parameter with the MRPM matrix has produced the images shown in

Figures 12(c) and 12(d), in which the distortions of the air volume boundary have been moderated in comparison

with the best solution of the standard scheme. In other words, the regularization of the algorithm based on the

MRPM matrix has successfully provided more explicit estimation of the air volume boundary compared to the

objective optimization. The artifacts occurring over the images have been reduced by employing the MRPM

matrix as well.

Table 4 shows the quantified values of the images reconstructed at the 12th iteration. The images have

been reconstructed from the 18th, 20th, and 22nd frames of the breathing cycle. As shown in this table, the

modified scheme has successfully overcome the objective optimization with regard to both the CNR and COC.
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Figure 12. The conductivity change images reconstructed after the 12th iteration of the PD–IPM algorithm. The

images have been reconstructed by the objective optimization, applying (a) 18th frame of the breathing cycle, (b) 22nd

frame of the breathing cycle. The images have been reconstructed by the MRPM matrix, applying (c) 18th frame, (d)

22nd frame.

Table 4. The quantified values of the images of the 18th, 20th, and 22nd frames of the breathing cycle, obtained at the

12th iteration of the algorithm.

Number of frame
Objective optimization MRPM optimization
αT CNR COC CNR COC

Frame 18 1e–3 4.4987 7.829 5.391 8.430
Frame 20 1e–3 5.664 7.855 6.795 8.821
Frame 22 1e–3 4.579 7.728 5.474 8.357

4. Discussion

Although L1 regularization schemes like the ones employing the total variation function encounter difficulties

such as the non-differentiability of the absolute function in the neighborhood of zero, these techniques typically

do not bias the solution toward the smoothest way, thus enabling detection of discontinuities over the domain

[36,37].
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The PD–IPM algorithm is the best-known TV regularized method applied in the context of EIT [16]. This

algorithm can be run with much small values of β without imposing any difficulties for stability. The stability

thus holds for a greater number of iterations in comparison with other algorithms such as lagged diffusivity [16].

The optimization of such a long iterative algorithm is thus an important challenge, and has been regarded in

the EIDORS example entitled “Total Variation: choice of hyperparameters” [20].

The present study has initially optimized the standard algorithm via an objective method. The optimal

regularization is the point that produces the image with the minimal RE among an extensive range of the

regularization parameters when the RE values are plotted at the iteration where the convergence condition,

i.e. Eq. (12), is satisfied. Other methods such as the fixed noise figure did not give the optimal solution since

they could not adapt for the different levels of noise in the data. The values selected in the EIDORS website

were far from the optimal point as well. Although the objective optimization is quite time-consuming, and is

therefore not applicable for the lengthy iterative PD–IPM algorithm, it yields the most accurate solution that

can be calculated from the standard algorithm. It is worth noting that the objective optimization is applicable

merely in simulated studies, as the actual conductivity distribution is unknown in real cases. However, this

study applied this method to in vivo measurements such that the images were approximately measured in terms

of the parameters discussed in Section 3.4.2.

The algorithm was subsequently modified so that the scalar regularization parameter was replaced by a

matrix derived from the square sensitivity matrix, according to Section 2.2. It was shown that the amounts of

regularization required to reconstruct images of an impulse contrast moving from the center to the boundary of

a circular model are not constant, but depend considerably on the normalized radial positioning of the impulse

inclusion. This reflects the fact that the amount of regularization required over each region of the domain is

contingent on sensitivity of the boundary measurements to that region. The information regarding the amount

of regularization needed over various regions of the domain can be suitably extracted from the square sensitivity

matrix.

The domain is thus divided into multiple subdomains so that the modified algorithm allocates different

values for each of these subdomains. The value assigned to each subdomain is calculated as the mean of the

square sensitivity matrix entries corresponding to that subdomain. The resulting matrix was termed multi-

regularization parameter matrix (MRPM) here.

Applying the MRPM matrix rather than the scalar optimal regularization parameter surprisingly im-

proved accuracy of the reconstructed images, as well as performance of the algorithm in detecting discontinuities

over the images in both simulations and reality. In other words, the MRPM matrix directly produced images

that are significantly sharper and more accurate than the images reconstructed by the objective optimization

over a wide range of regularization parameters. Surprisingly, even after searching for the best choice of the

scalar regularization parameter, the MRPM scheme has still outperformed the standard algorithm.

5. Conclusion

Indeed, fixing the amount of regularization applied to all finite elements prevents the reconstruction algorithm

from adapting for different sensitivities of the boundary measurements to various regions of the domain. The

performance of the MRPM scheme has even held for the data with a 10% noise level, equivalent to a SNR of

20 dB. This reflects the high capability of the applied scheme in reducing the condition number of the Hessian

matrix, and as a result moderating the ill-posedness of the problem. Note that the objective selection of the

regularization parameter is quite time-consuming due to the long iterative nature of the PD–IPM algorithm,

becoming ineffective in application. Moreover, the objective optimization is not applicable in real situations
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since the conductivity distributions of studied models are often unknown. However, this method was applied in

order to make the most pessimistic comparison between the standard and the modified algorithms.
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