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Abstract: The channel allocation problem in cellular radio systems is NP-complete, and thus its general solution is

not known for even the 2-channel case. It is well known that the link gain system matrix (or received-signal power

system matrix) of the radio network is (and may be highly) asymmetric, and that as the Hopfield neural network is

applied to optimization problems, its weight matrix should be symmetric. The main contribution of this paper is as

follows: turning the channel allocation problem into a maxCut graph partitioning problem, we propose a simple and

effective continuous-time Hopfield neural network-based solution by determining its symmetric weight matrix from the

asymmetric received-signal-power-system matrix. Computer simulations confirm the effectiveness and superiority of the

proposed solution as compared to standard algorithms for various illustrative cellular radio scenarios for the 2-channel
case.
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1. Introduction

Channel allocation is an essential mechanism to improve the system performance of cellular wireless networks and

has been a focus of intensive research in both academia and industry, especially in the last 2 decades. It is well

known that the channel/frequency allocation problem in wireless cellular systems falls in the complexity class of

nondeterministic-polynomial-time-complete (NP-complete) problems (see, e.g., [1] and [2], among others). No

fast solution to NP-complete problems is known. The time required to solve the problem using any currently

known algorithm increases exponentially as the size of the problem grows. This means that no polynomial-time

algorithms are available for finding the globally optimum solution to the channel/frequency allocation problem.

The optimum general solution for even the 2-channel case is not known (see, e.g., [3], p. 359).

There is vast literature in the area of channel/frequency allocation/assignment in various wireless radio

systems. For a survey and further references, see, e.g., [2] and [4]. Various algorithms used in practical systems

are based on simple heuristics such that the mobile/base is assigned to the channel in a distributive fashion

where it experiences the minimum interference. Although these sorts of algorithms perform well in practice in

general, their solutions do not give any guarantee of system performance because they typically depend on the

initial states and thus may suffer from local minima problems. An asynchronous version of such an algorithm

was examined in [5] in detail.

Turning the channel allocation problem into a maxCut graph partitioning problem, the author proposed

a spectral clustering-based method in [6]. Indeed, the channel allocation problem can be viewed as a graph
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multicoloring problem as explained in, e.g. [1]. Spectral clustering was examined for the channel allocation

problem in [6] and it was reported that spectral clustering alone may perform poorly for random base station

locations [6]. On the other hand, the minimum-interference-based channel allocation method may suffer from

local minima problem (since the ultimate solution depends on the initial states) for even simple symmetric

scenarios. Therefore, we need to develop other channel allocation solutions to overcome these challenges. This

paper addresses these issues and proposes a solution based on the well-known continuous-time Hopfield neural

network (HNN). Computer simulations in Section 4 show the superiority of the proposed solution as compared

to both spectral-based solutions and the standard minimum interference algorithms.

The HNN (see [7] and [8]) has been an important focus of research since the early 1980s whose applications

vary from combinatorial optimization to image restoration and from various control engineering optimization

problems in robotics to associative memory systems, among many others. For further information and references

about the HNN, see, e.g., [9], among other related textbooks.

The continuous-time HNN has been successfully applied to various radio resource management problems

in cellular radio systems (e.g., [10] and [11]) and mobile ad-hoc networks (e.g., [12] and [13]), all of which are

NP-complete problems. The VLSI implementation of the HNN has the capacity to find suboptimal solutions in

a few microseconds [11], which is fast enough to establish a new resource allocation on a frame-by-frame basis

in current wireless communication systems for relatively low mobile speeds (i.e. for flat-fading and slow-fading

environments, which means the channel coherence time is much larger than the radio resource management

algorithm’s runtime). Discrete-time HNN and continuous-time HNN have been applied to various channel

allocation related optimization problems (e.g., [14–18]). However, in all these works, the interconnection weights

of the HNN represent the constraints of their formulations including, e.g., dropping call errors [14], spectral

efficiency, co-site constraints, adjacent channel constraints, and co-channel constraints [15,17]. Our approach

to and formulation of channel allocation is totally different. In this paper, our target is to minimize the total

network interference, which yields a HNN whose interconnection weights directly represent the link gains. This

results in a much simpler formulation and implementation. The simulation results show the effectiveness of the

proposed method.

This paper is organized as follows: system modeling for channel allocation is shown in Section 2. The

proposed solution is presented in Section 3. Simulation results are given in Section 4, followed by the conclusions

in Section 5.

2. System modeling for channel allocation in wireless systems

Let us consider a wireless network with N base stations (BSs) as shown in Figure 1. The figure shows a

snapshot of the network with N mobile stations (MSs). For downlink transmission, the transmitter is the BS

and receiver is the MS. In uplink, it is vice versa. In this paper, without loss of generality, downlink transmission

is considered. Let us define link gain from BS j to MS i as gij , modelled as follows (see [19]):

gij =
sijcij

dβij
, i, j = 1, 2, · · · , N, (1)

where sij is the shadow fading term, dij is the distance between the transmitter in cell j to the receiver in

cell i , dβij is propagation loss with path-loss exponent β , and cij is the multipath fading factor. For further

information about modelling of radio wave propagation, see, e.g., [19].
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Figure 1. A wireless network with N BSs and N co-channel MSs.

In this paper, we focus on 2-channel case because the global solution for the 2-channel case is not known

as it is an NP-complete problem (e.g., [1], [3], p. 359). Furthermore, if the number of channels is different than

2, then the same algorithm can be iteratively repeated to find the solution, as explained in [3]. For example,

the bisecting k -means algorithm [20] and its variants like those in [21] are such algorithms that determine the

cluster to be further bisected in the next step according to various criteria defined.

Using the link gains in Eq. (1), we define the interfering link-gain system matrix as G=[gij ] where

gii = 0, i = 1,2,..,N. The interfering link-gain system matrix G is naturally asymmetric due to the random

BS and MS locations, as shown in Figure 1. Considering the 2-channel case, the channel allocation is modeled

as shown in Figure 2. Given the interfering link-gain system matrix G=[gij ], an optimized channel allocation

procedure assigns each of N MSs into 1 of the 2 channels according to a criterion, which would minimize the

network interference.

Link gain   
   matrix 
and indices  of MSs  

(1, 2, …, N-1, N)    

Channel  1 

Indices  of MSs   
in channel  1  

(e.g. 1, 3, …, N-1) 

Channel  
Allocation  

Channel  2 

Indices  of MSs   
in channel  2  

(e.g. 2, 4, …, N) 

][ ijg=G

Figure 2. Channel allocation procedure for 2-channel case.

In our formulation, without loss of generality and for the sake of brevity, we assume that the transmit

powers are fixed. Once allocation of N MSs to L = 2 channels is performed, then total co-channel network

interference, denoted as Intwtot , is given by:

Intwtot =

2∑
s∈1

IS = ptx

2∑
s=1

NS∑
j∈CS

NS∑
i∈CS
(i ̸=j)

gij , (2)
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where ptx is the BS’s fixed transmit power, CS represents the set of MSs assigned to channel/frequency s , NS

is the length of the set CS (i.e. the number of MSs in channel s), gij represents the corresponding link gains,

IS is the sum of the interferences experienced by those MSs using the same channel s , and N1 +N2 = N . We

formulate the channel allocation problem as determining the sets C1 and C2 to minimize the total co-channel

network interference Intwtot in Eq. (2)

min
determineC1andC2

Intwtot (3)

3. HNN-based solution for channel allocation problem

Before presenting the main theorem of the paper, we recall the definition of the terms ‘cut’ and ‘volume’ from

graph theory:

Definition Cut of a graph: Let Gr = (V, E) denote a weighted graph, where V is set of nodes and E

represents the set of edges. In graph theory, a cut means a partition of the nodes of the graph into 2 sets; the

size of the cut is the sum of the edges with a vertex on either side of the partition.

Definition maxCut of a graph: The maxCut is the cut whose size is not smaller than the size of any other

cut.

Definition Volume (vol) of a set: Volume (vol) of a set is equal to the sum of all the edges whose nodes are

in the same set.

Now we are ready to present the main theorem:

Theorem Given an asymmetric interfering link-gain system matrix G (where gii = 0), if the weight matrix

of the continuous-time HNN denoted as W is chosen as

W = D− Ḡ, (4)

where Ḡ = 0.5(G +GT ) and D = [dmn] =


N∑

j=1,(j ̸=i)

ḡij , ifm = n

0, otherwise

, then the HNN minimizes the total

co-channel network interference in Eq. (2).

Proof As in [6], we turn the channel allocation problem into a graph partitioning problem. The entry-wise

1-norm of the interfering link-gain system matrix G is equal to

∥G∥1 =
N∑
i=1

N∑
j=1

gij . (5)

Note that because matrix G consists of interfering link-gains, own-link gains are excluded, i.e. gii = 0 in Eq.

(5). Because the BS’s transmit power ptx is fixed, we could ‘embed’ it into gij just for the sake of brevity.

Then, considering the grouping of BSs into 2 groups C1 and C2 , we write

∥G∥1 =

N1∑
i∈C1

N1∑
j∈C1

gij +

N1∑
i∈C1

N2∑
j∈C2

gij +

N2∑
i∈C2

N2∑
j∈C2

gij +

N2∑
i∈C2

N1∑
j∈C1

gij . (6)
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Since Ḡ = 0.5(G+GT ), Eq. (6) can be written as

∥G∥1 =
∥∥Ḡ∥∥

1
=

N1∑
i∈C1

N1∑
j∈C1

ḡij +

N1∑
i∈C1

N2∑
j∈C2

ḡij +

N2∑
i∈C2

N2∑
j∈C2

ḡij +

N2∑
i∈C2

N1∑
j∈C1

ḡij , (7)

where ḡij = 0.5(gij + gji). Because matrix Ḡ is symmetric,
N1∑

i∈C1

N2∑
j∈C2

ḡij =
N2∑

i∈C2

N1∑
j∈C1

ḡij , and thus we can write

N1∑
i∈C1

N2∑
j∈C2

gij +

N2∑
i∈C2

N1∑
j∈C1

gij = 2

N1∑
i∈C1

N2∑
j∈C2

ḡij = 2

N2∑
i∈C2

N1∑
j∈C1

ḡij . (8)

From Eqs. (6)–(8), we can write

∥G∥1 =
∥∥Ḡ∥∥

1
= constant = I1 + I2 + J, (9)

where I1 =
N1∑

i∈C1

N1∑
j∈C1

gij =
N1∑

i∈C1

N1∑
j∈C1

ḡij and I2 =
N2∑

i∈C2

N2∑
j∈C2

gij =
N2∑

i∈C2

N2∑
j∈C2

ḡij is the total co-channel interference

for channels 1 and 2, respectively; and

J =

N1∑
i∈C1

N2∑
j∈C2

gij +

N2∑
i∈C2

N1∑
j∈C1

gij = 2

N1∑
i∈C1

N2∑
j∈C2

ḡij , (10)

where J represents the total interference, which is eliminated once C1 and C2 are determined by the channel

allocation process.

Now let us consider the weighted graph represented by the symmetric matrix Ḡ . Using the definitions

of cut and the vol above from graph theory (see, e.g., [22] and [3]), Eq. (7) can be written as

vol(G) = vol(C1) + cut(C1, C2) + vol(C2) + cut(C2, C1), (11)

where vol(C1) = I1 , vol(C2) = I2 , and cut(C1, C2) = cut(C2, C1) = J . Thus, from Eqs. (2), (9), (10), and

(11),

∥G∥1 = Intwtot + 2cut(C1, C2). (12)

From Eq. (10):

min {Intwtot } = minC1,C2 {I1 + I2}
≡ maxC1,C2 {cut(C1, C2)}

. (13)

From Eq. (14), we conclude that minimizing the total network co-channel interference is equal to the weighted

maxCut of the graph represented by symmetric matrix Ḡ .

Let us define a discrete-value vector x = [x1 · · ·xN ] such thatxi ∈ {−1,+ 1} . Let C1 and C2 be the

sets of those indices i such that xi = −1 and xi = +1 Then, by definition, the cut of the graph can be written
as

cut(C1, C2) =

N1∑
i∈C1

N2∑
j∈C2

ḡij =
1

2

N∑
i=1

N∑
j=1

ḡij (xi − xj)
2
. (14)
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Becausexi ∈ {−1,+ 1} , we have (xi − xj)
2
= 2

(
x2
i − xixj

)
. Using this in Eq. (14) gives

cut(C1, C2) =
N∑
i=1

 N∑
j=1

ḡij

x2
i−

N∑
i=1

N∑
j=1

ḡijxixj . (15)

Defining dii =
N∑
j=1

ḡij in Eq. (15), we can write

cut(C1, C2) =
N∑
i=1

diix
2
i−

N∑
i=1

N∑
j=1

ḡijxixj . (16)

Rewriting Eq. (16) in matrix form gives

cut(C1, C2) = xT (D−G)x, (17)

where D = diag(dn , n = 1,. . . ,N ) is a diagonal matrix containing the row sums of G, dii =
N∑
j=1

ḡij . From Eq.

(12) and Eq. (17), and using min {Intwtot } = max {−Intwtot } , we conclude that

min
{
Intwtot

}
= min

{
−xT

(
D− Ḡ

)
x
}
. (18)

On the other hand, it is well known that the Lyapunov (energy) function of the continuous-time HNN with

‘high gain’ is

V (x(t)) = − 1

2
fT (x)Wf(x)− dT f(x), (19)

where x ∈ ℜN×1 , W ∈ ℜN×N is the weight matrix of the HNN, d ∈ ℜN×1 , and f(x) = [f(x1)f(x2) · · · f(xN )]
T
,

in which f(xi) = 1− (2/(1 + e−σxi)), σ > 0, is a sigmoid function (i = 1, 2, · · · , N). For a detailed analysis of

the Hopfield energy function, see, e.g. [9], among others. From Eqs. (18) and (19), setting d = 0, we conclude

that if the weight matrix of the continuous-time HNN denoted as W is chosen as

W = D− Ḡ, (20)

where Ḡ = 0.5(G + GT ) and D = [dmn] =


N∑

j=1,(j ̸=i)

ḡij , ifm = n

0, otherwise

, then the HNN minimizes the total

co-channel network interference in Eq. (2). This completes the proof. 2

Using the results in the theorem above, we present a novel HNN-based solution for the channel allocation

problem as follows:

1) Obtain the weight matrix W in Eq. (20) (a central BS collects the measured interference power

information from other BSs and obtains the matrix Ḡ).

2) Set the weight matrix of the continuous-time HNN as the matrix W in eq. (20) and set d = 0.

3) Let the continuous-time HNN evolve by time and determine the channel allocations according to the

outputs of the HNN.
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4. Simulation results

As benchmarks we choose a minimum-interference-channel allocation algorithm due to its wide use in practice

and its high performance in random BS locations scenarios, and spectral clustering-based algorithms [6] due to

their high performance in symmetrical BS locations scenarios and effectiveness in the maxCut graph partitioning

problem. As a minimum-interference algorithm, we chose the basic greedy asynchronous distributed interference

avoidance algorithm (GADIA) from [5].

In our simulations, we examine a radio system borrowed from [6], which is a direct-sequence code division

multiple access system. The link gains are modelled by Eq. (1). In the parameter setting, the path-loss exponent

β = 3 and the shadow fading term sij are produced by a log-normal distribution whose variance is 4 dB, as in

the radio network in, e.g., [6].

Dynamic equations of the continuous-time HNN with N states are given as

ẋ = −Ax+Wf(x) +Bu+ d
y = f(x)

, (21)

where x ∈ ℜN×1 is the state vector, A ∈ ℜN×N is the diagonal self-feedback matrix, W ∈ ℜN×N is the

weight matrix, B ∈ ℜN×M is the input-weight matrix, u ∈ ℜM×1 is the input vector, y ∈ ℜN×1 is the output

vector d ∈ ℜN×1 is a constant, and f(x) = [f(x1)f(x2) · · · f(xN )]
T
, in which f(xi) = k (−1 + (2/(1 + e−σxi))),

kj , σj > 0, is a sigmoid function (i = 1, 2, · · · , N). From the theorem above, the weight matrix W is chosen

according to Eq. (20). Comparing Eq. (18) with Eq. (19), we set B=0 and d = 0.

Example 1 In this illustrative example, there are 10 BSs located on a straight line as shown in Figure

3. BS locations are indicated as stars in squares, and mobile locations are shown as triangles. The channel

allocation results of the basic GADIA [5] and the proposed method are also indicated in Figure 3a and Figure

3b, respectively.
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Figure 3. A snapshot of the 1-dimensional network in Example 1 with 10 BSs. The center BS locations are shown

as stars in squares, and the circles and triangles (in different gray levels) indicate the MS locations with their channel

allocations by (a) basic GADIA [5] and (b) the proposed HNN-based solution.

The circles and triangles (in different gray levels) indicate the MS locations with their channel allocations.

The triangle and circle represent channels 1 and 2, respectively. As seen from Figure 3a, mobiles 4 and 5 (as well

as mobiles 6 and 7), which are next to each other, are allocated into the same channel, which would deteriorate
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the performance. On the other hand, the proposed HNN-based solution gives the globally optimum solution

for this scenario, as seen in Figure 3b. The spectral clustering also gives the same result as the proposed HNN

in this example. The average signal-to-interference + noise ratio (SINR) per mobile station by the proposed

solution in Figure 3b is 4.85 dB higher than that of the reference algorithm (i.e. basic GADIA-type minimum

interference algorithm) in Figure 3a. This corresponds to an average (Shannon) channel capacity increase of

2.5484 [bits/Hz] by the proposed algorithm.

Evolution of the states of the proposed continuous-time HNN whose weight matrix is equal to the weight

matrix in Eq. (20) is shown in Figure 4. Note that Figure 4a shows the states, not the output, of the neurons.

The outputs of the neurons are saturated to (–1, +1) due to the sigmoid function. The evolution of the Lyapunov

(energy) function with respect to normalized time is shown in Figure 4b. As can be seen, the energy function

decreases by time as converging to an optimized solution.
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Figure 4. (a) Evolution of the states of the proposed continuous-time HNN whose weight matrix is equal to the weight

matrix in Eq. (20) in Example 1 and (b) corresponding Lyapunov function in Eq. (19).

In order to compare the average performance of the proposed algorithm as compared to the reference

algorithm for this one-dimensional scenario, we examine 1000 snapshots. At each snapshot, the locations

of the MSs are randomly determined while the BSs’ locations are fixed. Average relative SINR in dB and

corresponding relative channel capacity with respect to that of the reference case (i.e. minimum interference

allocation algorithm) over 1000 independent snapshots are presented in Table 1. The proposed algorithm

outperforms the reference algorithm, and the best performance is obtained by the spectral clustering for this

particular 1-dimensional symmetric BS-location scenario.

Table 1. Relative average SINR gains in dB and corresponding average channel capacity [bits/Hz] with respect to that

of the reference case (minimum interference allocation algorithm) in Example 2 over 1000 snapshots.

N (# of BSs)

Relative
Relative avg. channel capacity [bits/Hz]

SINR [dB]
Spectral clust. Proposed HNN Spectral clust. Proposed HNN

10 (1-dimensional) +2.8658 +2.0695 +1.9508 +1.6180

Example 2 In Example 1 above, the center MSs are located on a straight line (in 1 dimension). In this

illustrative example, the cellular radio system is in 2 dimensions, and there are 25 BSs located on a 5-by-5
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grid as shown in Figure 5. The channel allocation results are also given in Figure 5a and Figure 5b for the

basic GADIA [5] and the proposed method, respectively. Comparing the channel allocations of mobiles 9-14-15,

8-12-13, 17-18-23, and 19-20-24, the basic GADIA-like minimum interference algorithm gets stuck at a local

minima, while the proposed HNN finds the globally optimum solution. The spectral clustering also gives the

same result as the proposed HNN in this example. The average SINR by the proposed solution in Figure 5b

is 1.2697 dB higher than that of the reference algorithm (basic GADIA-type minimum interference algorithm)

in Figure 5a. This corresponds to an average (Shannon) channel capacity increase of 1.1825 [bits/Hz] by the

proposed algorithm.
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Figure 5. A snapshot of the 2-dimensional network in Example 2 with 25 BSs. The BS locations are shown as stars in

squares, and the circles and triangles (in different gray levels) indicate the MS locations with their channel allocations

by (a) basic GADIA [5] and (b) proposed HNN-based solution.

Average relative SINR in dB and corresponding relative channel capacity with respect to that of the

reference case (i.e. minimum interference allocation algorithm) over 1000 independent snapshots are presented

in Table 2. The proposed algorithm outperforms the reference algorithm and the spectral clustering for this

particular 2-dimensional symmetric BS-location scenario.

Table 2. Relative average SINR gains in dB and corresponding average channel capacity [bits/Hz] with respect to that

of the reference case (minimum interference allocation algorithm) in Example 2 over 1000 snapshots.

N (# of BSs)

Relative
Relative avg. channel capacity [bits/Hz]

SINR [dB]
Spectral clust. Proposed HNN Spectral clust. Proposed HNN

25 (2-dimensional) +0.0959 +0.3141 +0.1321 +0.3941

All the simulation results above confirm the effectiveness of the proposed algorithm. The key reason for

the good performance of the proposed algorithm comes from the theorem above. Comparing Eqs. (1), (18),

and (19), the proposed HNN minimizes the total co-channel network interference in Eq. (2).

Example 3 In all the examples above, the BSs locations are located ‘symmetrically’ with respect to a point

or a line. In this example, the BS locations are fully random. We examine different sizes of cellular networks

(N =6 to 24). The area of simulation scenario is 50N [m] by 50N [m], where N is the number of BSs. The

average results are obtained over 1000 random snapshots. The average SINRs in dB and the average (Shannon)
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channel capacity in bits/Hz normalized with respect to that of the basic GADIA case are shown in Table 3.

The proposed HNN-based method outperforms both the basic GADIA-type minimum interference algorithm

and the spectral clustering method for random BS locations for middle-size wireless networks (N =6 to 24).

Table 3. Average SINR gains in dB and average channel capacity [bits/Hz] with respect to that of the reference case

(minimum interference allocation algorithm) in Example 3.

SINR [dB] Average channel capacity [bits/Hz]
N (# of BSs)

Spectral clust. Proposed HNN Spectral clust. Proposed HNN
10 –2.36 +0.63 –1.74 +0.71
14 –4.01 +0.43 –2.32 +0.52
18 –3.92 +0.57 –2.29 +0.65
24 –3.59 +0.62 –2.19 +0.70

5. Conclusions

In this paper, we first turn the channel allocation problem in wireless systems into a maxCut graph partition-

ing problem. Based on the corresponding formulation, we then propose and analyze a simple and effective

continuous-time HNN-based solution by determining its symmetric weight matrix from the asymmetric link-

gain-system matrix (or received-signal-power-system matrix) of the radio network.

Computer simulations for 1-dimensional and 2-dimensional middle-size (N =10 to 25) cellular radio

systems, where the aim is to minimize the total network interference, show that that the proposed HNN-

based solution outperforms the reference algorithm (i.e. the standard minimum-interference-based channel

allocation algorithm) in all cases. Furthermore, the average simulation results also show that the proposed

algorithm outperforms the spectral clustering method for symmetrical BS locations scenarios as the number of

BSs increases (>20), and for all asymmetrical BS locations scenarios for any number of BSs.
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