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Abstract: B-spline membership functions have produced promising results in the field of signal processing and control

due to their local control property. This work explores the potential of B-spline–based adaptive neuro-fuzzy wavelet

control to damp low frequency power system oscillations using a static synchronous series compensator (SSSC). A

comparison of direct and indirect adaptive control based on hybrid adaptive B-spline wavelet control (ABSWC) is

presented by introducing the online identification block. ABSWC with identification (ABSWCI) provides the sensitivity

information of the plant needed to control the system. The parameters of the control and identification block are updated

online using a gradient descent-based backpropagation algorithm. The stability and convergence of the proposed control

system is discussed based on Lyapunov stability criteria. The robustness of the proposed control algorithm has been

evaluated for local and interarea modes of oscillations using different faults. The nonlinear time-domain simulations

have been analyzed on the basis of different performance indices and time-frequency representation, showing that

ABSWC effectively damps low-frequency oscillations and incorporation of online identification optimizes the control

system performance in terms of control effort, which reduces the switching losses of the converter.
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1. Introduction

The demand for continuous and good-quality power supplies for large infrastructures, like communication and

transportation systems, in addition to the consumption of electricity for daily life, highlights the importance

of stable, secure, and reliable operation of power systems. The geographical enhancements and technological

advancement of power-consuming systems demand the structural expansion of power systems and power trans-

mission over long distances. However, the structural expansion of existing power systems is restricted due to

environmental and economic factors, making the systems operate close to their maximum limits; hence, the

systems work in highly stressed conditions. In the case of a fault event such as loss of load or generating unit,

3-phase to ground fault, etc., transient stability can become a transmission limiting factor due to the increased

loading of long transmission lines [1].

Transient stability is the stability associated with rotor angle oscillations. Power system stability can be

defined as the system’s ability to regain its state of equilibrium after the occurrence of a physical disturbance.

Transient stability is the ability of the power system to maintain its synchronism when subjected to large

disturbances [2]. In the steady state, all the generating units connected in a large power system operate at

the same speed, known as synchronous speed. However, a speed imbalance occurs when the steady state of
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the system is disrupted. This may cause a machine or group of machines to accelerate in one area of a power

network and decelerate in another, resulting in low-frequency electromechanical oscillations (LFEMOs) [3–5].

These LFEMOs, arising due to lack of damping torque, are a consistent threat to the stable operation

of a power system, as they may grow indefinitely if not damped out properly, which eventually leads to partial

or full system outage. Major blackouts have been reported in the literature due to these LFEMOs [6]. The

installation of automatic voltage regulators (AVRs) and power system stabilizers (PSSs) is a cost-effective

remedy to restore system stability [7–10]. However, these devices are simple and linear in nature and are locally

installed in generating units, thus exhibiting poor damping performance due to lack of information about the

global behavior of the system.

In their quest for secure power transmission over long distances while avoiding the expansion of existing

systems, researchers have found that the power flow on a line can be controlled by changing voltage phase,

magnitude, and impedance of the transmission line, which eventually led to the emergence of the flexible AC

transmission system (FACTS). The concept of FACTS was first proposed by Gyuayi and Hingorani in the 1980s

[11].

The static synchronous series compensator (SSSC) is a second-generation series FACTS controller that

was proposed by Gyugyi in 1989 [12]. Due to its superior performance over other series FACTS controllers and

its simplicity of control, the SSSC has been widely discussed in the literature [13–17]. Controlling power flow

on a line and improving power system stability using SSSCs was discussed in [18–20].

The primary goal of the SSSC is not to damp the power system oscillations, but rather to control the

power flow online. The additional feature of damping LFEMOs can be exploited by installing an auxiliary

damping control with the SSSC. The performance of the SSSC in damping power system oscillations depends

upon the control system design.

In the literature, many control techniques ranging from linear to nonlinear, conventional to adaptive, and

metaheuristic to Neuro-Fuzzy, and their hybrids, have been proposed for power system damping control using

SSSC.

In [21], the linearized Phillips–Heffron model and single input/single output (SISO) control structure

were used to propose the damping function of the SSSC. A nonlinear controller based on Lyapunov’s stability

criterion was designed to improve the stability region and damping performance for a single machine infinite

bus (SMIB) system using the SSSC [22]. Linear control techniques are not suitable for highly nonlinear plants

like power systems and may perform better only in the vicinity of the operating point for which the controller

was designed. On the other hand, nonlinear control techniques need the exact mathematical information of the

plant.

Proportional integral (PI) and proportional derivative (PD) controllers with gain adjustment based on

different optimization techniques, like particle swarm optimization (PSO), differential evolution (DE) [23], and

genetic algorithms (GAs), are widely used for SSSC control to damp power system oscillations. Swain et

al. proposed a method based on a real coded GA for tuning the controller parameters [24]. The robustness

of the proposed controller was checked only for the SMIB system. Ajami et al. proposed a multiobjective

particle swarm optimization (PSO)-based damping control for SSSCs [25]. The effectiveness of the controller

was evaluated using eigenvalue analysis for the SMIB system only. PSO-based neural network (NN) control

for SSSCs was proposed in [26], which gives better performance but at the cost of complexity. Panda used

PSO, GAs, and their variants for optimal tuning of parameters of lead-lag controllers to improve the damping

capability of SSSCs [27–30]. An adaptive fuzzy control of the SSSC for damping power system oscillations
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was presented in [31]. The parameters of the controller were identified online by using the recursive least

square (RLS) algorithm, but the control system was tested for the SMIB system. A detailed review of different

soft-computing techniques used to control the operation of different FACTS controllers was presented in [32].

A power system has a highly nonlinear and nonstationary nature. Therefore, the control system must be

nonlinear, adaptive, and fast enough to update its parameters with variations in plant dynamics. Metaheuristic

techniques are approximate and nondeterministic in nature; moreover, their computational complexity does not

encourage their application to large power systems.

Design and structural complexity, vulnerability to changes in operating condition and sensitivity to system

model accuracy, computational cost, memory requirements, and latency due to offline training are some of the

major shortcomings in these existing control paradigms.

Neuro-fuzzy control structures have found extensive applications in the field of identification and control

of nonlinear plants due to their good generalization capability, low complexity, and ease of implementation.

A neuro-fuzzy supplementary damping control for multimachine systems was proposed in [33–35]. It utilizes

the linearized model of the power system and the manual tuning process for fuzzy control rules, which is an

experience-oriented and time-consuming practice. Chandrakar and Kothari investigated the neuro-fuzzy control

for transient stability enhancement and improvement in power transfer capability using SSSCs [36].

NNs are well known for their ability to cope with model inaccuracy, good approximation capabilities,

and parallel structure, but they suffer from computational burden due to the increase in number of neurons as

the dimensions of the problem increase. On the other hand, fuzzy systems are good in dealing with nonlinear

systems that have uncertainties; however, their performance depends upon the accuracy of the knowledge base,

which in some cases may be difficult to ensure. Therefore, the low computational complexity and knowledge base

capability of a fuzzy system was combined with the good generalization properties of NNs into a single structure,

known as neuro-fuzzy. However, the system suffers from the inherent drawback of getting stuck in local minima

of the search space and poor convergence speed. Moreover, the linear consequent part of conventional fuzzy

Takagi–Sugeno–Kang (TSK) systems cannot cope with nonlinearities in the system.

To overcome these limitations of neuro-fuzzy systems, wavelets were introduced into their structure.

Wavelet NNs utilize the multiresolution property of wavelets to analyze the local details of the signal and model

the system behavior with greater accuracy. Fuzzy wavelet NNs (FWNNs) have been successfully used to control

dynamic plants and prediction of time series [37,38]. The wavelet is a function having finite support with most

of the energy concentrated in the vicinity of the center. The combination of shifted and translated versions of

the mother wavelet can be used to cover the input data space for modeling. However, these controllers have a

feed-forward structure and may have losses in their performance for certain dynamic plants, like power systems,

due to the globally tuned membership functions in the antecedent part. The shape of the membership function

significantly affects the performance of the control system [39–43]. The local control of the membership function

enables it to translate the system’s uncertainties in the rule base of the fuzzy control.

Curry and Schoenberg were the first to introduce the theory of B-spline approximation, which was later

further worked out by others [44]. B-spline membership functions are locally controllable membership functions

and are well known for generating smooth control output. It has been shown that B-spline–based fuzzy NNs

have fast convergence as compared to conventional adaptive neuro-fuzzy systems [45]. Due to their local control

property, simplicity of implementation, and low computational and storage requirements, they have proven to

be a good choice for identification and control of nonlinear systems [46–49]. However, they have been used

397



KHAN and BADAR/Turk J Elec Eng & Comp Sci

in conventional TSK structures with linear or singleton consequent parts, and their combination with more

sophisticated techniques like wavelet NNs is still unexplored.

In this work, an adaptive online control system is proposed by optimizing the conventional structure of

the TSK fuzzy system. The proposed system utilizes the locally controllable B-spline membership function in

the antecedent part of the controller and wavelet functions in the consequent part, with adaptively changing

translation and dilation factors, which help to improve the computational strength and generalization capability

of the proposed control system. The performance of the proposed network has been investigated using direct

and indirect control schemes for damping power system oscillations with smooth control effort. The proposed

control scheme synergistically integrates the locally tunable B-spline membership functions of order 2 and

time-frequency localization property of Morlet wavelets in the neuro-fuzzy structure. The B-spline functions

of order 2 correspond to the locally tunable triangular membership functions, which have a normalization

property ensuring the transparency of the neuro-fuzzy network. The performance of the proposed scheme is

evaluated using different performance indices. To get clear insight into the behavior of different frequencies, a

time-frequency representation method known as smooth pseudo-Wigner–Ville distribution (SPWVD) is used to

analyze different modes of oscillations and the control effort.

The rest of the paper is arranged as follows: Section 2 gives the dynamic modeling of SSSC. Section 3

presents the detailed mathematical treatment of control system design. Update laws for parameters adaptation

are discussed in Section 4. The proposed online algorithm is presented in Section 5. The stability analysis of

the proposed control scheme is given in Section 6. The simulation results are presented in Section 7. Section 8

concludes this research; finally, Section 9 explores the future dimensions of this work.

2. SSSC operation, dynamic modeling, and control

The nonlinear dynamic model of a multimachine power system can be written in the form of differentio-algebraic

equations as follows:

ẋ = f(x,y, t), (1)

0 = g(x,y, t), (2)

where x is the state variable matrix and y is the output algebraic variable matrix. The machine and control

dynamics are described in the form of differential equations, whereas the algebraic equations comprise load flow

and other network equations.

The SSSC is the series compensating controller and consists of 3 main parts: the voltage sourced inverter,

the DC capacitor, and the series step-down coupling transformer. The SSSC injects a series of AC voltage in

quadrature with the transmission line current at fundamental frequency. Depending upon the demand of the

AC network, the SSSC controls the active power flow by working in capacitive or inductive mode. If the voltage

injected by the SSSC is negative, it works in inductive mode, whereas in capacitive mode the voltage injection

will be positive. In capacitive mode, the injected voltage leads the line current, whereas in inductive mode

injected voltage lags the line current. The DC voltage across the capacitor is maintained at a constant level by

drawing a small amount of active power from the AC network to compensate for the converter losses.

Figure 1 shows the complete diagram of the AC power system. SSSC is installed on a transmission line

between nodes 1 and 2. In the power system, SSSC can be modeled as series voltage source and reactance. By

approximating the switching functions with their fundamental frequency components, SSSC converter output

can be modeled by transforming the 3-φ voltages and currents to dq variables [50]. The converter output
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voltage is given by: (
vd inv

vq inv

)
=

(
υ1 cosψs

υ1 sinψs

)
, (3)

where ψs = θ + ϕ is the converter output voltage angle and υ1 = mkvDC . Here, ϕ is the firing angle, m is the

modulation index, and k is a constant defining the relationship between converter AC and DC side voltages.
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Figure 1. Power system model installed with SSSC.

The DC side voltage can be calculated using the law of power conservation and is given as:

dvDC

dt
=

3mk

2C
[i

d
cosψs + iq sinψs]−

vDC

CRDC
. (4)
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Let I∠θ be the current flowing through line in phasor form, with θ being the angle of line current; then the

converter output voltage in phasor form is given by:

V̄inv = mkvDC∠ψs. (5)

The mathematical model of the 3-φ SSSC embedded into the transmission line is given as:

i̇abc = −Rss

Lss
I3×3iabc +

1

Lss
I3×3 (vabc 12 − vabc inv) , (6)

where Rss and Lss are the series resistance and inductance of the SSSC including the effects of magnetic

coupling and interface transformer, iabc is the 3-φ current matrix, vabc 12 = vabc 1 − vabc 2 is the 3-φ voltage

matrix based on the voltage difference of the 2 ends, and vabc inv is the 3-φ converter output voltage. By

applying the dq transformation, Eq. (6) becomes:

(
i̇d

i̇q

)
=

 −Rss

Lss
−ω

ω −Rss

Lss

( id

iq

)
+

 1
Lss

0

0 1
Lss

( vd ij − vd inv

vq ij − vq inv

)
. (7)

Combining Eqs. (3), (4), and (7), the complete model can be written as:

 i̇d

i̇q
v̇DC

 =


−Rss

Lss
−ω −υ3cosψs

ω −Rss

Lss
−υ3 sinψs

υ2 cosψs υ2 sinψs − 1
CRDC


 id

iq

vDC

+


1

Lss
0 0

0 1
Lss

0

0 0 1
Lss


 vd ij

vq ij

0

 , (8)

where υ2 = 3
2Cmk and υ3 = mk

Lss
. The control of SSSC can be categorized as internal and external control.

The internal control keeps the injected voltage in quadrature with the line current maintaining the DC voltage

at a constant level in steady state. The external control monitors the changes in system variables and provides

the reference values to internal control. The internal control block, shown in Figure 1, has 3 main parts. These

include the measurement system block, the AC and DC voltage regulators, and the pulse width modulation

(PWM) parameters’ calculation block. The potential and current transformers sense the 3-phase line voltages

and currents, respectively, and input them into the measurement system. The measurement system includes the

phase-locked loop (PLL), whose primary goal is to extract the synchronization angle to transform the 3-phase

input quantities into dq-reference frame.

The quadrature-injected voltage control is carried out using the AC voltage regulator in the voltage

regulator block. The converter injected voltage is calculated by the difference of quadrature components of

both end voltages of the SSSC and then compared with the reference value. The calculated error is fed to the

PI control to generate the desired quadrature voltage component. The direct component of converter voltage

is computed by the PI regulator, whose input is the error between reference and measured DC voltages. The

gains of the PI controllers are adjusted based on a trial-and-error method. The outputs of the 2 PI controllers

are used to calculate modulation index and firing angle using the PWM parameters’ calculation block.

The dynamic model of the SSSC is interfaced with other dynamic components of the power system, like

synchronous machines, exciters, and controls.
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3. Control system design

The proposed control scheme is online adaptive, and the inclusion of the identification block makes it indirect.

The identification block is used to provide the sensitivity term to the control block to ensure the stability of

the system. The plant includes a power system installed with the SSSC. Ξκ is the set of small and large

disturbances applied to the system. The closed-loop structure of the system is shown in Figure 2.
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Figure 2. Closed-loop control system structure.

The control and identification blocks are based on an adaptive neuro-fuzzy structure defined by the

following generalized rule:

ℜj : IFx1 is m1j and x2 is m2j · · ·xmj is mmjTHENyj is ℘j .

Here, ℜj is the j th rule. IF and THEN represent the antecedent and consequent parts, respectively. xij is

the ith input to j th rule, and mij is the j th membership function of the ith input. yj is the output of the

consequent part of the j th rule, i.e. the output of the wavelet neural network, and is denoted by ℘j .

Both the control and identification block have the same architecture as shown in Figure 3; however, they

differ in fuzzification approach to avoid computational complexity and ensure simplicity of implementation. The

whole network works in a layered fashion.

Layer 1 is the input layer, which routes the inputs to the second layer for fuzzification.

Layer 2 is the fuzzification layer. In this layer, the identification block uses a Gaussian membership

function in the antecedent part to fuzzify its inputs, while the B-spline membership function is used in the

antecedent part of the control block. Therefore, the fuzzy membership function can generally be written as:

mij (xi) = f (xi|χ1) , (9)
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where χ1 is the update parameter vector for the antecedent part.

Figure 3. ABSWC architecture.

Layer 3 is the rule layer and calculates the firing strength of each rule by using a T-norm product

operator. The output of this layer for j th rule is given by:

ςj =
m∏
i=1

mij (xi). (10)

Layer 4 works in parallel with layer 2. Each node of layer 4 is a wavelet network that consists of 3 sublayers:

input layer, hidden layer, and output layer. The hidden layer contains the wavelets as activation functions. The

output of the wavelet network for the j th rule is given by:

yj = ℘j (xi|χ2) = wj

m∑
i=1

φij (rij), (11)

where χ2 is the updated parameter vector for the consequent part and φij (rij) is the Morlet wavelet function

given by:

φij (rij) = cos (5rij) e
−

r2ij
2 . (12)

Here, rij (xi) =
xi−tij
γij

, such that tij and γij are the translation and dilation factors of j th wavelet function.

Layer 5 is the second layer of the consequent part and multiplies the outputs of the third and fourth

layers.
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Layer 6 and Layer 7 defuzzify the output of layer 5, using the center of gravity method, to calculate

the final output of the network. The output of layer 7 is given as:

o=

n∑
j=1

ςj℘j

n∑
j=1

ςj

. (13)

Here, o ∈ {u, yI} is the output of the network such that u is the output of the control block, and yI denotes

the output of the identification block.

4. Parameters update law

The parameters of the identification and control blocks are updated using a backpropagation algorithm based

on first-order gradient descent technique. The generalized update law can be defined as follows:

χβ (k + 1) = χβ (k)− ℏir
∂J

∂χβ
+ λ̄ir (χβ (k)− χβ (k − 1)) , (14)

where ℏir is the learning rate and λ̄ir is the momentum term. The subscript r is used to denote the identification

or control block, and the superscript i represents the learning rate and momentum for the respective update

parameter. The convergence of the gradient descent algorithm strictly depends upon the value of the learning

rate. A low value for the learning rate may lead the algorithm to converge slowly, while a high value results

in unstable learning. The momentum term is introduced to smooth the learning process, and its effect on

convergence of the algorithm was discussed in detail in [51]. The learning rate and momentum terms are

adjusted in the interval ]0 1[. In Eq. (14), χβ = [χ1 χ2] and J ∈ {JI, JC} are the quadratic cost functions,

such that JI and JC are the cost functions for identification and control blocks, respectively. The subscript β

is used to denote the identification or control block. The detailed mathematical treatment for update equations

of each block is given in the following subsections.

4.1. Identification block

The cost function used to update the identification block parameters is given as:

JI =
1

2
[yI − y]

2
. (15)

yI =

n∑
j=1

ςj℘j

n∑
j=1

ςj

is the output of the identification block. The identification block uses a Gaussian membership

function in the antecedent part and Morlet wavelet function in the consequent part.

The Gaussian membership function is given as:

mij(xi) = e
−
(

xi−hij
νij

)2

, (16)

where hij and νij are the center and width, respectively, for the j th membership function of the ith input.

Therefore, the update parameter vector for the identification block is given as χI = [hij νij wj tij γij ] . The
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generalized parameters’ update law can be written as:

χI (k + 1) = χI (k)− ℏ
∂JI

∂χI
+ λ̄ (χI (k)− χI (k − 1)) . (17)

Here,

∂JI

∂χI
=
∂JI

∂yI

∂yI
∂χI

= (yI − y)
∂yI
∂χI

. (18)

The differential in Eq. (18) can be simplified for the respective parameters using the following chain rule of

calculus:
∂yI
∂hij

=
∂yI
∂ςj

∂ςj
∂mij

∂mij

∂hij
, (19)

∂yI
∂νij

=
∂yI
∂ςj

∂ςj
∂mij

∂mij

∂νij
, (20)

∂yI
∂tij

=
∂yI
∂℘j

∂℘j

∂φij

∂φij

∂rij

∂rij
∂tij

, (21)

∂yI
∂γij

=
∂yI
∂℘j

∂℘j

∂φij

∂φij

∂rij

∂rij
∂γij

, (22)

∂yI
∂wij

=
∂yI
∂℘j

∂℘j

∂wij
. (23)

After simplifying these differentials, the final updated equations for each parameter of the identification block

can be written as follows:

hij (k + 1) = hij (k)− ℏ (yI − y) 2
ςj (xi)
n∑

j=1

ςj (xi)
(℘j − yI)

xi − hij
ν2ij

+ λ̄ (hij (k)− hij (k − 1)) , (24)

νij (k + 1) = νij (k)− ℏ (yI − y) 2
ςj (xi)
n∑

j=1

ςj (xi)
(℘j − yI)

(xi − hij)
2

ν3ij
+ λ̄ (νij (k)− νij (k − 1)) , (25)

tij (k + 1) = tij (k)− ℏ (yI − y)
ςj (xi)
n∑

j=1

ςj (xi)

(
rij℘ij + 5wj sin (5rij) e

−
r2ij
2

)
γij

+ λ̄ (tij (k)− tij (k − 1)) , (26)

γij (k + 1) = γij (k)− ℏ (yI − y)
ςj (xi)
n∑

j=1

ςj (xi)

rij

(
rij℘ij + 5wj sin (5rij) e

−
r2ij
2

)
γij

+ λ̄ (γij (k)− γij (k − 1)) , (27)

wij (k + 1) = wij (k)− ℏ (yI − y)
ςj (xi)
n∑

j=1

ςj (xi)
℘ij (xi) + λ̄ (wij (k)− wij (k − 1)) . (28)
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4.2. Control block

The control block utilizes B-spline membership functions in the antecedent part and Morlet wavelet functions

in the consequent part, as given in Eq. (12). The B-spline membership function is formed by the weighted sum

of the blending functions and is given as:

mij(xi) =
n∑

k=0

PkNk,p (xi) 1 ≤ p ≤ n. (29)

Here, mij is the degree of membership function, and P k is the control point with k = 0, 1, 2, 3 · · · , n such

that the total number of control points is n + 1. p is the order of the B-spline basis function. Nk,p(xi) =

N (xi|τ1, τ2, · · · , τn+p) is the k th B-spline basis function and is given by the following Cox–de Boor recursion

formula:

Nk,p(x) =


1 if p = 1, x ∈ [τi τi+1[(

x−τi
τi+p−1−τi

)
Ni,p−1 +

(
τi+p−x

τi+p−τi+1

)
Ni+1,p−1 if p > 1, x ∈ [τi τi+p[

0 if p = 1, x /∈ [τi τi+1[

. (30)

τ = [τ1 τ2 · · · τk+p] ∈ R is the knot vector such that τi+1 − τi ≥ 0. For any input x ∈ [a b] → R, the knot

sequence is defined as

a, a, · · · , a︸ ︷︷ ︸
p−terms

, τp, · · · , τn, b, b, · · · , b︸ ︷︷ ︸
p−terms

 . The number of control points and types of knots

are of primary importance for the smoothness of the B-spline membership function.

In this work, the B-spline membership function of order 2 that corresponds to the locally controllable

triangular membership function has been used with 9 control points and 13 knot vectors. The control points

are evenly distributed over the membership function with fixed knot sequence.

The parameters of the control block are updated by minimizing the following cost function:

JC =
1

2

[
(yr − y)

2
+ λu2

]
, (31)

where u is the control effort and λ is the weighting factor introduced for optimal adjustment of the controller

output. Eq. (14), for the control block, can be written as follows:

χC (k + 1) = χC (k)− ℏ
∂JC

∂χC
+ λ̄ (χC (k)− χC (k − 1)) . (32)

The term ∂JC
∂χC

in Eq. (32) can be simplified using the following relation:

∂JC

∂χC
= −

[
(yr − y)

∂y

∂u
− λu

]
∂u

∂χC
, (33)

where χC = [mij wj tij γij ] is the adaptation parameter vector for the control block. The output of the control

block is u=

n∑
j=1

ςj℘j

n∑
j=1

ςj

. The differential in Eq. (33) can be simplified, for respective parameters, using the following
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chain rule of calculus:
∂u

∂mij
=
∂u

∂ςj

∂ςj
∂mij

, (34)

∂u

∂tij
=

∂u

∂℘j

∂℘j

∂φij

∂φij

∂rij

∂rij
∂tij

, (35)

∂u

∂γij
=

∂u

∂℘j

∂℘j

∂φij

∂φij

∂rij

∂rij
∂γij

, (36)

∂u

∂wij
=

∂u

∂℘j

∂℘j

∂wij
. (37)

Eqs. (35), (36), and (37) are the same as those of the identification block due to similar network architecture,

the only difference is Eq. (34) for B-spline membership function that can be simplified as:

∂u

∂mij
=

ςj (xi)

mij

n∑
j=1

ςj (xi)
(℘j − u) . (38)

The final update equations for each parameter of the control block can be written as follows:

mij (k + 1) = mij (k) + ℏ
[
(yr − y)

∂y

∂u
− λu

]
ςj (xi)

mij

n∑
j=1

ςj (xi)
(℘j − u) + λ̄ (mij (k)−mij (k − 1)) , (39)

tij (k + 1) = tij (k) + ℏ
[
(yr − y)

∂y

∂u
− λu

]
ςj (xi)
n∑

j=1

ςj (xi)

(
rij℘ij + 5wj sin (5rij) e

−
r2ij
2

)
γij

+ λ̄ (tij (k)− tij (k − 1)) ,

(40)

γij (k + 1) = γij (k)+ℏ
[
(yr − y)

∂y

∂u
− λu

]
ςj (xi)
n∑

j=1

ςj (xi)

rij

(
rij℘ij + 5wj sin (5rij) e

−
r2ij
2

)
γij

+λ̄ (γij (k)− γij (k − 1)) ,

(41)

wij (k + 1) = wij (k) + ℏ
[
(yr − y)

∂y

∂u
− λu

]
ςj (xi)
n∑

j=1

ςj (xi)
℘j (xi) + λ̄ (wij (k)− wij (k − 1)) . (42)

The plant output sensitivity measure ∂y
∂u in the above equations is provided by the identification block and is

given as:

∂y

∂u
=

n∑
j=1

ςj

[
−2(u−h1j)(℘j−y)

σ2
1j

− 5wj sin 5r1je
−

r2ij
2

γ1j
− wjr1jφ1j

γ1j

]
n∑

j=1

ςj

. (43)

406



KHAN and BADAR/Turk J Elec Eng & Comp Sci

5. Online adaptive algorithm

The parameters of the control and identification block are updated using the following online adaptive algorithm.

Step 1: The parameters of the control and identification block are initialized and a reference value is

assigned.

Step 2: The values of learning rates and momentum terms are adjusted.

Step 3: The inputs to the control block are sampled at the k th time instant.

Step 4: The parameters of identification block are updated by minimizing JI (k) using y and yI .

Step 5: The output of the controller is calculated and applied to the plant.

Step 6: The output of the plant is predicted by the identification block at the (k + 1 )th instant using

u(k).

Step 7: Based on yI , the adaptation error is calculated and backpropagated through the control block

to update its parameters by minimizing JC .

Step 8: If the solution converges, repeat steps 3–7 until the required tolerance value is achieved;

otherwise, repeat steps 2–7.

The adaptation errors for both the identification and control blocks are scalar values and are calculated

once during a single iteration, which makes the controller computationally efficient. The proposed control

scheme has been analyzed both with and without incorporation of the identification block. For ABSWC, the

term ∂y
∂u is taken as 1 [52].

6. Stability analysis of the proposed control strategy

The stability of the proposed control system is discussed in this section for the identification and control blocks,

since the convergence of gradient descent depends upon the choice of learning rate. This section presents the

range for defining the learning rates for respective update parameters based on Lyapunov function.

6.1. Stability analysis for identification block

Define a Lyapunov function given as:

VI =
1

2
[EI]

2
, (44)

where EI is the adaptation error for the identification block given as:

EI = (y − yI) . (45)

The change in Lyapunov function is given as in [53]:

∆VI = VI (k + 1)− VI (k) =
1

2

[
EI2 (k + 1)− EI2 (k)

]
. (46)

The change in learning error is given as:

∆EI (k) = EI (k + 1)− EI (k) ≈
(
∂EI (k)

∂χI

)T

∆χI (47)
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=
(

∂EI
∂hI

∂EI
∂νI

∂EI
∂tI

∂EI
∂γI

∂EI
∂wI

)


∆hI

∆νI

∆tI

∆γI

∆wI


, (48)

using ∆χIi = −ℏiiI
∂JI
∂χIi

= ℏiiI EI (k) ∂yI

∂χIi

⇒



∆hI

∆νI

∆tI

∆γI

∆wI


= EI (k)



ℏhI
∂yI

∂hI

ℏνI
∂yI

∂νI

ℏtI
∂yI

∂tI

ℏγI
∂yI

∂γI

ℏwI
∂yI

∂wI


. (49)

The convergence theorem for identification block can then be defined as follows:

Theorem 1 The asymptotic convergence is guaranteed if ℏiiI is chosen to satisfy the following condition:

0 < ℏiiI <
2

max
(

∂yI

∂χi
I

)2 . (50)

The proof of this theorem is given in the Appendix.

6.2. Stability analysis for control block

Define a Lyapunov function for control block as:

VC =
1

2
[EC]

2
, (51)

where EC is the adaptation error for the control block, given as:

EC =

[
(yr − y)

∂y

∂u
− λu

]
. (52)

The change in Lyapunov function is given as:

∆VC = VC (k + 1)− VC (k) =
1

2

[
EC2 (k + 1)− EC2 (k)

]
. (53)

The change in learning error is given as:

∆EC (k) = EC (k + 1)− EC (k) ≈
(
∂EC (k)

∂χC

)T

∆χC , (54)
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=
(

∂EC
∂mC

∂EC
∂νC

∂EC
∂tC

∂EC
∂γC

)


∆mC

∆νC

∆tC

∆γI

 , (55)

using ∆χCi = −ℏiiC
∂JC
∂χCi

= ℏiiCEC (k) ∂u
∂χCi

⇒


∆mC

∆tC

∆γC

∆wC

 = EC (k)


ℏmC ∂u

∂mC

ℏtC ∂u
∂tC

ℏγC
∂u
∂γC

ℏwC ∂u
∂wC

 . (56)

The convergence theorem for the control block can then be defined as follows.

Theorem 2 The asymptotic convergence is guaranteed if ℏiiC is chosen to satisfy the following condition:

0 < ℏiC <
2[(

∂y
∂u

)2
+ λ

](
max

(
∂u
∂χi

C

))2 . (57)

The proof of this theorem is given in the Appendix.

Remark Since the sensitivity term in Eq. (57) is provided by the identifier, to meet the convergent conditions

of Theorem 1 and Theorem 2, term ∂y
∂u is replaced by Smax [53], such that:

Smax = max

(
∂y

∂u

)

= max


n∑

j=1

ςj

[
−2(u−h1j)(℘j−y)

σ2
1j

− 5wj sin 5r1je
−

r2ij
2

γ1j
− wjr1jφ1j

γ1j

]
n∑

j=1

ςj



≤ max

∣∣∣∣∣∣−2 (u− h1j) (℘j − y)

σ2
1j

− 5wj sin 5r1je
−

r2ij
2

γ1j
− wjr1jφ1j

γ1j

∣∣∣∣∣∣
≤ max

∣∣∣∣∣2 (M − h1j) (℘j − y)

σ2
1j

+
6wj max

γ1j min

∣∣∣∣∣
≤

∣∣∣∣∣2 (M − h1j min) (℘j max − y)

σ2
1j min

+
6wj max

γ1j min

∣∣∣∣∣ ,
where M is the upper bound on control effort, i.e. 0.2 p.u.; m is the number of inputs; and n is the number

of rules.
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7. Results and discussion

The robustness of the proposed control system has been checked using a multimachine test system with SSSC

installed in the middle of the system. The system consists of 2 areas with 2 generating units in each area, as

shown in Figure 2 as “plant”. Generators 1 and 2 are in area 1, while generators 3 and 4 are in area 2. The

generators in the power system are equipped with a hydraulic turbine governor (HTG) and excitation system.

The HTG is a nonlinear hydraulic turbine model, and the governor system is based on the PID and servomotor.

A voltage regulator and DC exciter form the excitation system. PSSs installed on each machine are disabled.

Details of system parameters and machines ratings are given in [54]. MATLAB/Simulink is used as a simulation

tool to generate the results. The phasor simulation method is used for transient stability analysis of the system.

The phasor simulation method improves the simulation speed by replacing the differential equations with simple

algebraic equations, ignoring the fast electromechanical transients, and is hence suitable for simulating large

power systems. Continuous variable-step solver ode23tb with a maximum time step of 1 cycle of fundamental

frequency (i.e. 60 Hz) is used with this simulation method.

The simulations were carried out for 4 cases: SSSC installed in the system with no supplementary

damping control, SSSC installed with conventional adaptive TSK control with no identification block (ATSC),

SSSC installed with ABSWC, and SSSC installed with ABSWC with identification (ABSWCI). The membership

functions for each input and number of rules for control and identification block is 2. Therefore, the total numbers

of parameters to be updated for ABSWCI and ABSWC are 32 and 14, respectively. The relative rotor speed

deviation and its derivative are taken as 2 inputs to the control block, while the output of the controller is the

series injected voltage. The controller output and delayed output of the plant are inputs to the identification

block.

In order to check the robustness of the proposed control system for small and large disturbances, variation

in fault location and duration, structural changes, and the online stability of the system, a series of faults is

applied to the system. A 3-phase, self-clearing fault of 8 cycles in duration is applied at t = 1 s on 1 of the 3

tie lines near area 2. Another 3-phase fault of the same duration is applied in area 2 near bus B8 at t = 12 s,

followed by a 3-phase, self-clearing fault of 12 cycles in duration on 1 of the tie lines at t = 21 s. The last fault is

a double line outage near area 1, at t = 28 s. The results for local and interarea modes of oscillations are shown

in Figures 4a–4d, respectively. The application of the first 3-phase fault makes the system unstable in the case

of no control and causes the simulation to stop at t = 9.5 s. A comparison of the results shows that ABSWCI

has better performance for large disturbances as compared to small disturbances and is therefore more suitable

for systems with higher nonlinearities.

Figures 5a and 5b show the power flow on 1 of the 3 tie lines measured at buses B4 and B6 , respectively.

Initially, there is a power flow of almost 413 MW from area 1 to area 2. ATSC has poorly damped oscillatory

behavior for postfault power damping, whereas ABSWCI has significantly better results as compared to ABSWC

and ATSC. The control effort, shown in Figure 5c, reveals that in the case of ABSWCI, the injected voltage

does not hit the maximum allowable limit, thus reducing the megaVAR ratings of the converter and making

the system cost-effective. Plant output sensitivity measurement is shown in Figure 5d, depicting the dynamic

behavior of the plant at the time of the fault.

Although there is performance improvement for ABSWCI, it can be seen that ABSWC, being already an

intelligent, nonlinear, and adaptive control, has competent results, and performance improvement for ABSWCI

is difficult to analyze in nonlinear time-domain simulations, especially for local modes of oscillations. Therefore,

the performance has been quantified in terms of different performance indices to get clear insight into the results

in the transient and steady-state regions. The performance index can be defined as the integral of a function of
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(a)                                                                              (b) 

(c) (d) 

Time (s) Time (s)

Time (s) Time (s)

Figure 4. Multimachine test system: (a) and (b) local modes of oscillations; (c) and (d) interarea modes of oscillations.

time, and error is given as:

PIj,k =

ts∫
0

tj

(
n∑

i=1

(
|∆ωLi |

k
+ |∆ωIi |

k
))

dt. (58)

Here, ts is the total simulation time and i is the mode number. L and I represent the local and interarea

modes of oscillations, respectively. k and j are fixed numbers, such that (k, j) ∈ {(1, 1), (1, 0), (2, 1), (2, 0)}
for integral time absolute error (ITAE), integral absolute error (IAE), integral time square error (ITSE), and

integral square error (ISE), respectively.

These performance indices are shown in Figures 4a–4d, with the y-axis on the right. These performance

indices give a clear picture of performance improvement for ABSWCI as compared to ABSWC, showing that

ABSWCI has improved performance results in transient and steady-state regions for both local and interarea

modes of oscillations. The quantitative results for these performance indices are given in the Table. The statistics

show that the performance improvement for ITSE and ISE is greater than for ITAE and IAE, highlighting the

more pronounced effect of ABSWCI in the transient region.

Another performance measure used to investigate the performance of the proposed control system is

the smoothness of the control effort. The smoothness of the control effort reduces the switching losses of the

converter. Figure 5c shows the nonlinear time domain simulation results for control effort as injected voltage
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(c) (d)

(a)                   (b)  

Time (s) Time (s)

Time (s) Time (s)

Figure 5. Multimachine test system: (a) line power flow measured at bus B4 ; (b) line power flow measured at bus B6 ;

(c) control effort; (d) sensitivity measure.

Table. Comparative results with respect to ATSC.

Control Performance improvement [%] Control effort smoothness
Algorithm ITAE ITSE IAE ISE ABSWCI ABSWC ATSC
ABSWCI 30.71 42.20 26.85 36.18

477.02 1035 1581
ABSWC 23.83 36.21 18.19 29.76

for ABSWC and ABSWCI. The smoothness measure is calculated as follows:

SM =

√√√√ 1

L

L∑
i=1

[Λ2u (i)]
2

(59)

where, L is the total length of the control signal and Λ2 is the discrete second-order derivative. The smaller the

value of this smoothness measure is, the smoother the control effort will be [55], which is given quantitatively

in the Table. Figure 5d shows the plant sensitivity measure using ABSWCI; in the case of ABSWC, this term

is taken as constant. In other words, ABSWC shows a static picture of the system to the controller, while

ABSWCI updates the control block parameters based on the online sensitivity measure of the system, clearly

depicting the dynamics of the system and hence improving the damping performance with smooth control effort.

To get a clear idea of frequency behaviors, the results for local and interarea modes of oscillations and
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control effort for case 2 were analyzed in time-frequency domain for both ABSWC and ABSWCI. For this

purpose, SPWVD has been used. SPWVD reduces the effect of interference terms present in WVD and is given
as:

SPWVDx(k, ω) =

∞∫
−∞

h (τ)

∫
g (u− k)x (u+ τ/2)x ∗ (u− τ/2) due−jωτdτ (60)

Here, h (τ) is the frequency smoothing window in the time domain used to reduce the effect of cross-terms, and

eliminates the integration over ]−∞ ∞] for WVD. g (k) is the smoothing function for the time domain [56].

The results for this analysis are presented in Figure 6. The figures in the first column show the results for

ABSWC; the results for ABSWCI are shown in the second column. It is interesting to see that SPWVD more

clearly shows the frequency domain behavior of signals in time. Figures 6a–6d show that both control techniques

have almost the same spectra for local modes of oscillations; however, the magnitude of low frequencies ranging

from 0.05 to 0.15 Hz is smaller in the case of ABSWCI as compared to ABSWC. Figures 6e–6h show that

ABSWCI successfully damps some relatively high frequencies in the range of 0.2 to 0.25 Hz; for ABSWC, these

frequencies are present with small amplitude. Moreover, Figures 6g and 6h show that the low frequencies in the

range of 0.1 to 0.15 Hz have high amplitude in the case of ABSWC as compared to ABSWCI. In addition, very

low frequencies, below 0.05 Hz, are observable for the fourth fault between 25 to 28 s in the case of ABSWC.

Most importantly, the spectra of control efforts for both control algorithms shown in Figures 6i and 6j

reveal that the control effort for ABSWC has high frequencies in the range of 0.1 to 0.25 Hz with observable

amplitude as compared to that of ABSWCI. ABSWCI has very small value, almost negligible, for high frequen-

cies, and some low frequencies below 0.05 Hz are present for the last fault, with significant amplitude showing

that the transitions in the control signal are smooth.

8. Conclusion

This paper presents the application and comparison of an optimal direct and indirect adaptive neuro-fuzzy

control scheme to damp power system oscillations using the SSSC. Low-frequency oscillations, being a constant

threat to the secure and reliable operation of power systems, were studied and discussed. A detailed literature

survey along with solution methods for damping low frequency oscillations using SSSC was presented. A

hybrid adaptive neuro-fuzzy B-spline wavelet-based control technique was proposed and successfully applied to

a multimachine power system for damping local and interarea modes of oscillations. Detailed mathematical

modeling for the power system installed with the SSSC and the proposed control scheme was given. The

performance of the proposed control scheme was optimized in terms of smoothness of the control effort by

introducing the identification block. It is to be noted that adaptation errors for identification and control

blocks are scalars, which makes the proposed scheme computationally efficient and highly suitable for real-time

implementation.

Moreover, the proposed control scheme eliminates the need for installation of a PSS on each machine,

which eventually makes the system cost-efficient compared to those installed with both. This also improves

the simplicity of the control scheme, as the interaction between the PSS and SSSC need not be considered.

The MATLAB/Simulink simulation environment was used to generate the results for different fault scenarios.

The results were analyzed on the basis of nonlinear time-domain simulations, performance indices, and time-

frequency domain representation using SPWVD. It was found that inclusion of the identification block in the

proposed control scheme improves the smoothness of the control effort, preserving the damping performance in

transient and steady-state regions for all of the discussed scenarios. The SPWVD analysis shows the smaller
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Time (s) Time (s)
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Figure 6. SPWVD analysis: (a), (c), (e), and (g) local and interarea modes of oscillations with ABSWC; (b), (d) and

(f), and (h) local and interarea modes of oscillations with ABSWCI; (i) control effort for ABSWC; (j) control effort for

ABSWCI.
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Figure 6. Continued.

amplitude of high frequencies in the control effort signal in the case of ABSWCI. The smoothness of the control

effort reduces the switching losses and megaVAR ratings of the converter. Since the proposed control scheme is

not application-specific, its application horizon can further be extended to other nonlinear, time-varying plants.

9. Future work

A number of neuro-fuzzy wavelet-based adaptive control techniques have been proposed in the literature

for nonlinear, dynamic plants. A comparison of ABSWCI with some of them on the basis of control effort

smoothness and complexity of the control scheme would be an interesting future dimension.

The proposed control scheme uses a gradient-descent–based backpropagation algorithm for parameter

adaptation; some other sophisticated techniques can also be investigated for performance improvement. The

performance analysis of the proposed control scheme for large power systems would also be a logical extension

of this work.
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Appendix

Proof of Theorem 1

According to Eq. (46), the change in Lyapunov function is given as:

∆VI = VI (k + 1)− VI (k) =
1

2

[
EI2 (k + 1)− EI2 (k)

]
. (A1)

Using Eq. (47),

∆VI = ∆EI (k)

[
EI (k) +

1

2
∆EI (k)

]
. (A2)

Using Eq. (47) and ∆χIi = −ℏiiI
∂JI
∂χIi

= ℏiiI EI (k) ∂yI

∂χIi
in Eq. (A2),

∆VI =

(
∂EI (k)

∂χI

)T

ℏIEI(k)
∂yI
∂χI

{
EI (k) +

1

2

(
∂EI (k)

∂χI

)T

ℏIEI(k)
∂yI
∂χI

}
. (A3)

Using Eq. (46),

∂EI

∂χI
= − ∂yI

∂χI
(A4)

⇒ ∆VI = −
(
∂yI
∂χI

)T

ℏIEI (k)
∂yI
∂χI

{
EI (k)− 1

2

(
∂yI
∂χI

)T

ℏIEI (k)
∂yI
∂χI

}
(A5)

⇒ ∆VI = −EI2 (k)
5∑

i=1

(
ℏiI
(
∂yI
∂χi

I

)2
(
1− 1

2
ℏiI
(
∂yI
∂χi

I

)2
))

. (A6)

Since EI2 > 0, the convergence is guaranteed if
5∑

i=1

(
ℏiI
(

∂yI

∂χi
I

)2(
1− 1

2ℏ
i
I

(
∂yI

∂χi
I

)2))
> 0

⇒ 2− ℏiI max

(
∂yI
∂χi

I

)2

> 0 (A7)

⇒ 0 < ℏiI <
2

max
(

∂yI

∂χi
I

)2 . (A8)

Proof of Theorem 2:

For the control block, the change in Lyapunov function is given as:

∆VC = VC (k + 1)− VC (k) =
1

2

[
EC2 (k + 1)− EC2 (k)

]
. (A9)

Proceeding in the same way as for identification block,

∆VC = ∆EC (k)

[
EC (k) +

1

2
∆EC (k)

]
. (A10)
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Using Eq. (54) and ∆χCi = −ℏiiC
∂JC
∂χCi

= ℏiiCEC (k) ∂u
∂χCi

in Eq. (A10),

∆VC =

(
∂EC (k)

∂χC

)T

ℏCEC(k)
∂u

∂χC

{
EC (k) +

1

2

(
∂EC (k)

∂χC

)T

ℏCEC(k)
∂u

∂χC

}
. (A11)

UsingEq.(52),
∂EC

∂χC
= −

[(
∂y

∂u

)2

+ λ

]
∂u

∂χC
(A12)

⇒ ∆VC = −

([(
∂y

∂u

)2

+ λ

]
∂u

∂χC

)T

ℏCEC (k)
∂u

∂χC

EC (k)− 1

2

([(
∂y

∂u

)2

+ λ

]
∂u

∂χC

)T

ℏCEC (k)
∂u

∂χC


(A13)

⇒ ∆VC = −EC2 (k)
4∑

i=1

(
ℏiC

[(
∂y

∂u

)2

+ λ

](
∂u

∂χi
C

)2
(
1− 1

2
ℏiC

[(
∂y

∂u

)2

+ λ

](
∂u

∂χi
C

)2
))

. (A14)

Since EC2 > 0, the convergence guaranteed if

4∑
i=1

(
ℏiC

[(
∂y

∂u

)2

+ λ

](
∂u

∂χi
C

)2
(
1− 1

2
ℏiC

[(
∂y

∂u

)2

+ λ

](
∂u

∂χi
C

)2
))

> 0

⇒ 2− ℏiC

[(
∂y

∂u

)2

+ λ

](
max

(
∂u

∂χi
C

))2

> 0 (A15)

⇒ 0 < ℏiC <
2[(

∂y
∂u

)2
+ λ

](
max

(
∂u
∂χi

C

))2 , (A16)

which completes the proof.

Nomenclature

LFEMO Low frequency electromechanical
oscillations

SSSC Static synchronous series Compensator
FACTS Flexible AC transmission system
AVR Automatic voltage regulator
PSS Power system stabilizer
SISO Single input, single output
MIMO Multiple input, multiple output
SMIB Single machine infinite bus
TSK Takagi–Sugeno–Kang
PID Proportional integral derivative
PLL Phase-locked loop
PWM Pulse width modulation
SPWVD Smooth pseudo-Wigner–Ville Distribution
θ Line current angle
ϕ Firing angle

m Modulation index
ψs Converter output voltage angle
vd inv d-axis converter output voltage
vq inv q-axis converter output voltage
Rss Series resistance of SSSC
Lss Series inductance of SSSC
C Converter DC-side capacitance
RDC Converter DC-side resistance
vDC DC link capacitor voltage
id d-axis line current
iq q- axis line current
Ξκ Set of disturbances applied to power

system
φ Morlet wavelet function
mij j th membership function of ith input
χI Update parameters’ vector for identifica-

tion block
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χC Update parameters’ vector for control
block

ℏ Learning rate

λ̄ Momentum term
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