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Abstract: In this study, a methodology for the tracking control of parallel robots having elastic joints based on the

state-dependent Riccati equation is developed. Structural stiffness and damping characteristics of the joints are modeled

as torsional springs and dampers, respectively. First an open-tree system is obtained by cutting some joints of the parallel

robot open and its dynamic equations are written. Closed loops are then represented as constraint equations. The first

and second derivatives of dependent (unactuated) joint variables are expressed in terms of independent (actuated) joint

variables by making use of the constraint equations. Taking the independent joint variables, the actuator variables,

and their first derivatives as state variables, the dynamic equations are represented in state-dependent coefficient form.

Finally, state-dependent Riccati equation tracking control is presented. A 2-RRR planar parallel robot is taken into

consideration as an example to illustrate the effectiveness of the state-dependent Riccati equation method for the control

of parallel robots having elastic joints.
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1. Introduction

Parallel manipulators have closed-loop configurations. Therefore, they have better positional accuracy and

better heavy load capacity than serial manipulators. Flight simulators, precise machine tools, micro mechanisms,

haptic devices, etc. can be given as examples of the application areas of these manipulators. On the other hand,

these manipulators have workspace limitations and complexities in their dynamics and control. Therefore,

parallel manipulators have attracted the attention of many authors in the past decades.

It was shown in an experimental study that the principle effect on manipulator elasticity results from

the joint elasticity [1]. Moreover, it was shown in an empirical study that when joint elasticity is neglected in

manipulator dynamics, the performance of the manipulator decreases [2]. Therefore, joint elasticity should be

included in the modeling to achieve better positional accuracy.

In recent years, the state-dependent Riccati equation (SDRE) technique has been effectively used in the

design of nonlinear controllers, observers, and filters due to its flexible design property, simplicity, and real-time

implementation capability. The SDRE method received considerable attention after the studies of Cloutier et al.

[3] and Mracek and Cloutier [4]. The capabilities of the method were overviewed by Cloutier and Stansbery [5].

Shamma and Cloutier [6] studied the existence of SDRE stabilizing feedback. Recently, detailed literature on

the method was reviewed by Cimen [7,8]. The method has been used in a class of practical applications having
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nonlinear structures such as autopilot design, integrated guidance and control design, satellite and spacecraft

control, control of small autonomous helicopters, robotics, ducted fan control, control of aeroelastic systems,

process control, control of systems with parasitic effects, control of artificial human pancreas, control of oil

tanker motion, optimal administration of chemotherapy in cancer treatment, and various benchmark problems.

Although the SDRE method has been used in a class of practical applications having nonlinear structures,

application of the method for the control of robots is scarce in the literature. Erdem and Alleyne [9], Terashima

et al. [10], Watanabe et al. [11], Nekoo [12], Cree and Damaren [13], Shawky et al. [14,15], and Fenili and

Balthazar [16] considered serial manipulators in their studies and did not consider joint elasticities. Korayem

et al. [17] considered joint elasticities in the context of a serial manipulator. Therefore, application of the

SDRE method for the control of robots having elastic joints for both serial and parallel manipulators needs to

be investigated.

One method for the control of manipulators having elastic joints is analytical inverse dynamics control

[18–20]. In this method, control torques are represented in terms of end-effector variables. The other method

for control of manipulators having elastic joints is the singular perturbation method [18,21]. In this method,

dynamics of the manipulator are divided into fast and slow dynamics corresponding to the dynamics of the

elastic joints and the rigid manipulator, respectively. First, the fast dynamics are neglected. Then, by assuming

slow variables as constant, fast dynamics are recalculated on a separate time scale for correction.

Hybrid force and motion control of serial manipulators having elastic joints were investigated by Ider

[22], Hu and Vukovich [23], and M and Wang [24]. Adaptive control strategies were used by Chatlatanagulchai

and Meckl [25], Jiang and Higaki [26], Yoo [27], Yena and Chang [28], and Fateh [29] for the control of elastic

joint serial manipulators.

There are very few contributions in the literature for the control of parallel manipulators in the presence

of elastic joints. Ider and Korkmaz [30] studied the trajectory tracking control of a flexible joint parallel

manipulator by using the analytical inverse dynamics method. The major drawback of the inverse dynamics

approach is the large real-time computational burden due to the complex inverse dynamics calculations.

Survey papers related to dynamics and control of manipulators with elastic joints have been written by

Ozgoli and Taghirad [31] and Dwivedya and Eberhard [32].

As seen from this literature review, studies on the control of parallel robots having elastic joints are

very scarce. Its flexible design property, simplicity, and real-time implementation capability make the SDRE

method preferable compared to other control techniques. In this work, performance of the SDRE method for the

tracking control of parallel robots having elastic joints is investigated. To the best of the author’s knowledge,

this is the first work in which the SDRE method is implemented on the control of parallel robots having

elastic joints. Structural stiffness and damping characteristics of the joints are modeled as torsional springs and

dampers, respectively. First, a constrained (closed-loop) system is transformed into an unconstrained (open-tree)

system by disconnecting arbitrary unactuated joints and the dynamic equations of the unconstrained system

are written. The constraint equations corresponding to the closed loops are then written. Using the constraint

equations, the first and second derivatives of the dependent (unactuated) joint variables are represented in terms

of independent (actuated) joint variables. By taking the independent joint variables, the actuator variables, and

their first derivatives as state variables, the dynamic equations are represented in state-dependent coefficient

form. Finally, the SDRE tracking control method is presented.

This study consists of 5 sections. Section 2 gives the mathematical description of the parallel robots with

elastic joints. SDRE tracking control is presented in Section 3. In Section 4, a 2-RRR planar parallel robot
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is taken into consideration as an example to illustrate the effectiveness of the SDRE method for the control of

parallel robots having elastic joints. Finally, Section 5 gives the concluding remarks of this study.

2. Mathematical description of the flexible joint parallel manipulators

An n-degree of freedom constrained (closed-loop) system can be transformed into an unconstrained (open-tree)

system by disconnecting arbitrary unactuated joints. If the degree of freedom of the unconstrained system is m,

then m – n constraint equations are written. Assume that the manipulator joint variables of the unconstrained

system are denoted as follows.

q =

 θ1
...
θm

 (1)

It can be divided into 2 subvectors as independent (primary) and dependent (secondary) joint variables and

they are represented as

q =

[
qp
qs

]
, (2)

where qp ∈ ℜn is the vector of the independent joint variables corresponding to the actuated joints and

qs ∈ ℜm−n is the vector of the dependent joint variables corresponding to the unactuated joints.

Elastic members of the drive trains, e.g., thin shafts, harmonic drives, and couplings, cause flexibility

at the independent (driven) joints. The flexible transmission in an independent flexible joint is modeled as

a torsional spring with stiffness k i and a torsional damping with damping coefficient d i . Let the actuator

variables of the driven joints be denoted as

φ =

 φ1

...
φn

 , (3)

where each φi is the rotor angle divided by the gear ratio r i of the corresponding actuated joint. Therefore, the

elastic transmission between the links and the actuators introduces extra degrees of freedom, which means that

the rotor of each actuator is modeled as a fictitious link. Thus, the overall system has 2n degrees of freedom

although there are only n actuators.

The m – n constraint equations can be expressed at position level as

ψi (θ1, . . . , θm) = 0 i = 1, . . . , (m− n) . (4)

Differentiation of Eq. (4) gives

J (q) q̇ = 0, (5)

where J ∈ ℜ(m−n)×m is the constraint Jacobian matrix, given as

Jij =
∂ψi

∂θj
. (6)

In order to simplify the equations of motion of the parallel manipulator and make them more appropriate for

analysis and control, some assumptions were made, as stated by Spong [18].
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Assumption 1 The rotor kinetic energy essentially results from its own rotation since the gear ratio is

sufficiently large.

Assumption 2 The rotor/gear inertia is symmetric about the rotor axis of rotation so that the gravitational

potential of the system and the velocity of the rotor center of mass are independent of rotor position.

Therefore, the inertia and gravitational coupling terms between the joint and actuator variables vanish.

Thus, unconstrained system equations of motion of the parallel manipulator can be written as

M (q) q̈ + C (q, q̇) q̇ +G (q) qp + Fd + Fk − JT (q)λ = 0, (7)

Irφ̈−D (q̇p − φ̇)−K (qp − φ) = u, (8)

where M (q) ∈ ℜm×m is the generalized mass matrix, C (q, q̇) ∈ ℜm×m is the matrix corresponding to the

generalized Coriolis and centrifugal force vector, and G (q) ∈ ℜm is the matrix corresponding to the generalized

gravitational force vector. Fd ∈ ℜm is given as

Fd =

[
D (q̇p − φ̇)
0

]
, (9)

where D ∈ ℜn×n includes the damping constants of the independent joints and is given as

D =

 d1 0
. . .

0 dn

 . (10)

Similarly Fk ∈ ℜm is given as

Fk =

[
K (qp − φ)
0

]
, (11)

where K ∈ ℜn×n includes the spring constants of the independent joints and is given as

K =

 k1 0
. . .

0 kn

 . (12)

JT (q)λ is the generalized constraint force vector and λ ∈ ℜm−n includes the Lagrange multipliers, i.e. the

constraint forces imposed on the links that are disconnected to obtain an unconstrained system. Ir ∈ ℜn×n

includes the inertial parameters of the rotors and is given as

Ir =

 Ir1r
2
1 0

. . .

0 Irnr
2
n

 , (13)

where Iri is the moment of inertia of the ith rotor about its rotation axis. u ∈ ℜn includes the control torques

after speed reduction.

Velocity-level constraint equations are subdivided into 2 subvectors as follows:

[
Jp Js

] [ q̇p
q̇s

]
= 0, (14)
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where Jp ∈ ℜ(m−n)×n is the influence coefficient matrix of independent joint variables and Js ∈ ℜ(m−n)×(m−n)

is the influence coefficient matrix of dependent joint variables. As long as det (Js) ̸= 0, i.e. in the absence of

any drive (actuation) singularity, using Eq. (14) q̇s can be written as

q̇s = −J−1
s Jpq̇p. (15)

Differentiation of Eq. (14) and then substitution of Eq. (15) into the resulting equation gives q̈s as follows:

q̈s = −J−1
s

[
Jpq̈p +

(
J̇p − J̇sJ

−1
s Jp

)
q̇p

]
. (16)

M, C, and G can be subdivided into submatrices with respect to the independent and dependent joint variables

to which they correspond as follows:

M =

[
Mpp Mps

Msp Mss

]
, (17)

C =

[
Cpp Cps

Csp Css

]
, (18)

G =

[
Gpp

Gsp

]
. (19)

Therefore, Eq. (7) can be represented in 2 parts, as follows:

Mppq̈p +Mpsq̈s + Cppq̇p + Cpsq̇s +Gppqp +D (q̇p − φ̇) +K (qp − φ)− JT
p λ = 0, (20)

Mspq̈p +Mssq̈s + Cspq̇p + Cssq̇s +Gspqp − JT
s λ = 0. (21)

λ is obtained from Eq. (21) and then it is substituted into Eq. (20). After that, Eqs. (15) and (16) are

substituted into the resulting equation. This gives the following n−dimensional dynamic equation:

Nq̈p + V q̇p −Dφ̇+ Eqp −Kφ = 0, (22)

where

N =Mpp −MpsJ
−1
s Jp − JT

p

(
JT
s

)−1 (
Msp −MssJ

−1
s Jp

)
, (23)

V = −MpsJ
−1
s

(
J̇p − J̇sJ

−1
s Jp

)
+ Cpp − CpsJ

−1
s Jp +D − JT

p

(
JT
s

)−1
[
−MssJ

−1
s

(
J̇p − J̇sJ

−1
s Jp

)
+Csp − CssJ

−1
s Jp

]
,

(24)

E = K +Gpp − JT
p

(
JT
s

)−1
Gsp. (25)

Thus, the dynamics of the parallel manipulator can be written in augmented form by using Eqs. (22) and (8)

as follows. [
N 0
0 Ir

] [
q̈p
φ̈

]
+

[
V −D
−D D

] [
q̇p
φ̇

]
+

[
E −K
−K K

] [
qp
φ

]
=

[
0
u

]
(26)

As seen from Eq. (26), Lagrange multipliers are eliminated and dependent joint variables are not seen explicitly

in the dynamics of the parallel manipulator. q̈p and φ̈ are extracted from Eq. (26) as follows:[
q̈p
φ̈

]
=

[
AV CV

BV DV

] [
q̇p
φ̇

]
+

[
AE CE

BE DE

] [
qp
φ

]
+

[
CT

DT

]
u, (27)
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where [
AV CV

BV DV

]
= −

[
N 0
0 Ir

]−1 [
V −D
−D D

]
, (28)

[
AE CE

BE DE

]
= −

[
N 0
0 Ir

]−1 [
E −K
−K K

]
, (29)

[
AT CT

BT DT

]
=

[
N 0
0 Ir

]−1

. (30)

Hence, the state-space representation of the dynamics of the parallel manipulator can be obtained as

ẋ (t) = A (x)x (t) +B (x)u (t) , (31)

where x ∈ ℜ4n is the state vector, A ∈ ℜ4n×4n is the system matrix, B ∈ ℜ4n×n is the control input matrix,

and u ∈ ℜn is the control vector. x, A, and B are defined as follows.

x =


qp
q̇p
φ
φ̇

 (32)

A =


0 I 0 0
AE AV CE CV

0 0 0 I
BE BV DE DV

 (33)

B =


0
CT

0
DT

 (34)

End effector position and orientation can be represented in terms of manipulator joint variables as follows.

Li = γi (θ1, . . . , θm) = 0 i = 1, . . . , n (35)

Differentiation of the above equation gives

L̇ = Jm (q) q̇, (36)

where Jm ∈ ℜn×m is the manipulator Jacobian matrix with

Jmij
=
∂γi
∂qj

i = 1, . . . , n, j = 1, . . . ,m. (37)

As long as det (Jc) ̸= 0, i.e. in the absence of any kinematic singularity, q̇ can be expressed in terms of L̇by

augmenting Eqs. (5) and (36) as follows:

q̇ = J−1
c h, (38)

where Jc ∈ ℜm×m is

Jc =

[
J
Jm

]
(39)
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and h is given as

h =

[
0

L̇

]
. (40)

3. SDRE control

In recent years, the SDRE technique has been effectively used in the design of nonlinear controllers, observers,

and filters due to its flexible design property, simplicity, and real-time implementation capability. The method is

also called the frozen Riccati equation technique. In this method, first, the nonlinear system is represented in a

state-dependent coefficient (SDC) form having a linear structure. An algebraic Riccati equation (ARE) is then

formed using SDC matrices and state-dependent weighting coefficients. Therefore, the solution of the ARE is

also state-dependent. Finally, suboptimum control inputs minimizing the performance index are obtained. The

nonuniqueness of the SDC form and weighting coefficients give design flexibility and they are used to improve

the performance of the controller. On the other hand, since the solution of a Hamilton–Jacobi–Bellman (HJB)

partial differential equation (PDE) or a nonlinear two-point boundary value problem (TPBVP) is not needed,

the method is simple as far as the computational burden is considered. In addition to these points, the algebraic

SDRE depends on the current state and therefore control inputs can be implemented in real time.

3.1. SDRE nonlinear regulator problem

Consider an infinite-time nonlinear regulator problem. Minimize the following nonlinear cost functional non-

quadratic in x but quadratic in u:

PI =
1

2

∞∫
t0

{
xT (t)Q (x)x (t) + uT (t)R (x)u (t)

}
dt (41)

with respect to x (t) and u (t) subject to the full-state observable nonlinear system, having dynamics

ẋ (t) = f (x) +B (x)u (t) , x (t0) = x0 (42)

in order to keep state x (t) near zero and control u (t) at minimum level. In the above equations, Q (x) ∈ ℜs×s

is the state weighting matrix satisfying Q (x) = QT (x) ≥ 0, R (x) ∈ ℜn×n is the input weighting matrix

satisfying R (x) = RT (x) > 0, x (t) ∈ ℜ4n is the state vector, and u (t) ∈ ℜn is the control vector. It is

assumed that f (x) is a continuously differentiable function of x, f (0) = 0, and B (x) ̸= 0. The nonlinear

system of Eq. (42) can be rewritten in linear structure using SDC form:

ẋ (t) = A (x)x (t) +B (x)u (t) x (t0) = x0 . (43)

SDC form is not unique and SDC form should be chosen in such a way that
{
Q1/2 (x) , A (x)

}
and {A (x) , B (x)}

are pointwise detectable and pointwise stabilizable, respectively [3,6,33]. If the state-dependent controllability

matrix has full rank, the stabilizability condition is satisfied. Similarly, if the state-dependent observability

matrix has full rank, the detectability condition is satisfied. Detectability condition is always satisfied by taking

Q(x) as positive definite. As a result of this, the nonlinear control is obtained as

u (t) = −R−1 (x)BT (x)P (x)x, (44)
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where P (x) is obtained from the solution of algebraic SDRE:

P (x)A (x) +AT (x)P (x)− P (x)B (x)R−1 (x)BT (x)P (x) +Q (x) = 0 (45)

to get P ≥ 0.

The SDRE method for the infinite-time nonlinear regulator problem is locally asymptotically stable and

locally asymptotically optimal. The related theorems are given in [3,4,34].

In the SDRE method, in general, a nonlinear system is represented with different linear time-invariant

systems as a result of the frozen nonlinear system at each point (or state). Therefore, the infinite-time nonlinear

regulator problem is transformed into infinite-time linear quadratic regulator problems corresponding to the

frozen nonlinear system at each point. This means that successive solutions of the linear quadratic regulator

problem corresponding to the successive frozen nonlinear system approximate the solution of the SDRE nonlinear

regulator problem for the whole states.

3.2. SDRE nonlinear tracking problem

Consider an infinite-time nonlinear tracking problem. Minimize the following nonlinear cost functional non-

quadratic in x but quadratic in u:

PI =
1

2

∞∫
t0

{
eT (t)Q (x) e (t) + uT (t)R (x)u (t)

}
dt, (46)

e (t) = z (t)− y (t) , (47)

with respect to e (t) and u (t) subject to the full-state observable nonlinear system, having dynamics

ẋ (t) = f (x) +B (x)u (t) , x (t0) = x0
y (t) = g (x)

(48)

in order to keep output y (t)near desired output z (t) and control u (t) at minimum level. In the above

equations, Q (x) ∈ ℜs×s is the state weighting matrix satisfying Q (x) = QT (x) ≥ 0, R (x) ∈ ℜn×n is the

input weighting matrix satisfying R (x) = RT (x) > 0, e (t) is the error vector, u (t) ∈ ℜn is the control vector,

z (t) is the desired output vector, and y (t) ∈ ℜs is the output vector. It is assumed that f (x) is a continuously

differentiable function of x, f (0) = 0, and B (x) ̸= 0.

The SDRE technique has been essentially used for the infinite-time nonlinear regulator problem. Clouter

and Stansbery [35] extended this technique for the nonlinear tracking problem. However, the extended technique

increased the number of states variables. This leads to the need for more computation time. If the final time

is large enough, an alternative method for the infinite-time nonlinear approximate optimal tracking problem is

presented by using the SDC form of the nonlinear dynamics as follows:

i) Transform the nonlinear dynamics to SDC form

ẋ (t) = A (x)x (t) +B (x)u (t) , x (t0) = x0
y (t) = H (x)x (t)

(49)

Since the SDC form is not unique, it should be chosen in such a way that
{
Q1/2 (x) , A (x)

}
and {A (x) , B (x)}

are pointwise detectable and pointwise stabilizable, respectively.
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KILIÇASLAN/Turk J Elec Eng & Comp Sci

ii) Obtain the solution of the SDRE

HT (x)Q (x)H (x) + P (x)A (x) +AT (x)P (x)− P (x)B (x)R−1 (x)BT (x)P (x) = 0 (50)

to get P ≥ 0

iii) Calculate the linear vector equation

s (x) =
([
A (x)−B (x)R−1 (x)BT (x)P (x)

]T)−1

HT (x)Q (x) z (t) (51)

iv) Form the nonlinear controller

u (x) = −R−1 (x)BT (x) [P (x)x (t)− s (x)] (52)

4. Numerical example

As an example, a planar parallel manipulator used in [30] is taken into consideration to show the effectiveness

of the SDRE method for the control of parallel robots having elastic joints (Figure 1). It is a 2-RRR parallel

manipulator with 3 degrees of freedom. It is assumed that joints K, L, and M are driven by the motors. Rotation

of the actuators is perpendicular to the plane of motion and the gravitational acceleration acts in −y direction.

y 

x L 

N 

S 
G 

P 

R 

M 

K 

1 

135 5 

2

4 

3 

Figure 1. 2-RRR parallel manipulator.

The parallel manipulator is converted into 2 open kinematic chains by removing the joint at point S. The

manipulator joint variables can then be written as

q =


θ1
θ2
θ3
θ4
θ5

 . (53)

The actuator variables are expressed as

φ =

 φ1

φ2

φ3

 . (54)
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Eq. (53) can be partitioned as follows:

qp =

 θ1
θ2
θ3

 , (55)

qs =

[
θ4
θ5

]
, (56)

where qp is the vector of independent joint variables and qs is the vector of dependent joint variables.

Two constraint equations are written associated with the removal of the joint at point S. At the position

level, these constraint equations can be written as

a1cθ1 + a3cθ13 + a5cθ135 − a2cθ2 − a4cθ24 − b1 = 0, (57)

a1sθ1 + a3sθ13 + a5sθ135 − a2sθ2 − a4sθ24 = 0, (58)

where the lengths are represented as KM = a1 , LN = a2 , MR = a3 , NS = a4 , RS = a5 , and KL = b1 .

Angle combinations are denoted as θijk = θi+θj+θk . c (·) = cos (·), and s (·) = sin (·).
When the equations of motion of the parallel manipulator are obtained in SDC form, the nonzero entries

of matrices M, C, G, and J in Eq. (7) are as follows.

M (1, 1) = m1
a2
1

4 + I1zz +m3a
2
1 +m3a1a3cθ3 +m3

a2
3

4 + I3zz +m5a
2
1 +m5a

2
3 +m5c

2
5 + I5zz

+2m5a1a3cθ3 + 2m5a1c5c (θ35 + κ) + 2m5a3c5c (θ5 + κ) +mA
3 a

2
1 + Ir3zz

(59)

M (1, 3) =
1

2
m3a1a3cθ3 +m3

a23
4

+ I3zz +m5a
2
3 +m5c

2
5 + I5zz

+m5a1a3cθ3 +m5a1c5c (θ35 + κ) + 2m5a3c5c (θ5 + κ) (60)

M (1, 5) = m5c
2
5 + I5zz +m5a1c5c (θ35 + κ) +m5a3c5c (θ5 + κ) (61)

M (2, 2) = m2
a22
4

+ I2zz +m4a
2
2 +m4a2a4cθ4 +m4

a24
4

+ I4zz (62)

M (2, 4) =
1

2
m4a2a4cθ4 +m4

a24
4

+ I4zz (63)

M (3, 3) = m3
a23
4

+ I3zz +m5a
2
3 +m5c

2
5 + I5zz + 2m5a3c5c (θ5 + κ) (64)

M (3, 5) = m5c
2
5 + I5zz +m5a3c5c (θ5 + κ) (65)

M (4, 4) = m4
a24
4

+ I4zz (66)

M (5, 5) = m5c
2
5 + I5zz (67)

C (3, 1) =

[
1

2
m3a1a3sθ3 +m5a1a3sθ3 +m5a1c5s (θ35 + κ)

]
θ̇1 (68)

C (3, 3) =

[
1

2
m3a1a3sθ3 +m5a1a3sθ3 +m5a1c5s (θ35 + κ)

]
θ̇1 (69)
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C (3, 5) = [m5a1c5s (θ35 + κ)] θ̇1 (70)

C (4, 2) =

(
1

2
m4a2a4sθ4

)
θ̇2 (71)

C (4, 4) =

(
1

2
m4a2a4sθ4

)
θ̇2 (72)

C (5, 1) = [m5a1c5s (θ35 + κ) +m5a3c5s (θ5 + κ)] θ̇1 (73)

C (5, 3) = [m5a1c5s (θ35 + κ) + 2m5a3c5s (θ5 + κ)] θ̇1 + [m5a3c5s (θ5 + κ)] θ̇3 (74)

C (5, 5) = [m5a1c5s (θ35 + κ) +m5a3c5s (θ5 + κ)] θ̇1 + [m5a3c5s (θ5 + κ)] θ̇3 (75)

G (1, 1) =

(
m1

a1
2

cθ1
θ1

+m3a1
cθ1
θ1

+m5a1
cθ1
θ1

+mA
3 a1

cθ1
θ1

)
g (76)

G (1, 3) =

(
m3

a3
2

cθ13
θ3

+m5a3
cθ13
θ3

+m5c5
c (θ135 + κ)

θ3

)
g (77)

G (2, 2) =

(
m2

a2
2

cθ2
θ2

+m4a2
cθ2
θ2

+m4
a4
2

cθ24
θ2

)
g (78)

G (3, 3) =

(
m3

a3
2

cθ13
θ3

+m5a3
cθ13
θ3

+m5c5
c (θ135 + κ)

θ3

)
g (79)

G (4, 2) =

(
m2

a2
2

cθ2
θ2

+m4a2
cθ2
θ2

+m4
a4
2

cθ24
θ2

)
g (80)

G (5, 3) =

(
m5c5

c (θ135 + κ)

θ3

)
g (81)

J (1, 1) = −a1sθ1 − a3sθ13 − a5sθ135 (82)

J (1, 2) = a2sθ2 + a4sθ24 (83)

J (1, 3) = −a3sθ13 − a5sθ135 (84)

J (1, 4) = a4sθ24 (85)

J (1, 5) = −a5sθ135 (86)

J (2, 1) = a1cθ1 + a3cθ13 + a5cθ135 (87)

J (2, 2) = −a2cθ2 − a4cθ24 (88)

J (2, 3) = a3cθ13 + a5cθ135 (89)

J (2, 4) = −a4cθ24 (90)

J (2, 5) = a5cθ135 (91)

Here, mi , i = 1, . . . , 5 is the mass of link i; mA
3 is the total mass of the actuator and the gear box on link 1; Ii ,

i = 1, . . . , 5 is the moment of inertia of link i with respect to the center of mass of link i; Iri , i = 1, . . . , 3 is the

moment of inertia of the rotor i with respect to its rotation axis; and length c5 = RG and angle κ = ∠GRS .
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The position of point P and orientation of the moving platform can be written as

xp = a1cθ1 + a3cθ13 + b5c (θ135 + γ) , (92)

yp = a1sθ1 + a3sθ13 + b5s (θ135 + γ) , (93)

θ135 = θ1 + θ3 + θ5, (94)

where length b5 = RP and angle γ = ∠PRS .
The nonzero entries of the matrix Jm in Eq. (36) are as follows.

Jm (1, 1) = −a1sθ1 − a3sθ13 − b5s (θ135 + γ) (95)

Jm (1, 3) = −a3sθ13 − b5s (θ135 + γ) (96)

Jm (1, 5) = −b5s (θ135 + γ) (97)

Jm (2, 1) = a1cθ1 + a3cθ13 + b5c (θ135 + γ) (98)

Jm (2, 3) = a3cθ13 + b5c (θ135 + γ) (99)

Jm (2, 5) = b5c (θ135 + γ) (100)

Jm (3, 1) = 1 (101)

Jm (3, 3) = 1 (102)

Jm (3, 5) = 1 (103)

The geometric data and the mass, inertial properties, and gear ratios used in the simulations are as follows: a i

= 0.5 m, i = 1, . . . , 5, b1 = 0.8 m, b5 = 0.3 m, c5 = 0.25 m, γ = 20 deg, κ = 7 deg, mi = 3 kg, i = 1, . . . , 4,

and m5 = 4 kg. Links 1, 2, 3, and 4 are assumed to be uniform. Dimensions of the actuator and gear boxes

are small relative to the dimensions of the links. mA
3 = 0.5 kg, Ir1 = 7 × 10−5 kgm2 , Ir2 = 8 × 10−5 kgm2 ,

Ir3 = 9 × 10−5 kgm2 , ri = 100, i = 1, 2, 3. Torsional stiffness coefficients are taken as ki = 5000 Nm/rad,

i = 1, 2, 3. A 3% damping ratio is considered for rotors. Therefore, structural damping coefficients are taken as

d1 = 0.0355 Nms/rad, d2 = 0.0379 Nms/rad, and d3 = 0.0402 Nms/rad. The reference motion of the position

of point P and the orientation of the moving platform are given as

xrp (t) =

{
0.25 + 0.3

T

[
t− T

2π sin
(
2π
T t

)]
m 0 ≤ t ≤ T

0.55 m t > T
, (104)

yrp (t) =

{
0.90− 0.3

T

[
t− T

2π sin
(
2π
T t

)]
m 0 ≤ t ≤ T

0.60 m t > T
, (105)

θr135 (t) =

{
15 + 15

T

[
t− T

2π sin
(
2π
T t

)]
deg 0 ≤ t ≤ T

30 deg t > T
, (106)

where T is the motion period. It is taken as 5 s. Therefore, the reference (desired output) vector will be

z(t) =

 xrp (t)
yrp (t)
θr135 (t)

 . (107)
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Initial values for the positions of the independent joints are taken as θ1i = 135 deg, θ2i = 85 deg, and θ3i =

–90 deg. Therefore, initial values for the positions of the dependent joints are calculated as θ4i = 51.44 deg,

θ5i = –29.27 deg. These initial joint angular positions lead to the initial position of point P and orientation of

the moving platform as xpi = 0.2501 m, ypi = 0.8729 m, θ135i = 13.5400 deg. Initially, the system is at rest.

The Runge–Kutta fourth-order numerical integration method is used to solve the ordinary differential

equations that describe the dynamics of the system. Computer codes are written in MATLAB. In the simula-

tions, the sampling time step is taken as 0.01 s. As far as the initial actual and reference values of the position

of point P and orientation of the moving platform are considered, it is seen that the manipulator begins its

motion with initial misposition and misorientation.

The weighting coefficients in the performance index are taken as Q =

[
3× 104I3 0
0 I3

]
and R = I3 .

The point P position and moving platform orientation are given in Figures 2–4. The deflections and actuator

torques are presented in Figures 5 and 6. The simulation results indicate that satisfactory tracking accuracies

are obtained both in the position of point P and orientation of the moving platform. The maximum position

tracking errors after settling the trajectory are 6.4148 × 10−4 m and –1.0342 × 10−3 m in horizontal and

vertical directions, respectively. The maximum orientation tracking error after settling the trajectory is 0.0421

deg. Final position errors are –5.5811 × 10−5 m and –4.8338 × 10−4 m in horizontal and vertical directions,

respectively. Final orientation error is 7.4787 × 10−3 deg. Furthermore, maximum start-up torque is in the

order of 70 Nm.
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Figure 2. Position of point P in horizontal direction. Figure 3. Position of point P in vertical direction.

The control simulations are repeated by taking the robot inertia and elastic parameters 10% smaller in

the dynamic equations for the examination of modeling error. In this case, the weighting coefficients are taken

as Q =

[
5× 104I3 0
0 I3

]
and R = I3 . The point P position and moving platform orientation are given in

Figures 7–9. The deflections and actuator torques are presented in Figures 10 and 11. The maximum position

tracking errors after settling the trajectory are 5.5602 × 10−4 m and –1.5532 × 10−3 m in horizontal and

vertical directions, respectively. The maximum orientation tracking error after settling the trajectory is 0.0742

deg. Final position errors are –7.5572 × 10−5 m and –1.0111 × 10−3 m in horizontal and vertical directions,
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respectively. Final orientation error is 0.057 deg. Furthermore, maximum start-up torque is in the order of 80

Nm. Tracking and steady state errors can be decreased much more by increasing Q at the expense of greater

actuator torques.
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Figure 4. Orientation of moving platform. Figure 5. Deflections.
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Figure 6. Control inputs applied at joints. Figure 7. Position of point P in horizontal direction.

The detectability condition is ensured by taking Q as positive definite and the stabilizability condition

is ensured by checking the state-dependent controllability matrix at each time step for both simulations.

5. Conclusions

This paper presents an algorithm based on the SDRE for the trajectory tracking control of parallel robots with

elastic joints. Structural stiffness and damping characteristics of the joints are modeled as torsional springs

and dampers, respectively. First, an unconstrained system obtained from the constrained system is considered

and its dynamic equations are written. The constraint equations are then expressed. The first and second

derivatives of dependent joint variables are represented in terms of independent joint variables by using the

constraint equations. After that, by taking independent joint variables, actuator variables, and their first
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derivatives as state variables, dynamic equations are expressed in state space form. Finally, the SDRE tracking

control method is presented.
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Figure 8. Position of point P in vertical direction. Figure 9. Orientation of moving platform.

In the SDRE method, first, the nonlinear system is represented in a SDC form having a linear structure.

The ARE is then formed using SDC matrices and state-dependent weighting coefficients. Therefore, the solution

of the ARE is also state-dependent. Finally, suboptimum control inputs minimizing the performance index are

obtained. The nonuniqueness of the SDC form and weighting coefficients give design flexibility and they are

used to improve the performance of the controller. On the other hand, since the solution of a HJB PDE or

a nonlinear TPBVP is not needed, the method is simple as far as the computational burden is concerned. In

addition, the algebraic SDRE depends on the current state, and therefore control inputs can be implemented

in real time.

As a case study, a 2-RRR planar parallel manipulator is considered to illustrate the effectiveness of the

SDRE method for the control of parallel robots having elastic joints. It is shown that parallel manipulators

with significant joint flexibility can follow the specified trajectory with satisfactory performance by the proposed
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Figure 10. Deflections. Figure 11. Control inputs applied at joints.

536
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control algorithm. Simulations are performed in the presence of only initial error and no modeling error and

in the presence of both initial error and modeling error. For the second simulation, mass/inertia parameters,

spring and damping constants, are assumed to be 10% smaller in the model. Good tracking accuracies are

obtained in both simulations as seen in Figures 2–4 and 7–9. The torques to be supplied by the actuators do

not increase significantly when the modeling error is considered, as seen in Figures 6 and 11. In general, the

tracking and steady-state errors are decreased by increasing weighting coefficients Q while the control torques

are decreased by increasing weighting coefficients R.
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