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Abstract: In this study, the rate equation analysis of a BH-laser diode was performed for output carrier density (No)

using the zero-degree solution of the Volterra series. The carrier rate equation of the laser diode was analyzed in terms

of input carrier density (Ni) and output carrier density modeling (Ni − No) , with respect to the DC current (Io) .

The polynomial root, which is obtained from the zero-degree solution (No) and limit values of Io , was found. For the

linear operation of the laser diode, the range of Io current was also determined using a linearization approach and the

maximum value of No .
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1. Introduction

A semiconductor laser diode is necessary and one of the most important devices of commercial fiberoptic

telecommunications and data transmission systems. It has 3 main characteristics [1–9]: gain [10–17], refractive

index change [18,19], and alpha parameter [20–23]. This study is closely related to the gain, which also affects

the other characteristic quantities.

The other elements used in the communication or data transmission system are selected according to the

optical output power that is produced by the diode laser. The state of the optical output power is specifically

important due to the effects of intermodulation distortion on applications and subcarrier systems. One especially

important feature is the effect and fluctuation of optical power, which is more evident and greater when a low

DC supply current (Io) is applied [24–31]. As the amount of power increases to a certain level, the power

fluctuation may be reduced significantly. However, it cannot be eliminated completely. Some of the techniques

that are used to reduce fluctuations are optical, electronic or optoelectronic feedbacks, or a combination of

these.

2. The basic rate equations of laser diodes

In this study, the kernels of the Volterra series (H1, H2, and H3) are analyzed. The equations of Hassine et al.

[32] are approximations for the exact rate equations. We use the basic single-mode laser diode rate equations
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given by Hassine et al [32] to develop our model:

dp (t)

dt
= ΓA [n (t)−Ntr] [1− ε̂p (t)] p (t)− 1

τp
p (t) +

βΓ

τn
n (t) , (1)

dn (t)

dt
=

1

q
I (t)− 1

τn
n (t)− ΓA [n (t)−Ntr] [1− ε̂p (t)] p (t) , (2)

in which p(t) is the photon population number and n(t) is the charge carrier population number inside the

laser diode active region. The other laser diode parameters are given in the Table.

Table. Laser diode parameters.

Γ Confinement factor 0.3
A Gain coefficient 1.83 × 104 s−1

Ntr Carrier density at transparency 107

τp Photon lifetime 1.6 × 10−12 s
τn Carrier recombination lifetime 2.2 × 10−9 s
β Spontaneous emission fraction 10−4

I(t) Total current
q Electron charge 1.6 × 10−19C

ε̂
Dimensionless gain factor in which

ε̂ = ε/V = 10−6

V is the active region volume

3. The zero-order solution

We first determine No and Po . We obtain:

Po =
τp
q
Io +

τp
τn

[βΓ− 1]No . (3)

Substituting this expression for Po , we obtain the cubic polynomial

N
3
o +N

2
o R2N +No R1N +RoN = 0, (4)

in which

R2N = −
[
Ntr +

τn
τp ε̂ (βΓ− 1)

]
+

2τn
q (βΓ− 1)

Io,

R1N = −1− ΓANtrτp (βΓ− 1)

ΓAε̂τp (βΓ− 1)
2

τn
τp

+
2ε̂Ntrτp (βΓ− 1) + τn

qε̂ (βΓ− 1)
2

τn
τp

Io +

[
τn

q (βΓ− 1)

]2
I2o ,

and

RoN =
1 + τpβΓNtr

qΓAε̂ (βΓ− 1)
2

(
τn
τp

)2

Io −
[

τn
q (βΓ− 1)

]2
NtrI

2
o . (5)

Comprehensive analysis of this solution and the Volterra series is made in [24,33–36]. The roots curves that are

obtained from the zero-degree equation (Eq. (4)) are given below. The first root curve is shown in Figures 1

and 2. Figure 1 illustrates the Io −No (output current-carrier density) increase. This curve corresponding to

Io does not increase linearly with the increase in No . The characteristics of No between current values of 0 and
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37 mA are decreasing, and at 37 mA it is approaching zero. We observe a cycle between 37 mA and 161 mA; it

increases for Io values greater than 37 mA until a local minimum value, after which it declines and approaches

zero value at 161 mA. We then observe a nonlinear increase between 161 and 300 mA current values.

Figure 2 shows the first root of Ni andNo variation. The value of Ni saturates approximately at Ni

= 1 × 1029 ,No = 2.1 × 1027 . When the Io current is increased, the value of Ni also increases. However, a

nonlinear decrease in No occurs after the saturation point. dNo/dNi varies in a nonlinear manner.
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Figure 1. First root curve of Io and No . Figure 2. First root of Ni -N0 variation.

The second root ofNi −No variation is seen in Figure 3. The overall structure of injected carrier density

and current change is in the third-level type of deviation point. In general, this type is the unique singular

point of origin.

The third root ofIo − No variation is seen in Figure 4. This corresponds to the increase in Io current

between 0 and 37 mA, where the reduction of No occurs. This reduction is a low-order one that can be accepted

as linear with negligible error.

When the Io current increases from 37 mA to 180 mA, No increases nonlinearly. dNo/dIo displays the

nonlinear variation. Therefore, the linear increase in variation cannot be obtained as a function of No .

The relationship between Ni − No curves is shown in Figure 5. This curve was obtained using the Io

current from 15 to 45 mA. The curve can be considered linear with negligible error for approximately ±1.5 ×
1028 M3 values of Ni . The value of ±1.5 × 1028 M3 can be used in real applications. Carrier density displays

nonlinear conductance characteristics [35].

Figure 5 shows a nonlinear conductance curve of current-voltage curve type. The type of nonlinear

conductance equation is given as imax tgh [(gν)/(imax)] . This equation can be taken as an electrical equivalent

circuit of the laser diode. When this arrangement is completed, the maximum value of Io that is feasible in the

linear region can be found. The variation of dNo/dNi shows the same slope or gain in the limited region. It

displays linear characteristics disregarding small amount of errors in this region.

The overall structure of Ni − No root variation was also obtained as in Figure 6. The structure of the

roots is a curve that rotates counter-clockwise. The carrier density (No) is also a parabolic curve. The effect

of neither the saturation current nor the noise can be seen directly in the employed equations. The Ni value

decreases after reaching a maximum value, whileNo value increases. Although we acknowledge this theoretically,
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we do not think that this is acceptable for practical applications. However, in theory, the production of Ni

depends on the input current Io , and therefore this case is a contradiction. According to these curves, the

rotation points of 1, 2, and 3 roots can be accepted as the largest values of Ni . The peak values of the roots

are obtained as follows:
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Figure 3. Second root of Ni -No variation. Figure 4. Third root ofIo −No variation.
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Figure 5. Third root ofNi -No (14–50 mA) variation.

1 → Ni = 0.65x1032 → No = 1.6x1032, 2 → Ni = 7.5.x032 → No = 1.3x1033, and

3 → Ni = 2.5x1032 → No = 3x1032 .

In the descending order of 1, 3, and 2, the rate of increase or the angle of the gradient ofNi describes

a straight line. However, the decrease in Ni versus increasing No is observed in the results for the roots of 1,

2, and 3. This is not physically possible. We acknowledge these turning points as the maximum value of Ni .

Accordingly, the photon output is also reduced. This corresponds to the maximum carrier density at a point of

saturation current.
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Under these conditions, the maximum value that may be acknowledged is No = 1.3 × 1033 M3 . All kinds

of noises are the results of other effects in this equation. When we remove the loss terms from this theoretical

multiplication, the real value of No can be obtained. As a function of real No or gain, the photon density at

the output can be obtained. Accordingly, No is greater than Ni at the input. Under normal circumstances,

this cannot be correct. These results are directly related to the photon density, gain, and optical output power

of the laser diode. G = Γgνg is defined as the linear net gain [37–42]. The first practical solution of these

processes to increase this gain is selecting a material with high gain when manufacturing the laser diode. The

second solution is to boost the confinement factor (Γ) or decrease the group velocity (νg). Certainly, optimum

results can be obtained if all of these solutions are applied altogether. However, in practice, this is not always

feasible. The largest value of the roots has been identified as Ni = 7.5 × 1032 M3 . This value is the peak

or the return value of the parabola. The rate values of Ni /No and No /Ni correspond to 0.576 and 1.733,

respectively. This ratio is obtained theoretically with no loss as a result of the 3 roots, which are derived from

Eq. (4). Np +∆Np = Npeg∆z is defined as the ultimate density. The parameter ∆Np can be set as Npgνg∆t .

This change is defined by
(

dNp

dt

)
= Rst =

∆Np
∆t = νggNp or dN

dt = ηiI
qV − N

τ − νggNp . Depending on the carrier

density, the characteristics of optical power can be changed by V /Vp(Γ) [37–42].

Gain is defined as a function of the carrier g ≈ α(N−Ntr). α expression in the differential gain is defined

as the ∂g/∂N . From the values of electron density (V ) and photon density (Vp), the electron-photon overlap

factor can be given as V /Vp . This confinement factor (Γ) is defined in [37–42]. According to these definitions,

the value of No/Ni = 1.733 is not correct. Depending on the previous study, the calculation of values of N and

P was completed related to the Io current. Thus, the second root is used as an appropriate root [24]. The

other 2 roots are not suitable for N and P values. The lack of solution after 1250 mA in the present study is

displayed. This study supports our previous works.
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Figure 6. Overall structure of Ni −No root variation. Figure 7. Total Io − No output and piecewise linear

approach.

Io currents versus the total carrier density are obtained in Figure 7. The value of No that is obtained

from the zero-order solution can be evaluated by the gain according to the partial linearity. These regions are

divided into 5 categories. The slope of the straight lines can be given as:
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1st region: This region corresponds to slope (m) tg = 9.7◦ .

2nd region: This region corresponds to slope (m) tg = 24.3◦ .

3rd region: This region corresponds to slope (m) tg = 37.87◦ .

4th region: This region corresponds to slope (m) tg = 46.87◦ .

5th region: This region corresponds to slope (m) tg = 54.70◦ .

The region of the largest or the most rapid variation of dNo/dIo is the 5th region. However, the 5th region

corresponds to the Ith = 13.8 mA of laser diode, and the Io current is equal to 1250 mA. This current is quite

large for the laser diodes. Therefore, it is theoretically probable but not practically possible. In addition, we

showed that Eqs. (1) and (2) were unresolved after 1250 mA in previous studies [25]. In this case, the 1st and

2nd regions are appropriate for practical applications of the laser diode. Slope angles of these regions are 9.7◦

and 24.30◦ , respectively. Region 2 has more gain than others in the nonlinear curve that is obtained from Figure

7. Thus, the No value will be bigger in than other regions. These values of Ni , No , and rate are 5 × 1032 M3 ,

3.5 × 1032 M3 , and No/Ni = 3.5/5 = 0.7, respectively. If the other losses are subtracted from these values,

the No /Ni ratio falls to much lower values. Taking into account that the confinement factor (Γ = V /Vp) is

approximately 0.3 in practice, the No /Ni ratio is only effective for a very small part of the photon production

[37–42]. The best linear region is region 1, in which the Io current is below 100 mA. Region 1 can be considered

as the most linear part of the optical output power. Io injection current with maximum gain is 67.55 mA and

24–30.50 mA for the best linear region, as stated in [30]. There is a direct and indirect relationship between

dPo/dIoand dNo/dIo slopes in the piecewise linear approach.

The output power and current of the CW laser diode characteristics obtained from the experimental

results are given in Figure 8. There is a close relationship between the optical output power and the carrier

density. When the absolute gain dp (t)/dt = (G− γ)P + Rsp increases, the optical output power increases,

too [39,40]. The turning point of the power-current curve corresponds to the maximum output power. After

reaching the maximum value of power, the gain and the output power decrease. Optical output power is limited

by limiting the gain increase. The optical output power is decreased due to the decreasing gain. This situation

indirectly affects the state of No carrier density. The power-current curve that is obtained via experimentation

is also given in Figure 9.
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Figure 8. Optical output power versus current (Io) of CW laser diode.
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4. Conclusion

In this study, an analysis of the carrier density (N) rate equation of laser diodes was performed. In this analysis,

the results obtained from the zero-order solutions are:

1. Root change is not linear.

2. Noise effects are not observed directly.

3. Although there is no saturation current in the expression, maxima are found in the analysis of the

root equations.

The following results are found as shown in Figure 6:

for No ,

1 → 20 log 10(1x1032) = 640 dB, 3 → 20 log 10(4.5x1032) = 653 dB, and 2 → 20 log 10(1.3x1033) =

662 dB ;

for Ni ,

1 → 20 log 10(0.75x1032) = 637 dB, 3 → 20 log 10(2.5x1032) = 647 dB, and 2 → 20 log 10(7.3x1032) =

657 dB .

Temperature dependencies of the variables used in the equations of this study are not known. In this

aspect, this is a shortcoming. However, in this case, the real photon (P ) output was obtained. In addition,

we think that every noise term should be taken into account. Theoretically, the laser diode rate equation has

a solution as Io → ∞ . However, root variations for Io have a solution in the limited area. In that case, the

results are not suitable for practical applications in the calculation of the carrier density. The conclusion that

the optical output power is affected by carrier density is important for practical applications. The consistency

of the experimental result with the theoretical results proves the applicability of the proposed study.

In future studies, the rate equations must be rearranged for infinitive real solutions of Io . These equations

should be included in various arrangements depending on noises, temperature of variables, saturation, and

cutting conditions. In this case, the application will be closer to the obtained real results.
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[7] Yücel M, Göktaş HH. Design of gain flattened ultra-wideband hybrid optical amplifier. J Fac Eng Arch Gazi Univ

2007; 22: 863–868 (in Turkish with English abstract).
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[30] Yıldırım R, Çelebi FV. Harmonic amplitude control in laser diodes with non-linear feedback. J Fac Eng Arch Gazi

Univ 2010; 25: 163–170.

[31] Cohen G. Thermal impedance measurements of junction-down mounted single-side contact laser diodes. Elec Comp

C 2004; 1: 807–812.

[32] Hassine L, Toffano Z, Lamnabhi-Lagarrigue F, Destrez A, Joindot I. Volterra functional series expansions for noise

in semiconductor lasers. IEEE J Quantum Elect 1994; 30: 2534–2546.

[33] Tankiz, S, Celebi FV, Yildirim R. Computer-aided design model for a quantum-cascade laser. IET Circ Device Syst

2011; 5: 143–147.

[34] Bussgang JJ, Ehrman L. Analysis of nonlinear systems with multiple inputs. P IEEE 1974; 62: 1088–1119.

[35] Weiner DD, Spina JE. Sinusoidal Analysis and Modeling of Weakly Nonlinear Circuits. New York, NY, USA: Van

Nostrand Reinhold, 1980.

[36] Rugh WJ. Nonlinear System Theory. Baltimore, MD, USA: Johns Hopkins University Press, 1981.

[37] Petermann K. Laser Diode Modulation and Noise. Boston, MA, USA: Kluwer Academic, 1988.

[38] Yariv A. Optical Electronics in Modern Communications. 5th ed. New York, NY, USA: Oxford University Press,

1997.

[39] Agrawal GP, Dutta NK. Long-Wavelength Semiconductor Lasers. New York, NY, USA: Van Nostrand Reinhold,

1986.

[40] Agrawal GP, Dutta NK. Semiconductor Lasers. New York, NY, USA: Van Nostrand Reinhold, 1993.

[41] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. Quantum

Electron+ 1980; 16: 347–355.

[42] Coldren LA, Corzine SW. Diode lasers and photonic integrated circuits. Microwave and Optical Engineering 2003;

2: 87–121.

[43] Gapontsev V, Moshegov N, Trubenko P, Komissarov A, Berishev I, Raisky O, Strougov N, Chuyanov V, Kuang G,

Maksimov O et al. High-brightness fiber coupled pumps. P SPIE 2005; 7198: 71980O.

547

http://dx.doi.org/10.1016/j.optlastec.2004.04.008
http://dx.doi.org/10.1016/j.optlastec.2004.04.008
http://dx.doi.org/10.1016/S0030-4018(03)01302-6
http://dx.doi.org/10.1016/S0030-4018(02)02278-2
http://dx.doi.org/10.1016/S0030-4018(02)02278-2
http://dx.doi.org/10.1016/S0143-8166(03)00078-2
http://dx.doi.org/10.1016/S0143-8166(03)00078-2
http://dx.doi.org/10.1007/s00340-008-3216-y
http://dx.doi.org/10.1007/s00340-008-3216-y
http://dx.doi.org/10.1109/3.333705
http://dx.doi.org/10.1109/3.333705
http://dx.doi.org/10.1049/iet-cds.2010.0100
http://dx.doi.org/10.1049/iet-cds.2010.0100
http://dx.doi.org/10.1109/PROC.1974.9572
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1117/12.809456
http://dx.doi.org/10.1117/12.809456

	Introduction
	The basic rate equations of laser diodes
	The zero-order solution 
	Conclusion

