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Abstract:This paper presents a fault detection, diagnosis, and reconfiguration method based on support vector machi-

nes. This method is appropriate for certain or predetermined faults and involves a fault detection and diagnosis unit and

an online controller selection type reconfiguration mechanism. In this method, when a fault is detected and diagnosed by

the fault detection and diagnosis unit, a suitable controller, which has been determined via an optimization algorithm in

an off-line fashion, is activated to maintain proper closed-loop performance of the system in an on-line manner. In the

detection, diagnosis, and reconfiguration stages of the method, support vector classification and regression machines are

used and the performance is tested on a simulation model of a two-tank level control system for various fault scenarios.

Key words: Fault-tolerant control, fault detection and diagnosis, support vector machines, PID controllers, two-tank

liquid level system

1. Introduction

Fault-tolerant control (FTC) systems have become highly significant, since there has been a rising necessity for

dependability, safeness, preservability, and stability in technological systems in last 3 decades. FTC systems have

been revealed to defeat some of the weaknesses in the traditional feedback control scheme, such as unstableness

and unrewarding success in faulty events. The results of a small fault in the system can be devastating in

complicated structures such as nuclear power stations, aircrafts, or chemical equipment [1]. For this reason, it

is imperative to build control systems that are capable of tolerating possible faults in such systems. A control

system that has this kind of fault tolerance skill is called a FTC system [2]. Fault detection and diagnosis

(FDD) is a significant part of the FTC structure. At first, the existence of the fault must be obtained; this

is detection. The obtained fault must then be classified correctly; this is diagnosis. Finally, for a decision

to be made on the reconfiguration operation, a suitable configuration rule and associated information can be

dispatched to a supervision mechanism [3]. In this respect, the detection and the diagnosis of process faults

or abnormal situations are essential for any process to operate efficiently. Any equipment within the system

may cause faults, such as measurement sensors and/or control actuators. Many FDD techniques have been

developed over the last 4 decades [4–10].

Generally speaking, FTC systems are grouped as passive and active types [11–13]. In active FTC sys-

tems, the reconfiguration mechanism can be classified as on-line controller selection and on-line controller

calculation techniques [14]. In the on-line controller selection approach, the controllers associated with cer-
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tain/predetermined faulty conditions are computed in an off-line manner in the design stage and they are

selected in an on-line manner based on real-time data from the FDD algorithm [15]. In the on-line controller

calculation approach, the controller parameters are calculated in an on-line manner right after the occurrence

of the fault [14,16].

An active FTC technique having an on-line controller selection type reconfiguration mechanism is pre-

sented in this study. This method also includes a FDD technique that is appropriate when certain/predetermined

faults are considered. In this method, when a fault is diagnosed by the FDD unit, a suitable controller, which

has been designed to be optimal according to certain/predetermined faults in an off-line fashion, is selected and

activated in an on-line manner to preserve the closed-loop success of the system. The detection and diagnosis

parts of the method can be used independently. If it is wanted to find only the existence of the fault, then the

regression part of the method can solely be used while the multiclass classification part of the method can be

exploited to diagnose any fault that was previously presumed.

Classification and regression mechanisms of support vector machines (SVMs) are described in Section 2,

and the method is presented in Section 3. Simulations related to the method are carried out on a two-tank

liquid level system and their results are given and discussed in Section 4. Final conclusions and discussions are

presented in Section 5.

2. Support vector machines

SVMs have become some of the most famous intelligent learning machines and are a very good option for

neural networks. SVMs were introduced by Vapnik [17]. SVMs are used for data analysis, pattern recognition,

nonlinear modeling, classification, and regression analysis [18–20]. The SVM is a popular and well-known

method used for solving many problems in various areas such as control, communication, and signal processing

[21].

2.1. Support vector classification (SVC)

A binary classification method, SVC requires a training set (D) with n-dimensional data vectors (x ∈ Rn) and

their labels y ∈ {−1, +1} .
D = {(x1, y1), (x2, y2)...(xl, yl)} ,
x ∈ Rn, y ∈ {−1,+1} (1)

Here, l is the number of training data. The goal is to obtain a linear hyperplane as a separator. This hyperplane

must classify the data vectors and the unseen data equally well, as in Eq. (2).

f(x) = wTx+ b = 0 (2)

Here, w ∈ Rn determines the orientation of the discriminating hyperplane, and b ∈ R is a bias. For the linearly

separable case, a separating hyperplane can be defined for the two classes as follows.

wTxi + b ≥ 1 if yi = 1
wTxi + b ≤ −1 if yi = −1

(3)

The above two equations can be combined as follows.

yi(w
Txi + b) ≥ 1
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or sign((w.xi)) + b = yi i = 1, 2, ..., l (4)

Slack variables ξi > 0 are used to decrease the results of misclassification. The equation above can then be

written as follows.
yi(w

Txi + b) ≥ 1− ξi (5)

The “optimal” hyperplane is located where the margin between two classes of interest is maximized. The problem

is to obtain a hyperplane maximizing the interval between the positive and negative data and minimizing the

error. This constrained optimization problem can be given as follows.

Minimize : 1
2 ∥w∥2 + C

∑l
i=1 ξi

subject to: yi(w
Txi + b) ≥ 1− ξi , ξi ≥ 0

(6)

The constant C > 0 is a tradeoff parameter defined by the user. In order to solve this optimization problem, the

Lagrangian function is constructed and solved. Some of the Lagrangian multipliers determined will be zero, and

the nonzero multipliers are called support vectors. Optimal hyperplane parameters (w, b) can be determined
as:

w =
∑s

j=1
αjyjxj and b = −1

2
w [x+1 + x−1] , (7)

where α is the Lagrangian multiplier, s is the number of support vector, and x+1 and x−1 are support vectors

of two classes. For new test data included in z, SVC can be assembled as

f(z) = sign(wT z+ b) = sign
(∑s

j=1
αjyj(x

T
j z) + b

)
, (8)

where sign(.) is the signum function that gives +1 (one class) or –1 (second class).

If the linear hyperplane cannot separate the classes, the input data are mapped onto a higher-dimensional

feature space with nonlinear mapping. By means of this mapping, linear classification in the new higher-

dimensional feature space stands for nonlinear classification in the original input space [17]. Kernel functions

have been introduced to decrease all of these inner product difficulties in the feature space [18]. Replacing the

kernel function satisfying the Mercer condition instead of the inner product, the decision function becomes:

f(z) = sign
(∑s

j=1
αjyjK(xjx) + b

)
. (9)

Two of the most commonly used kernel functions are:

Polynomial kernel function:K(x,x
′
) = (⟨x,x′⟩+ 1)p,

Radial basis function:K(x,x
′
) = exp

(
−
∥∥∥x− x

′
∥∥∥2/2σ2

)
.

2.2. Support vector regression (SVR)

The SVM is largely used for regression problems successfully [21]. Let us consider the data set of the problem:

D = {(x1, y1), (x2, y2)...(xa, ya)} , x ∈ Rn, y ∈ R , (10)

where y is the output and x is the input of the regression problem. The input-output relation is shown as a

regression function to be estimated:

f(x,w) = wTx+ b . (11)
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ORTAÇ KABAOĞLU/Turk J Elec Eng & Comp Sci

In SVR, as distinct from SVC, the approach error is used. There are several loss functions. The ε-tolerance

loss function is one of the most popular ones.

Yε =

{
0 if |y − f(x,w)| < ε
|y − f(x,w)| − ε other

(12)

In SVR there is a tube or a band with radius ε . This tube is identified around the regression function f(x,w).

ε can be thought of as a limit of the errors. If the value of the function is inside the tube, it means that there is

no loss. The constrained optimization problem is stated and solved by setting the Lagrangian, similar to SVC.

The optimum regression hyperplane can then be written as follows:

f(x,w) = wTx+ b =
∑
s

(α∗
i − αi) < xix > +b , (13)

where α and α∗ are Lagrange multipliers. By use of the kernel function, the optimum regression function

becomes:

f(x,w) =
s∑

i=1

(α∗
i − αi)K(xix) + b . (14)

3. Proposed method: FTC for certain/predetermined faulty cases

In this section, an active FTC technique for nonlinear systems based on SVM is presented and Figure 1 illustrates

the main blocks of this FTC system. In this method, SVR is used in the fault detection process and SVC is

used in the diagnosis process. A support vector multiclassification method, one-against-all, is used to classify

the occurring fault within a group of expected and predefined faults in the system. When a fault is detected, a

suitable controller is selected and activated to maintain the proper closed-loop performance of the system. PID

type controllers are used in reconfiguration of the subsystem and their parameters are obtained using a basic

genetic algorithm (GA) in an off-line manner.

FDD

y(t)r(t)

Controller#1

Controller#N

Controller#2

.

.

.

Decision

System

Fault

detection

Fault

diagnosis

Figure 1. Proposed active fault tolerant control structure.

3.1. FDD via SVM

In this method, the two subtasks of FDD, namely detection and diagnosis, are performed sequentially as given

in Figure 2. First, fault detection is performed, comparing the predicted behavior of a system based on SVR
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models against the actual observation. The normal operation region of the system is obtained using nonfaulty

case data. Two SVR machines predict the boundaries of this region. In the training phase, nonfaulty case

inputs of the system are used as the input of the SVR machines. Output data on the boundaries are used as

the output of the SVR machines. In the testing (operating) phase, inputs of SVR are only system inputs. SVR

machines estimate lower and upper boundaries that should be in nonfaulty case. If measurements fall outside

the region of normal operation, it means that a fault is detected in the process.

Fault diagnosis by SVC

Fault detection by SVR

observations

fault alarm

predicted

boundaries fault type

input
System

Decision

maker

Fault

detection

SVC

classification

Figure 2. Proposed fault detection and diagnosis structure.

The class of occurring faults needs to be determined correctly. For this purpose, a powerful classification

algorithm, SVC, has been used. SVC trained by faulty and nonfaulty input-output data can determine the type

of fault.

3.1.1. Fault detection by SVR

Fault detection is the first step of all FDD procedures. In this study, the confidence band idea plays a key role

in this step. This band will represent the normal (nonfaulty) operating conditions and it is constituted by the

nonfaulty operating input/output measurements of the closed-loop system. For this purpose, a pseudorandom

sequence can be applied to the system to cover up the whole range of normal operating modes or conditions of the

plant. The upper and lower boundaries of the confidence band y
f
(uf , t) and yf (uf , t) are then individually

modeled by two SVRs as presented in Figure 3. In order to derive models for boundaries, the SVRs are designed

using NARMAX modeling and SVM. In order to find upper and lower limits of the outputs, a computer program

code is written. This code includes an algorithm with a large/small point search and curve fitting.

Monitor
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SVR-upper
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Figure 3. Fault detection with the structure of defining the bounds via SVRs.
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When a mathematical system model is not known, the NARMAX model of the system can be expressed

as a function of g numbers of previous output samples and m numbers of previous input samples:

y(k + 1) = f(y(k), ..., y(k − g + 1), u(k − d), ..., u(k − d−m+ 1), η(k), ..., η(k − o)) = f(x(k)), (15)

where y is the system output; u is the control input; η(k) is uncertainties representing noise and unmodeled

dynamics; g ,m , ando represent the maximum delays of output, input, and noise, respectively; and d stands

for the delay step measured between samples. The input vector to the SVM can then be defined as:

x(k) = [y(k), ..., y(k − g + 1), u(k − d), ..., u(k − d−m+ 1), η(k), ..., η(k − o)]T , (16)

where x ∈ Rg+m+o , k = d + 1,. . . ,d + N. The output is ŷ(k + 1), the estimated value of the output y(k + 1)

at the moment of k+1. Consequently, the model of the nonlinear system defined by Eq. (15) is

ŷ(k + 1) =

s∑
i=1

(α∗
i − αi)K(xix(k)) + b. (17)

Here we have used a special version of SVR given in Eq. (15) and Eq. (16), where the input and output vectors

are x(k) = [uf (k)] and y(k) = [yf (k+1)], respectively, so there does not exist any memory in the system. The

main idea is that if a filtered output value stays within the interval [y
f
(uf , t), yf (uf , t)] , then there is no fault.

Filtering both the input and output signals before the modeling operation for the boundaries further

reduces the sensitivity to false alarms. For this purpose, a low-pass filter Q(s) is used. The SVRs are trained

with normal operating input and output values of the system. After this off-line training period, in the normal

operation phase of the system, when the filtered output exceeds the boundaries generated by the SVRs, it will

be assumed that a fault has occurred and an alarm will ring.

3.1.2. Fault diagnosis by SVC

SVMs can be an alternative to data-based FDD methods due to their generalization capabilities and high

performance in classification. The SVM has a binary classification structure. When the number of possible

faults to be detected by the FDD method is more than one, it is not enough to classify the cases as faulty

and nonfaulty. A single binary SVM is not capable to classify all these faults. Some modified SVM algorithms

can be used for multiple classifications. One of the common SVM-based methods for multiple classification is

“one-against-all” [22]

In this algorithm, “n – 1” number of SVCs are constituted, where n is the number of classes to be classified

as illustrated in Figure 4. Data belonging to each class are first collected. The first SVC is trained to distinguish

one of the n classes from the rest of the n – 1 classes. This class is labeled with (+1) and it is assigned to the

first class of the first SVC. The rest of the classes are labeled with (–1) and they are assigned to the second

class of the first SVC. Next, one of the groups in the second class of the first SVC is picked and it is trained

against the rest of the groups using the second SVC. After completing the training phase, the algorithm can

be run for test data. When the class of test data is determined, execution of the algorithm is stopped even if

all SVCs have not been operated. Thus, when a fault is obtained by SVR, a multi-SVC mechanism determines

and declares its type.
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3.2. Control system reconfiguration via SVM

The reconfiguration stage of a fault-tolerant control mechanism works right after detecting a fault and its type

or location. When a fault is detected in the system, a mechanism activates a controller in order to tolerate the

occurring fault and get the system to its regular state. This is a brief explanation of the reconfiguration. In

this work, an intelligent structure is formed that activates the previously set up and optimally designed PID

controller for a certain type of fault. That is, the PID gains are calculated so as to compensate the effects of

each particular fault and still attain an acceptable control performance. In this study, a GA is utilized in an

off-line manner to determine the gains of the PID controllers and the performance index to be minimized is

chosen to be the integral time square error (ITSE). The controllers are then included in the FTC structure as

illustrated in Figure 1. The FTC system then selects a proper controller according to the type of detected fault

and activates it. It is an important point that there is always the probability of a faulty state occurring after

another faulty state. Consequently, it means that there are n(n – 1) number of possible states if the sum of the

number of faulty and nonfaulty states is n. An example is presented in Figure 5. The classification trainings

are separately done for each controller given in this study. In this way, whichever fault comes after another, the

decision mechanism will activate the suitable controller in order to tolerate the obtained fault and try to put

the system in its regular state.
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         .

                  .
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SVC#n-1

Others

Stop
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Figure 4. SVM multiple classification method, one-

against-all.

Figure 5. Possible ways for 4 cases (n = 4).

The proposed method is developed to classify the type of any predefined fault when it occurs, and then

it tries to tolerate the effects of this fault in the reconfiguration phase. In this method, it is assumed that only

one of the predefined faults can occur at any time.

4. Simulations on two-tank liquid level control system

4.1. The model and the parameters of the system

The proposed FTC algorithms will be used in a well-known benchmark problem: the two-tank liquid level

system [23,24] that is given in Figure 6. The material balance equations for the two-tank liquid level system are
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ḣ1(t) =
1

As

(
−Kp1sign(h1(t)− h2(t))

√
2g |h1(t)− h2(t)|+ q1(t)

)
,

ḣ2(t) =
1

As

(
Kp1sign(h1(t)− h2(t))

√
2g |h1(t)− h2(t)| −Kp2

√
2gh2(t)

)
, (18)

where Kp1 = a1Sp1 , Kp2 = a2Sp2 , and a1 = a2 = 1 for simplicity. The parameters of the benchmark system

are given in Table 1.

(t)q1

q2(t)

q1(t)

Sp1 Sp2

h2(t)h1(t)

As As

tank 2

tank 1

Figure 6. Two-tank liquid level control system.

Table 1. Parameters of the two-tank liquid level control system.

Parameter Variable/value
Section area of tanks [m2] As = 0.0154
Cross-sections of connection pipe [m2] Sp1, Sp2 = 3.6 × 10−5

Gravity acceleration [m/s2] g = 9.81
Water levels [m] h1, h2
Supplying flow rate from pump to tank q1(t)
Outflow from second tank [m3/s] q2(t)
Outflow coefficients Kp1, Kp2

4.2. The results of the method

The method explained in Section 3 can be used when the types of the faults are known. In this example, the

following three faults are considered:

(i) Actuator fault in the pump: An actuator fault is modeled by an actuator fault constant Kf ∈ [0, 1] as

q̄1 = (1−Kf )q1 . If Kf = 0 then there is no actuator fault; otherwise, if Kf ̸= 0, then it is faulty.

(ii) Leakage flow in tank 1: A circular shape leak with radius r1 is assumed. The leakage flow rate in tank 1

is given by qf1(t) = a1π(r1)
2
√
2gh1(t).

(iii) Leakage flow in tank 2: Similarly, the leakage flow rate in tank 2 is given by qf2(t) = a2π(r2)
2
√

2gh2(t).

In this example, we consider a nonfaulty case and three different faulty cases as explained above. This means

that n is equal to 4 and there are three SVCs in every FDD block designed for each fault as presented in Figure
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7. The correct PID gains for all cases are searched by a GA in an off-line manner and they are stored in the

FTC structure. In the GA search, the performance index to be minimized has been chosen to be the ITSE in

this study. The controllers PID # 1, PID # 2, PID # 3, and PID # 4 belong to four cases: nonfaulty, leakage

flow in tank 1, leakage flow in tank 2, and actuator fault in the pump, respectively. Table 2 shows the PID gains

for the nonfaulty case. We assume that the system starts in the nonfaulty condition. The closed loop system

continues to work with a control signal coming from PID # 1. The FDD structure looks for the faulty conditions

by observing a closed-loop response periodically. When a fault is detected, the decision mechanism activates a

controller in order to tolerate the fault and tries to force the system into its proper operating conditions. For

instance, while the system works in the nonfaulty case (PID # 1 is in charge), we assume that a ‘leakage flow

in tank 2’ fault is detected. In this situation, the decision mechanism should select the PID # 3 controller. At

the same time, the third classification mechanism, FDD # 3, is activated. This means that the SVCs of the

‘leakage flow in tank 2’ case start to work.

FDD by SVM

y(t)r(t)

PID#1

PID#4

PID#2

Decision

System

FDD#1

PID#3

FDD#4

FDD#2

FDD#3

Figure 7. FTC structure of two-tank liquid level control system.

Table 2. PID gains obtained by GA for use in training.

Controller parameters PID (no fault) PID (0 cm) PID (40 cm) PID (80 cm)
Kp 26.58776 24.8138 26.83225 28.92151
Ki 0.0805 0.90161 1.49756 1.8599
Kd 6.15532 8.14017 0.25 2.16411

First of all, to define a confidence band representing the normal operating condition, the input and

output data of the normal condition must be collected. For generality, the 20 input signals in the form of a

pseudorandom sequence given in Figure 8 are applied to the process. Each input signal has 1000 points. Hence,

totally 20,000 points training input data and their 20,000 response points are taken. The confidence band is

obtained with these training data.

The confidence band is given in Figure 9. For modeling the upper boundary, the first SVR (SVR-upper)

is set using the data set of the couples (uf ,yf ) and the SVR-lower machine is formed in a similar fashion. In

both SVRs, training parameters are chosen in a trial and error fashion as C = 200, ε = 0.0001. Polynomial

kernel function is chosen with p value set equal to one. The cut-off frequency wf is selected according to
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absolute values of the Fourier transforms of the output signals. The time constant of the low-pass filter Tf =

1/wf is chosen as 476 s, as illustrated in Figure 10. The three SVCs are trained as explained in Section 3.1.2

for the assumed four (three faulty and one nonfaulty) conditions. Three SVCs are set as follows: the first SVC

separates the nonfaulty signals from all the faulty ones. The second one separates the actuator faults from the

leakage faults. The last SVC separates the leakage in tank 1 from the leakage in tank 2. These trained SVR

machines are built into the closed-loop system. In all SVCs, training parameters are chosen in a trial-and-error

fashion as C = 200 .The radial basis function kernel is chosen with σ value set equal to 0.1.
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Figure 8. Pseudorandom sequence input signals and corresponding outputs.

The FDD operation of the method can be explained with an example. A leakage of r1 = 4 mm in tank

1 within the period of time t = [5000–10,000], an actuator fault of Kf = 0.3 within the period of time t =

[15,000–22,000], and a leakage of r2 = 5 mm in tank 2 within the period of time t = [32,000–40,000] are assumed

to occur. The input signal, estimated boundaries, and nonfaulty case response are given in Figure 11. The

results of this fault detection are given in Figure 12. When a fault occurs, filtered output leaves the confidence
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band. This provides a fault alarm, as seen in Figure 12. When a fault alarm occurs, then the SVCs start

to work, and the nature of the fault is defined in a reasonably short period of time. Moreover, this multiple

classification method has a classification satisfying performance.
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Figure 9. Illustration for the confidence band and its

upper-lower bounds.

Figure 10. Illustration of the choice of the cut-off fre-

quency.
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Figure 11. (a) Pseudorandom sequence input, (b) corresponding nonfaulty output (solid line) and predicted boundaries

(dashed lines).
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Figure 12. Filtered outputs (solid line), predicted boundaries (dashed lines), and fault alarms (black bands) for a

pseudorandom sequence input.

In Figure 12, black bands symbolize the detected faults. As can be seen, when a fault occurs, the system

output exceeds one of the boundary lines and a fault alarm rings. This figure is just used as a graphical

representation for better explanation of the detection phase of the method. The performance of the FTC
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method has been tested on the tank system with the following fault scenario: system starts without any fault.

A leakage of r1 = 4 mm in tank 1 occurs at t = 3000 s, and then leakage in tank 2 occurs at t = 6000 s. This

scenario is illustrated in Figure 13.

Sequential run of the proposed FTC algorithm: When a leakage in tank 1 occurs at t = 3000 s, the

FDD # 1 algorithm determines the type of the fault and sends the information to the decision stage. The most

suitable controller, PID # 2, is then selected, and thus the effect of the fault is compensated. At the same

time, FDD # 2 starts to work. A leakage in tank 2 then happens at t = 6000 s and the FDD # 2 algorithm

determines the type of the fault and sends the information to the decision stage. Similarly, the most suitable

controller PID # 3 is selected and the effect of the fault is tried to be compensated; FDD # 3 starts to work.

This procedure is illustrated in Figure 14.

Figure 14 shows very clearly that if a conventional controller is used for these kinds of faults it would

not be possible to come up with a plausible system response. However, the proposed FTC method is capable

of tolerating these faults with its reconfigurable controllers.
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Figure 13. Fault scenario representation. Figure 14. Proposed FTC system response (solid line)

and conventional closed-loop system response (dashed

line).

5. Conclusions

The SVM is a popular machine learning technique with a very high generalization capacity. Although SVMs are

trained by a small data set, they can scan a very wide region. They are fast algorithms and do not need complex

processes. In this study, an active SVM-based FTC method is presented. In the method, the SVR machines are

used in fault detection and the SVC machines are used in the fault diagnosis phase of the problem; once a fault

occurs, the decision mechanism selects a suitable controller so that an acceptable closed-loop performance is

maintained. This approach provides a powerful tool for solving the FTC problem for certain faults and has good

performance from the perspective of reliability. As a designer, one achieves high performance in terms of speed

and memory since the method utilizes only the current input and output of the process. The performance of

the proposed FTC technique was illustrated by simulations done over the two-tank liquid level control system.

In general, one can conclude that the compensation performance of the FTC technique is very high, even for a

large degree of faulty conditions.
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