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Abstract: This paper explores the utilization of demand response in the day-ahead operation of an isolated microgrid

in the presence of wind units. The operation of the network with high penetration wind units (i.e. uncertainty of wind

units) is modeled as a unit commitment problem. In addition, electrical power storage is modeled in a daily power curve

to decrease the effect of uncertainty in the wind units. Due to avoiding large-scale complexities and the deeper study

effect of demand-side management on operations, the considered network is regarded as an isolated microgrid. The

demand-side management is studied as demand shifting. The simulation results and discussion show the flexibility and

advantages of the proposed method.
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1. Introduction

1.1. Motivation

When regulating between electrical power generation and demand, consumption optimization requires changes

in the load pattern. In traditional systems, electricity firms warn consumers about consumption decrease in

peak times with neither encouragement nor penalty. Consumers receive their electric bill once a month or every

2 months without any kind of explanation that shows the type and times of their consumption.

Smart grids provide one mechanism using demand response and power pricing so that all consumers can

participate in following the optimal load patterns. Consumers can get feedback on their usage by receiving

electricity bills showing consumption value and times of load pattern correction. At the home level, consumers

with installed smart counters and interfaces can monitor the status of their electrical devices.

Nowadays, demand response is used as an effective strategy in the correction of load profile. Smart

counters with mutual-relation capability between customers and electricity distribution companies can inform

customers of prices, warnings, and incentives.

Considering this subject, research and study of a comprehensive demand response program that maxi-

mizes users’ profit in electricity markets and bidding at peak and other times could be useful.

1.2. Literature review

Probabilistic criteria to determine the units’ commitment and their production level have been used for nearly

50 years [1,2,3,4,5,6,7,8]. For instance, the probabilistic basis of determining the amount of reserve based on risk

analysis has been used since 1975 [8]. However, computational limits have led to oversimplifications in using
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the probabilistic criteria [2,5,6,7]. The following can be considered as reasons to increase the utilization of the

probabilistic approach in operation:

• Power system restructuring [9,10,11].

• Improvement of computational tools [10,11].

• The need for more use of renewable energy for electric power generation [12].

As reasons for restructuring power systems, increasing efficiency and transparency in development and

operation of power systems can be noted. Thus, use of traditional criteria for deployment of units and reserve

allocation, which are more expensive and lead to reliability different than the expected value, should be

reconsidered. On the other hand, due to the variable nature of renewable energies like wind and solar energy

and the lack of accurate tools to forecast them, a significant amount of uncertainty is added to the system

when they are used. This situation increases the necessity for proper reserve allocation in system management

[13]. With new conditions in power system operation and improvement of computational tools in recent years,

many efforts have been made in probabilistic determination of unit participation in electric power production in

restructured power systems, and new methods have been presented [14,15,16,17]. Thus, the unit commitment

problem in the case of high wind penetration is simulated and solved by considering the uncertainty of wind

power production.

1.3. Contribution

In this paper, demand response in day-ahead operation of an isolated microgrid with wind production is

simulated. The operation of the system considering the high wind penetration is modeled as a unit commitment

problem. In order to reduce the impact of wind power’s uncertainty, electrical energy stores are used. Due to

avoiding the large-scale complexities and the deeper effect of demand-side management on operations, the

considered network is regarded as an isolated microgrid. Additionally, the demand response is studied as

demand shifting.

2. Problem modeling

2.1. Market clearing model

In this paper, a power pool-based electricity market is considered, in which producers offer their power generation

levels to the local microgrid operator. In this section, the unit commitment model is simulated and the cost of

electric power produced during a day is minimized. Constraints associated with this problem are load balance,

production capacity of units and their ramp rates, and minimum on/off time.

In this model, the binary variables of on, off, and unit commitment and the level of power generated

by units are the decision variables. The power generation output is divided into 2 parts: the first part is a

parameter that represents the minimum output level, and the second is a decision variable corresponding to the

output value over the minimum level for each generation unit. The last decision variable in this model is the

unserved energy during each period of time. Thus, the following objective function is considered that minimizes

the operation costs during a 24-h period [18]:

Min :
T∑

t=1

{
NG∑
i=1

( (
πi,t · Pmin

i + CNLi

)
· uci,t

+πi,t · PG
i,t + COni · oni,t

)
+

NB∑
n=1

CNse · nsen,t

}
, (1)
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where
t : time periods, h (alias t’);

i : index of thermal generating units, running from 1 to NG;

n : index of buses, running from 1 to NB (alias r);

πi,t : price offer submitted by unit i at period t;

Pmin
i : minimum output of generating unit i;

CNLi : no-load cost of unit i;

uci,t : unit commitment binary decision variable of unit i at period t;

PG
i,t : output power over the minimum value of unit i at period t;

COni : start-up cost of unit i;

oni,t : start-up binary decision variable of unit i at period t;

CNse : cost of unserved energy for 1 h;

nsen,t : unserved energy in bus n at period t.

The constraints of this model are:

NG∑
i=1

i:(i,n)∈MG

(
Pmin
i · uci,t + PG

i,t

)
−

 ND∑
j=1

j:(j,n)∈MD

PD
j,t − nsen,t


+

NW∑
q=1

q:(q,n)∈MW

(
PW
q,t − SW

q,t

)
−

NB∑
r=1

r:(n,r)∈Λ

fn,r,t = 0,∀n,∀t

, (2)

fn,r,t = Bn,r (δn,t − δr,t) ,∀ (n, r) ∈ Λ,∀t, (3)

−f̄n,r ≤ fn,r,t ≤ f̄n,r,∀ (n, r) ∈ Λ,∀t, (4)

0 ≤ PG
i,t ≤

(
Pmax
i − Pmin

i

)
· uci,t,∀i,∀t, (5)

PG
i,t − PG

i,t−1 ≤ RUpi,∀i,∀t, (6)

PG
i,t−1 − PG

i,t ≤ RDoi,∀i,∀t, (7)

0 ≤ SW
q,t ≤ PW

q,t ,∀q,∀t, (8)

T∑
t′=1

oni,t′ ≤uci,tif {(t ≥ t′ −MOni + 1) and t ≥ t′} ,∀i,∀t, (9)

T∑
t′=1

offi,t′ ≤1− uci,t, if {(t ≥ t′ −MOffi + 1) and t ≥ t′} ,∀i,∀t, (10)

uci,t − uci,t−1 = oni,t − offi,t,∀i,∀t, (11)

{uci,t, oni,t, offi,t} ∈ {0, 1} ,∀i,∀t, (12)

where
MG : mapping of the set of generators into the set of buses;

j: index of consumers running from 1 to ND;
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MD : mapping of the set of consumers into the set of buses;

PD
j,t : power consumed by load j at period t;

q: index of wind units running from 1 to NW ;

MW : mapping of the set of wind units into the set of buses;

PW
q,t : power produced by wind unit q at period t;

SW
q,t : power production spilled from wind unit q at period t;

Λ : set of transmission lines;

fn,r,t : power flow through line n–r at period t;

f̄n,r : maximum capacity of line n–r;

Bn,r : absolute value of the imaginary part of the admittance of line n–r;

δn,t : voltage angle at bus n at period t;

Pmax
i : maximum capacity of generating unit i;

RUpi : upward ramp of unit i;

RDoi : downward ramp of unit i;

MOni : minimum on time of unit i;

MOffi : minimum off time of unit i.

Eq. (2) represents the power balance in each bus over time. Constraints (3) and (4) compute and limit the

power flow through the lines. Constraint (5) limits the maximum output of generating units, and Constraints

(6) and (7) are the upward and downward ramp rate constraints, respectively. The maximum spillage of wind

power is restricted by Constraint (8). Minimum on/off time of units is satisfied with Constraints (9) and

(10), and (11) relates the state of each unit in each hour with the preceding one. Finally, (12) forces the unit

commitment on and off decision variables to take binary values.

2.2. Demand response model as load shifting

The aim of load shifting is to reduce consumption levels during peak hours and move them to off-peak hours.

This leads to flattening the demand profile and therefore lower total operation costs. In this paper, the load-

shifting decision is made based on total daily operation cost. In this way, consumer behavior is modeled as

a centralized decision-making process. This is similar to the event that occurs during the system operator

decision-making process in optimizing the operation costs. Thus, the following equations are added to the

model stated in Section 2.

PD
j,t = Drefj,t +DRup

j,t −DRdo
j,t,∀j,∀t, (13)

where:
Drefj,t : demand submitted by load j at period t without demand response;

DRup
j,t : demand increase for load j at period t due to demand response;

DRdo
j,t : demand decrease for load j at period t due to demand response.

Constraints of the maximum shiftable load from one hour to another hour are as follows:

0 ≤ DRdo
j,t ≤ Bdo

j,t.Drefj,t,∀j,∀t, (14)

0 ≤ DRup
j,t ≤ Bup

j,t .Drefj,t,∀j,∀t, (15)
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where Bdo
j,t and Bup

j,t are the coefficients that represent the maximum variation downward or upward in the

jth consumer demand level at period t due to participation in demand response, respectively, and are numbers

between 0 and 1.

Since in this model the consumer load can only be moved and not curtailed, Constraint (16) ensure that

demand variations are balanced during 1 day only.

T∑
t=1

DRup
j,t =

T∑
t=1

DRdo
j,t,∀j. (16)

Load shifting from some hours to other hours imposes some costs on consumers. In fact, in demand-response

programs, consumers agree to shift their load to other hours only when they impart from incentives. Thus, in

this model, the costs of incentives are added to the objective function. The approaches for modeling of fees for

costs of incentives are different. In this paper, the amount proposed in [18] for load-shifting cost is considered

to be equal to the average of variable generation cost.

Thus, the cost of additional energy consumption during off-peak hours is less than the cost of producing

the same amount of energy by expensive units during peak hours and is also higher than the previous cost of

producing during off-peak hours. Thus, considering the cost of a transaction in objective function ensures that

load shifting continues before committing the most expensive unit during off-peak periods [18].

Thus, the objective function in this section will be as follows:

MinOCDR = OC +
T∑

t=1

ND∑
j=1

CTrt ·DRup
j,t, (17)

where OC is the objective function of the previous model stated in Eq. (1) and CTrt is the cost of transaction

for increasing demand level at period t [18].

2.3. Stochastic programming of 2-stage problems

Stochastic programming problems are distinguished based on the number of stages considered. The 2-stage

stochastic programming problem is one of these types of problems. In this type of stochastic problem, the

decision-making process is done in 2 stages and there is a stochastic process, λ , that is shown by a set of

scenarios, λΩ . Suppose that there are 2 vectors of decision variables, x and y, and the x decision is to be

made before the realization of stochastic process λ , while the y decision is to be made after the realization

of stochastic process λ . Thus, the decision variable y depends on the value of x and realization of stochastic

process λ(ω). The general form of 2-stage stochastic linear programming is as follows:

Minimizexz = cTx+ ε{Q(ω)}, (18)

s.tAx = b, x ∈ X, (19)

Q(ω) = Minimizeyq(ω)
T y(ω), (20)

s.tT (ω)x+W (ω)y(ω) = h(ω), (21)

y(ω) ∈ Y ,∀ω ∈ Ω, (22)

where x and y(ω) are the first- and second-stage decision variables, respectively, and c , q(ω), b , h(ω) , A ,

T (ω) , and W (ω) are the vectors and matrices representing the input data. Each of these vectors and matrices

can depend on the set of stochastic process realization λΩor not [19].
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2.4. Modeling of energy market considering wind power uncertainty

In the model proposed in this paper, the main corrective action considered to cover the uncertainty of the forecast

error of power produced by wind units is the use of electrical energy storage facilities. Storage technologies such

as batteries have very rapid response and are very suitable for small systems like microgrids.

In the proposed model, the variables marked with the symbol ∧ are the second-stage decision variables

of the 2-stage stochastic programming problem. Thus, the objective function will be as follows:

Min :OC

T∑
t=1



NG∑
i=1

( (
πi,t · Pmin

i + CNLi

)
· uci,t

+πi,t · PG
i,t + COni · oni,t

)

+
NB∑
n=1

CNse · nsen,t +
ND∑
j=1

CTrt ·DRup
j,t

+
NS∑
s=1

probs ·


NB∑
n=1


(
P̂ bat,up
n,t,s + P̂ bat,do

n,t,s

)
· Cbat

+CNse · nŝeaddn,t,s


+

ND∑
j=1

CTrt ·
(
ED̂Rup

j,t,s + ED̂Rdo
j,t,s

)





, (23)

where:
s: index of scenarios running from 1 to NS ;

probs : probability of scenario s;

P̂ bat,up
n,t,s : up-reserve of the battery being in node n at period t related to scenario s;

P̂ bat,do
n,t,s : down-reserve of the battery being in node n at period t related to scenario s;

Cbat : cost per kWh of battery charging or discharging;

nŝeaddn,t,s : extra unserved energy in node n at period t related to scenario s;

ED̂Rup
j,t,s : extra demand increase for load j at period t related to scenario s;

ED̂Rdo
j,t,s : extra demand decrease for load j at period t related to scenario s.

As can be seen in Eq. (23), the corrective actions considered include up/down-reserve of batteries,

shedding the amount of consumer demand in addition to the planned amountnsen,t , extra shifting of consumer

demand, and wind power spillage. Thus, the 2-stage stochastic programming problem has 4 main decision

variables of the second stage, which are up/down-reserve of batteries, extra load shedding, extra demand

shifting, and wind power spillage. In addition to Constraints (2) to (16), which should be considered in the

model, the other constraint of this model is:

NG∑
i=1

i:(i,n)∈MG

P̂G
i,t,s +

(
P̂ bat,up
n,t,s − P̂ bat,do

n,t,s

)
−

 ND∑
j=1

j:(j,n)∈MD

P̂D
j,t,s − nsen,t − nŝeaddn,t,s


+

NW∑
q=1

q:(q,n)∈MW

(
P̄W
q,t,s − ŜW

q,t,s

)
−

NB∑
r=1

r:(n,r)∈Λ

f̂n,r,t,s = 0,∀n,∀t,∀s

, (24)

where:

P̂G
i,t,s : power produced by plant i at period t related to scenario s;
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P̄W
q,t,s : power produced by wind unit q at period t related to scenario s;

ŜW
q,t,s : power production spilled from wind unit q at period t related to scenario s;

f̂n,r,t,s : power flow through line n-r at period t related to scenario s.

Eq. (24) shows the load balance in each scenario. Since the change in output power of thermal plants is

not considered as a corrective action, the second-stage variable of power produced by these units, P̂G
i,t,s , must be

equal to the corresponding variable in the first stage and in fact equal to the scheduled value. This assumption

is due to the fact that the corrective actions should not result in a change in the values programmed. Thus, the

following constraint limits the amount of power generated by thermal units:

P̂G
i,t,s = Pmin

i · uci,t + PG
i,t,∀i,∀t,∀s. (25)

Constraints (26) and (27) are added to the model to calculate and limit the power flow through the lines in

each of the scenarios.

f̂n,r,t,s = Bn,r

(
δ̂n,t,s − δ̂r,t,s

)
, ∀ (n, r) ∈ Λ,∀t,∀s, (26)

−f̄n,r ≤ f̂n,r,t,s ≤ f̄n,r,∀ (n, r) ∈ Λ,∀t,∀s, (27)

where δ̂n,t,s is the angle of voltage at node n at period t related to scenario s.

The following constraint limits the maximum spillage of wind power in each scenario.

0 ≤ ŜW
q,t,s ≤ P̄W

q,t,s,∀q,∀t,∀s. (28)

The charging and discharging of the batteries as downward and upward reserve can be modeled as follows:

0 ≤ P̂ bat,up
n,t,s ≤ Cbat

n · ubat,dch
n,t,s · ηdchn ,∀n,∀t,∀s, (29)

0 ≤ P̂ bat,do
n,t,s ≤ Cbat

n · ubat,ch
n,t,s · 1

ηchn
,∀n,∀t,∀s, (30)

ubat,dch
n,t,s + ubat,ch

n,t,s ≤ 1,∀n,∀t,∀s, (31)

SÔCbat
n,t,s = SÔCbat

n,t−1,s −
1

Cbat
n

(
1

ηdch
n

× P̂ bat,up
n,t,s − ηchn × P̂ bat,do

n,t,s

)
,∀n,∀t,∀s, (32)

0 ≤ SÔCbat
n,t,s ≤ 1,∀n,∀t,∀s, (33)

P̂D
j,t,s = PD

j,t + ED̂Rup
j,t,s − ED̂Rdo

j,t,s,∀j,∀t,∀s, (34)

0 ≤ ED̂Rup
j,t,s ≤ B

′up
j,t .DRup

j,t,∀j,∀t,∀s, (35)

0 ≤ ED̂Rdo
j,t,s ≤ B

′do
j,t .DRdo

j,t,∀j,∀t,∀s, (36)

where:

Cbat
n : capacity of the battery in the node n;

ubat,ch
n,t,s : binary variable showing the charging state of battery in node n at period t related to scenario s;
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ubat,dch
n,t,s : binary variable showing the discharging state of battery in node n at period t related to scenario s;

ηchn : charge efficiency of the battery in node n;

ηdchn : discharge efficiency of the battery in node n;

SÔCbat
n,t,s : state of charge of the battery in node n at period t related to scenario s;

P̂D
j,t,s : power consumed by load j at period t related to scenario s;

B
′up
j,t : coefficient of maximum extra increase in jth consumer demand level at period t;

B
′do
j,t : coefficient of maximum extra decrease in jth consumer demand level at period t.

Constraints (29) and (30) limit the up/down-reserve of the batteries, Constraint (31) restricts the charge

or discharge state of batteries in each hour, and Constraints (32) and (33) are applied to calculate the amount

of energy remaining in the battery and limit its level. Eq. (24) is the load balance constraint in the case of

uncertainty in which the amount of power consumed by each consumer is calculated according to Eq. (34)

and replaced. Constraints (35) and (36) have been considered for limiting the maximum amount of increase or

decrease in conditions of randomness. The amount of the extra load increase or decrease is a percentage of the

load increase or decrease planned in first-stage decision making.

3. Numerical studies and simulation

In this section, the model presented in the previous section is simulated on a microgrid system and the results

are discussed and analyzed. First, the studied microgrid is introduced, and then the effects of demand-response

programs and wind power production on the operation of the system will be studied with and without considering

storage.

3.1. Case study

The test system is a low-voltage microgrid that has 3 feeders to supply the electrical energy requirements of

residential, industrial, and commercial sections ....[20]. There are 3 wind units and 5 microturbines to produce

the required electrical energy in this system (Figure 1). Additionally, typical load curves for each feeder of the

network and rate of forecasted production of wind turbines are shown in Figures 2 and 3. It is assumed that

all of the generating units work at unity power factor and no reactive power is generated or absorbed. The

purchased energy costs from the wind units is assumed to be zero, reflecting their operating costs [21,22]. Other

characteristics of the generating units are listed in Tables 1 and 2.

Table 1. Generating unit characteristics.

Unit Unit Min capacity Max capacity Min on Min off Start-up No load cost
ID name (kW) (kW) time (h) time (h) cost (c$) (c$/h)
1 MT 1 50 1000 2 2 200 1700
2 MT 2 35 700 3 3 260 2200
3 MT 3 40 800 2 2 180 1140
4 MT 4 60 1200 4 4 280 1860
5 MT 5 30 600 1 1 220 1320
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Figure 1. The case study low-voltage microgrid.
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Figure 2. Typical load curve for each feeder of the net-

work.

Figure 3. Rate of forecasted production of wind turbines

(WTs).

The installed capacity of the wind units is considered equal. Hourly cost of load shifting CTrt equals the

average of variable generation cost, and the cost of load shedding CNse is considered to be 8 times the cost of

hourly load shifting. To cover the stochastic nature of wind power in operating the system, batteries are used

with a storage capacity of 50 kWh at nodes 2, 4, and 8 and 100 kWh at nodes 9 and 11 to 16. The charge

and discharge efficiency of all of the batteries is assumed to be 85%, and their charging or discharging cost is

considered to be 0.04 $/kWh. It is assumed that the batteries can charge or discharge completely during 1

h. In order to model the impact of the uncertainty of wind production power, 10% error has been applied to

the initial rate of forecasted production of the wind turbines and 100 scenarios have been randomly generated

from a normal distribution. In the next stage, 100 scenarios are reduced to 20 scenarios by the SCENRED tool
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of GAMS optimization software. All of the models are solved using Cplex.12 under GAMS 23.0. In a 2-stage

stochastic linear programming problem, it is possible to reduce a large scenario set to a simpler one that is close

to the original if measured by a so-called probability distance. Under mild conditions in the problem data, it

can be shown that the optimal value of the simpler problem (the one involving the reduced scenario set) is close

to the value of the solution to the original problem (the one considering the original scenario set) if the scenario

sets are sufficiently close in terms of such a probability distance [19].

Table 2. Daily prices of generating units (c$/kWh).

Unit t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12
MT 1 7.33 6.7 5.74 4.98 4.26 5.75 7.57 10.35 11.98 12.92 12.76 14.26
MT 2 7.42 4.69 4.91 4.56 5.2 6.5 6.77 11.53 13.36 11.93 14.9 13.87
MT 3 7.17 5.4 6.22 4.99 5.9 5.05 7.14 9.04 11.75 12.54 14.91 16.41
MT 4 6.78 5.92 6 5.89 4.9 5.85 6.83 10.91 13.22 12.51 14.73 15.9
MT 5 7.31 6.06 7.25 4.71 4.07 5.02 6.23 10.2 12.45 13.04 15.11 15.58
Unit t 13 t 14 t 15 t 16 t 17 t 18 t 19 t 20 t 21 t 22 t 23 t 24
MT 1 12.77 12.72 10.93 11.32 11.12 23.23 18.22 16.13 10.82 10.18 9.09 9.19
MT 2 14.97 12.63 12.8 10.21 11.65 19.54 14.09 12.32 12.38 9.61 8.29 8.12
MT 3 13.39 12.19 11.9 11.52 11.13 20.79 18.4 12.32 12.55 9.03 8.77 8.82
MT 4 13.12 14.86 10.33 9.88 9.08 21.46 19.2 13.56 12.71 9.84 9.6 8.76
MT 5 13.98 14.92 12.35 9.3 8.44 21.44 14.42 13.76 11.71 11.82 9.27 8.23

3.2. Results

In this section, the model of microgrid operation is simulated and the results are presented considering the wind

power uncertainty with and without the use of electrical energy storage. In fact, the storage is used in order

to cover the random volatility in wind power production. This is done by storing the excess energy in periods

of low energy consumption and releasing it during peak times. All of the simulation results are shown in 20

different modes of operation including 4 modes of installed wind power capacity and 5 modes from different

percentages of consumer participation in demand response. These modes are shown in Tables 3 and 4.

Table 3. Different percentages of consumer participation (B).

DR DR1 DR2 DR3 DR4 DR5
B (%) 0 10 20 30 40

Table 4. Different capacities of installed wind power (WP).

Wind Power WP1 WP2 WP3 WP4
Installed capacity (kW) 400 800 1200 1600

The expected values of spilled wind power in a day with and without considering storage are shown in

Figures 4 and 5. This value is calculated as follows:

S̄ =

NS∑
s=1

T∑
t=1

NW∑
q=1

(
probs × ŜW

q,t,s

)
. (37)
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Figure 4. Expected value of spilled wind power without

considering storage.

Figure 5. Expected value of spilled wind power consider-

ing storage.

As can be seen in Figures 4 and 5, storage makes a significant contribution to the reduction of wind

power spillage. By comparing these figures, it can be concluded that in low wind power installation modes, the

storage reduces the total wind power spillage by about 50%.

The decreasing effect of storage on reducing the wind power spillage is due to the constant capacity of

installed storage when the wind power capacity increases.

The storage’s impact on decreasing the wind power spillage is as down-reserve, and the extra wind power

produced due to the wind power prediction error is stored in the batteries and prevents its spillage as well.

Likewise, in lack of power production due to a decrease in wind power, the storage works as up-reserve and

helps to satisfy the load balance constraint.

In Figures 4 and 5, the effect of demand response in decreasing the wind power spillage is clearly visible.

Increasing the demand side participation up to 40% decreases spillage by 30% to 60%.

The average costs of energy supply in the operation horizon with and without considering storage are

shown in Figures 6 and 7. As can be seen, the average cost is reduced when the storage is used. This reduction

is due to the ability to store and release energy during off-peak and peak load hours, respectively. Furthermore,

demand response and increasing the wind power capacity help reduce the average cost of the energy supply.

Demand response’s role in reducing the cost of operation has already been discussed in detail. Reduction in

average cost caused by increasing the installed capacity of wind units arises from considering no operation cost

for wind units.

In Figures 8 and 9, the expected value of additional unserved energy with and without taking storage

into account is shown. This value is calculated as follows:

Tnse =

NS∑
s=1

T∑
t=1

NB∑
n=1

(
probs × nŝeaddn,t,s

)
. (38)

As can be seen in these figures, of the 3 factors including demand response, storage, and increasing the

wind power, 2 factors lead to a decrease and 1 leads to an increase in extra unserved energy.
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Figure 6. Average operational cost without considering

storage.

Figure 7. Average operation cost considering storage.
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Figure 8. Expected value of extra unserved energy with-

out considering storage.

Figure 9. Expected value of extra unserved energy con-

sidering storage.

As mentioned previously, the use of demand response leads to shifting the load consumption from high-

load hours to low-load ones and therefore reduces the unserved energy in peak periods and over the whole

optimization period. Additionally, the use of storage makes it possible to release more energy with lower cost

during peak hours. Thus, storage using a low-cost energy supply reduces the amount of unserved energy.

However, the effect of increasing the installed capacity of wind power units is not as above. In this

case, the increase in range of the uncertain wind power output leads to an increase in the unserved energy and

consequently the need for more regulation of energy production and consumption.

In fact, in this case, the increase in unserved energy is due to increasing the random amplitude decreases

of the wind units’ output. In these hours, the system needs some ancillary services such as load curtailment,

release of stored energy in the batteries, and some load shedding. In other words, the role of load shedding in

this case is similar to demand response and storage when the wind power decreases.
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4. Conclusion

In this paper, the operation of a microgrid system was modeled as a unit commitment problem considering

the high wind power penetration. Storage was used to cover the wind output fluctuations. In covering the

wind output uncertainty, it was shown for this assumed case study that in critical conditions, storage such as

batteries can be very suitable in microgrids. The extra wind power produced due to the wind power prediction

error is stored in the batteries and its spillage is prevented, and in the absence of wind production due to the

decrease of natural wind energy, the storage works as up-reserve to satisfy the load balance constraint. It is

concluded that storage has a great effect on reducing the average cost and the amount of unserved energy.

In addition, increasing the wind power capacity leads to increasing the variations of output power that

require more storage and extra load shedding in order to satisfy the load balance constraint. In this case, average

operation costs are reduced, too. We expected this result, because of the consideration of no operational cost

for the wind units. On the other hand, unserved energy will be increased due to the uncertain range of wind

power output and, consequently, the system needs some ancillary services such as load curtailment, discharging

of stored energy in the batteries, and extra load shedding. Therefore, high penetration of wind power in a

network needs high flexibility from consumers.

Furthermore, it has been shown that the use of demand-response programs can reduce operational costs,

the spillage of wind power, and unserved energy to consumers, but managing them and the costs associated

with implementing them are problems that directly affect consumers. Thus, using all options and demand-side

potentials to improve system performance and efficient operation requires more studies. As future work, we

intend to extend the simulation algorithm to model the problem as multiobjective programming with objective

functions, such as minimizing operation costs and minimizing the daily load curve deviation from its average

value.
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