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Abstract:In recent years, there have been significant advances in communication technology, but speech signals still suffer

from low perceived quality caused by bandwidth limitations of telephone networks. The bandwidth extension (BWE)

approach adds high-frequency components of the speech signal to band-limited telephone speech and increases speech

perception significantly. In this work, we develop a new method for representation of vocal tract filter coefficients using log

of filter bank energy (LFBE) parameters as an alternative for mel-frequency cepstral coefficients (MFCCs). This approach

is based on a strong correlation between the spectral components of low- and high-band spectrums. Furthermore, the

performances of Gaussian mixture model and multilayer perceptron neural network methods for estimation of the high-

frequency envelope are evaluated. Objective evaluations of the obtained results indicate that the LFBE feature vectors

have better performance than the MFCCs. In addition, findings of the objective evaluations showed that using a neural

network, which is not common in BWE, achieves a better performance as compared to the Gaussian mixture model.
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1. Introduction

The bandwidth of the speech signal produced by humans has a frequency range of 0 to 10 KHz. In this range,

quality of speech and its perception is very high. In some conditions, however, transmission of such speech

signals may lead to relatively band-limited signals. For instance, almost all of the public telephone exchanges

are digital, but the existing telephone network transmission bandwidth is still limited to the frequency range of

300–3400 Hz [1]. However, previous studies have shown that acoustic bandwidth reduces the quality of perceived

speech dramatically [2].

Bandwidth extension techniques improve speech quality by adding the missed spectral components into

the narrowband signal. Most bandwidth extension (BWE) algorithms are based on a human speech production

model that is called the source-filter model. The main procedure of the BWE technique can be divided into 2

separate tasks: expansion of the excitation and expansion of the spectral envelope [3]. A block diagram of this

procedure is depicted in Figure 1.

The expansion of the spectral envelope is a more challenging task and strictly depends on the features that

estimate the spectral envelope. In the BWE procedure, spectral envelope information is usually represented as a

set of cepstral coefficients [2], linear predictive coding (LPC) coefficients [4], line spectral frequency coefficients

∗Correspondence: s pourmohammadi@yahoo.com
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[5–7], mel-frequency cepstral coefficients (MFCCs) [8–10], a set of autocorrelation coefficients [11], or mel-

spectrum coefficients [12].
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Figure 1. Block diagram of BWE algorithm.

The codebook technique is the fundamental envelope prediction method. A codebook of the BWE method

contains a predefined set of narrowbands and their corresponding high-band envelopes. The spectral envelope

information of the narrowband frame is compared to all codebook entries, and the candidate with the best

matching is selected [13].

Using the hidden Markov model (HMM) in the field of speech recognition is common and it is used

in the expansion of spectral envelopes. The HMM is able to model hidden information, e.g., how a speech

sequence evolves over time. Therefore, it utilizes information about previous frames to estimate the high-band

components [14].

The multilayer perceptron (MLP) feedforward neural network is used to reconstruct the wideband spectral

features, too [2]. Feature vectors are derived from narrowband speech as like the corresponding wideband speech

template. These vectors are used as input-output pairs to train a neural network model. The ultimate goal is

mapping of a narrowband input signal to its corresponding wideband output.

The Gaussian mixture model (GMM) is able to model the probability density function of data. The GMM

has been utilized to estimate a wideband spectral envelope from narrowband features. The GMM is trained

using the expectation-maximization (EM) algorithm. The estimator then minimizes the mean squared error

between the estimated wideband feature and the real wideband one [7,15–17]. In [18], a wideband excitation

was generated by spectral folding from the narrowband linear prediction residual. The high-band of this signal

is divided into 4 subbands with a filter bank, and a neural network is used to weight the subbands based on

features calculated from the narrowband speech.

The correlation characteristics between the spectral components in the narrowband and the high-band

signals, using several preliminary experiments, were investigated. The experiments demonstrated that 2 parts

in the narrowband signal are mainly correlated with missing components in the high-band signal. These 2 parts

are the area of the first formant (F1) and the boundary of the cutoff frequency. In addition, the corresponding

experiments demonstrated that a particular spectral component is highly correlated not only with the spectral

information around the first formant frequency, but also with the adjacent components. Figure 2 shows the 50

most highly correlated spectral components in the available frequency band with a particular mel-filter bank

index in the cutoff frequency region. For example, the first plot in Figure 2 shows the top 50 spectral components

(i.e. mel-filter bank outputs) in the available region, which are highly correlated with the 14th Mel filter banks

index. The 14th index is the first component in the missing high-band region [19].
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Figure 2. Top 50 highly correlated spectral components for narrowband speech [19].

Based on the above research, there are 2 innovative points in our present work: first, choosing feature

vectors such as the log of filter bank energy (LFBE), and second, using a neural network for more accurate

results. It is also easier to investigate the effect of using several frames to reconstruct wideband speech in neural

network. In this study, both neural network and GMM techniques are applied to estimate wideband vocal tract

filter coefficients from narrowband LFBE and MFCC vectors to compare their efficiency.

This paper is organized as follows: Section 2 describes the proposed procedure in order to extract the

spectral features for mapping as well as for constructing the synthesis filter. MFCC features are described, too.

The reconstruction of the spectral envelope using the GMM and the nonlinear mapping property of MLP neural

networks is discussed in Section 3. Section 4 discusses reproducing wideband speech and Section 5 describes

the performance of the proposed method.

2. MFCC and LFBE feature extraction

The new application of the well-known LFBE parameterization of speech for the narrowband (0–4 KHz) and

high-band (4–8 kHz) speech signals (obtained by filtering the wideband speech) is summarized as follows:

1. Preemphasizing the signal with a high-pass filter.

2. Windowing the preemphasized signal with hamming window to minimize the edge effect of discontinuities

because of framing. A 20-ms frame size with 50% overlap is used.
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3. Applying the fast Fourier transform (FFT) to each frame followed by a magnitude operation to make a

magnitude spectrum.

4. Applying mel-scale triangular filters to the magnitude spectrum. Twelve filters are used for the 0–4 kHz

narrowband signal and 4 filters for the 4–8 kHz high-band signal.

5. Calculation of the logarithm of signal energies in the filter bank.

Following these steps, one LFBE feature vector for each frame was extracted. Then, using discrete cosine

transform (DCT), MFCC features were obtained. Figure 3 depicts the block diagram of the extraction of both

MFCC and LFBE features [20].

Speech Signal  Preemphasis  
Hamming 
Window 

STFT 

abs(.) Mel Filterbank Log LFBE  

DCT MFCC 

Figure 3. Block diagram of LFBE/MFCC extraction from speech signal.

3. Expansion of envelope

The main step in the BWE process is the expansion of the envelope. The block diagram of this process is

shown in the upper part of Figure1. The estimation of the envelope is usually considered as a more challenging

task than the estimation of the excitation. Previous studies proposed several envelope prediction methods such

as codebook, GMM, HMM, and finally neural networks. The present study employed the GMM and neural

network methods.

3.1. The GMM method in envelope extension

Two feature vectors, x and y, can be extracted for each frame of the available speech to form several observations,

which will be utilized in the training step. x and y denote the narrowband and corresponding high-band feature

vectors, respectively, and we define feature vector z such that [x y]T .

The density function of z can be modeled by the mixture of M Gaussian densities as follows in Eq. (1):

f(z) =
∑M

m=1
cmg(x|µm,

∑
m

), (1)

where cm , µm , and Σm are the weighting coefficient, the mean vector, and the covariance matrix of the

mth Gaussian, respectively. Since high cross-correlation between low- and high-band frequency components is

assumed, the covariance matrix can be chosen as a full matrix. No analytical solution exists for finding the

parameters of the model. Therefore, the parameters should be estimated by the EM algorithm [15].
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3.1.1. EM algorithm

The EM algorithm is a widely used method for estimation of parameters of a GMM, given a set of observations.

It maximizes the probability of a certain set of observations generated from a distribution with a given set of

parameters. This is done by adjusting the parameters so that the likelihood for these parameters is maximized.

The EM algorithm performs this estimation iteratively, and it guarantees an increase in likelihood. The objective

is to maximize the likelihood by adjusting the parameters, and then the problem is solved as follows in Eq. (2):

θ∗ = argmax logL(z|θ) = argmax
T∑

t=1

log[
∑M

m=1
cm g(z|µm,

∑
m

)], (2)

where z represents the observed data, θ is a set of parameters θ= {µ , Σ} , L(z|θ) is the likelihood function

for the observations, θ∗ is the set of optimum parameters, and T is the number of frames.

The procedure is divided into 2 parts: the expectation and the maximization steps, which make the name

of the algorithm. The expectation step (E-step) is performed by calculating the posterior probability based on

observations z and the multivariate Gaussian distributions. The E-step is calculated for all observations and

all mixture components. The posterior probability is utilized during the maximization step and the parameters

for each mixture are updated in the maximization step (M-step).

The E-step and M-step are conducted iteratively followed by each other until the algorithm reaches

convergence. Convergence is achieved when the absolute increase in log-likelihood between 2 iterations is below

the threshold. In this case, the algorithm stops and the final parameters θ∗= {µz,Σz } are obtained. Each

iteration increases the log-likelihood and it is ensured that the algorithm converges to a local maximum of the

log-likelihood function [15]. Using the obtained parameters from the trained GMM and minimum mean square

error (MMSE) estimator, we can estimate wideband coefficients.

3.1.2. Estimation of wideband signal coefficients

The MMSE estimator minimizes the mean squared error between the estimated and real wideband features of

ŷ and y. Because we use the full covariance matrix, the equation can be presented as follows:

ŷMMSE =
M∑

m=0
P (m|x,Θ)

[µy
m +

∑yx
m (

∑xx
m )−1(x− µx

m)]

, (3)

where P (m|x,Θ) is a weighting function for each component m as defined in Eq. (4).

P (m|x,Θ) =
cmg(x|µx

m,
∑xx

m )
M∑
n=1

cng(x|µx
n,
∑xx

n )

, (4)

whereµx
m andµy

m are parts of the mean vector, and
∑xx

m and
∑yx

m are parts of the covariance matrix for the

mth component. These terms arise from decomposition of µz
m and

∑z
m by Eqs. (5) and (6) [15].

µz
m =

[
µx
m

µy
m

]
(5)
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z∑
m

=

[ ∑xx
m

∑xy
m∑yx

m

∑yy
m

]
(6)

3.2. Envelope extension with neural network

Using neural networks is common in the field of speech recognition, but not in BWE. This paper exploits a

nonlinear neural network to achieve a mapping of narrowband features to wideband spectral features. According

to [10], there is high correlation among the current frame and adjacent frames with the upper part of spectrum.

Therefore, the use of a time-delay neural network (TDNN) is suggested. The main property of this method is

working on continuous data. The TDNN structure should possess several adjacent feature vectors that have

been recently used to prepare a single input for a neural network [21].

To use neural network as a mapping function, 2 hidden layers are sufficient. In this case, hidden layer

activation functions are nonlinear and activation functions of input and output layers are linear. If the output of

the neural network is normalized, one hidden layer is sufficient, and in this case, the output activation function

is nonlinear.

The selection of number of neurons is based on the fact that the number of inputs is 4 to 10 times more

than the neural network’s unknown weights. In this case, the unknown parameters are proportionate to known

parameters and weights may be estimated accurately.

4. Reconstruction of wideband speech

After estimation of the MFCC or LFBE coefficients with the GMM or neural network methods, it is necessary to

convert these obtained feature vectors to vocal tract filter coefficients for the ability to use the linear prediction

model for evaluating and reconstructing wideband speech.

Unfortunately, some steps of MFCC generation process are noninvertible. Therefore, some of the useful

information of the speech signal will be lost. There is still a fairly broad range of differing estimates that show

a possibility of logically estimating the speech power spectrum [22]. Calculation of vocal tract coefficients from

MFCC feature vectors is a 2-part process:

Part one: Recovering power spectrum from MFCC feature vectors.

Part two: Estimating linear prediction model coefficients from the power spectrum.

The first step of the above process is to use the indirect DCT as in Eq. (7).

log Ŷk =
√

2
N

N−1∑
n=0

cn cos(
(2k+1)nπ

2N )

0 < k < N − 1
, (7)

where log Ŷ k , cn ,and N are the k th estimated power spectrum, the nth MFCC feature vector, and the

number of filter banks, respectively.

An exponential operator is the easiest way to invert the logarithm operation. Power spectrum estimation

is the next step. Since an inversing process was performed with a limited number of feature vectors, only a

limited number of mel-scale filters will be available as a result. Therefore, for reconstructing the spectrum at

high quality, interpolation between energies of filter banks parameters (LFBEs) is necessary.
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Interpolation is done with high-resolution inverse cosine transform as in Eq. (8).

log Ŷk′ =
√

2
N

N−1∑
n=0

cn cos(
(2k′+1)nπ

2iN )

0 < k′ < iN − 1
(8)

Here,i is the interpolation factor and refers to the number of filter banks. As a result, the number of log-energies

will be iN.

This interpolation results in mel-scales with very accurate resolution that can be used to estimate separate

frequency bands with linear (not mel) spacing.

Therefore, by use of the DCT as an interpolation function, the interpolation between the centers of mel-

frequency bands is performed. The interpolation factor will be determined by the desired resolution of the mel

scale. Using Eq. (9), the linear frequency scale becomes the mel-frequency scale.

fmel = 2595 log10(1 + fHZ/700) (9)

Here,fmel and fHz are the frequency in mel and hertz domains, respectively. The resolution factor is then

calculated using Eq. (10).

i =

[
fmel2 − fmel1

N + 1

]
(10)

Here, fmel1 and fmel2 are the start and end of bandwidth of signal in mel spacing. The next step is converting

the power spectrum to the predictive linear model coefficients. Computing the inverse Fourier transform of the 2-

sided power spectrum results in the autocorrelation coefficients. This can then be used to solve the Yule–Walker

equations by means of Levinson–Durbin recursion. Thus, linear prediction model coefficients are obtained by

minimizing the forward predictor mean square error. These LPC parameters represent the coefficients of the

all-pole vocal tract filter [23,24].

After achieving vocal tract filter coefficients, an excitation signal is obtained using a narrowband speech

signal through the analyzing filter (Figure 1). This signal can be used simply by spectral folding method to

convert it into a wideband signal. Because of low computation and good results in implementation, this is

one of the conventional methods in extension of excitation. In spectral folding, the high band is generated

by up-sampling the signal. As a result, the high-band spectrum is a mirror image of the original narrowband

spectrum [1]. Then, according to Figure 1, by estimating wideband LPC coefficients, a synthesis filter will be

designed. Applying this filter to the excitation signal and also using the overlap-add method, a wideband speech

signal is reconstructed.

After reconstructing the wideband signal, it is filtered by a high-pass filter to obtain the missing high-

band speech signal. Since the narrowband signal is available, it can already be used as output. As a result,

the sampling rate of the narrowband signal increases by interpolation and then the high-band and narrowband

signals can be summed together to reconstruct the wideband signal.

5. Implementation

First, the database that is used in this work is introduced. An introduction of objective measures that are

employed for the evaluation of the results is then presented and, finally, implementation results are compared

in various conditions.
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5.1. Introduction of database

To evaluate the proposed algorithm, a speech database with appropriate training and testing sets is required.

In this paper, the TIMIT database was used, in which all audio files are sampled at 16 kHz [25]. The division

provided for training and testing is 73% and 27%, respectively. A set of the employed training data consists

of 2064 sentences from 258 different speakers. In comparison, the test database contains 760 sentences from

95 speakers. For all audio files (training and testing), the narrowband signal is in the range of 0 to 3400 Hz.

Extraction of feature vectors MFCC and LFBE was done from all of them with frame length of 20 ms and

50% overlap. Furthermore, the total number of mel-scale filter bank and coefficients was equal. The number

of coefficients used for narrowband LFBEs is 12 plus 4 high-band coefficients. This means that the wideband

speech signal is represented with 16 coefficients as a feature vector. The number of MFCC feature vectors for

the wideband signal is 16, too. Derivatives of the MFCC coefficients were not used in this research.

5.2. Evaluation methods

There are different methods to measure the difference between the original and estimated wideband envelopes.

The log spectral distortion (LSD) is the most commonly used measure for evaluating the bandwidth expansion

algorithm [1]. This is defined in Eq. (11).

dLSD =

√√√√√ 1

2π

π∫
0

(10 log10(A(w))− 10 log 10 (Â(w)))2dw, (11)

where A(w) and Â(w)are the original and estimated wideband envelopes, respectively.

Even though the Itakura distance is not a real measure, since it is not symmetric, it is widely used as a

similarity measure between vocal tract filter coefficients. The Itakura distance is heavily influenced by spectral

dissimilarity because of the presence of mismatch in formant locations, which is desirable since the auditory

system is sensitive to these errors. The idea is to measure the log of the ratio between the total energy of the

residual signal for 2 sets of the vocal tract filter coefficients [26]. This is defined in Eq. (12).

dIS =
1

2π

π∫
0

(
A(w)

Â(w)
− log10

A(w)

Â(w)
− 1)dw (12)

5.3. Implementation of the GMM method

The MMSE approach was used to estimate the wideband feature vectors based on the trained GMM parameters.

However, first it is necessary that the matrix of the GMM training data be built. After feature extraction, the

training matrix z = [xy]T is built, where x and y denote the narrowband and high or wideband feature vectors,

respectively. Common values?? for the total number of mixtures are the integer powers of 2 (16, 32, 64, 128,

and 256). In this study, the results of the Gaussian densities per number are investigated for 8, 16, 32, 64, 128,

and 256.

Furthermore, a full covariance matrix is used to estimate the parameters. In this case, the input feature

vector for the MMSE estimator is a 12-dimension narrowband and its output feature vectors are 16-dimensional

for wideband MFCC and 4-dimensional for high-band LFBE. Table 1 reports the results of the bandwidth

expansion algorithm that used the GMM model to generate the MFCC wideband spectral envelope. Amounts

of Itakura–Saito distance and LSD are shown in terms of RMS and dB in all tables.
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Table 1. Objective measures?? for the MFCC feature vectors estimated by GMM.

Number of
RMS LSD (dB) RMS IS (dB)

Gaussian distributions
16 5.22 0.69
32 5.15 0.65
64 5.13 0.63
128 4.48 0.57
256 4.66 0.59

Table 2 is similar to the previous table that used GMM to produce a high-band spectral envelope, but

results for evaluation of LFBE feature vectors are given.

Table 2. Objective measures ??for the LFBE feature vectors estimated by GMM.

Number of Gaussian distributions RMS LSD (dB) RMS IS (dB)
16 4.88 0.67
32 4.80 0.58
64 4.65 0.56
128 4.45 0.55
256 4.60 0.57

Figures 4 and 5 show the results of Tables 1 and 2, analyzing each of the objective measurements, RMS

LSD, and RMS IS for MFCC and LFBE feature vectors.
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Figure 4. Analyzed RMS LSD for MFCC and LFBE

feature vectors.

Figure 5. Analyzed RMS IS for MFCC and LFBE feature

vectors.

5.4. Implementation of neural network method

There was significant correlation between the narrow and high-band frequency components [19]. The correlation

was not only between the specific frame and high band, but also between the adjacent frames and high band

of the current frame. Therefore, the use of the TDNN is recommended. For the preparation of network input,

the use of 3 adjacent frames (one frame to the right and another to the left of the current frame) is proposed.
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It is important to note that, in this study, a neural network was used as the mapping tool of input to

output. The narrowband input is 12-dimensional for MFCC and LFBE, and thus because of using 3 adjacent

frames, the number of input neurons will be 36. The number of output neurons for the LFBE is 4 (the number

of high-band filters) and for MFCC is 16 (the number of MFCC coefficients in wideband).

After training the network with the scaled conjugate gradient method, the process is continued by testing

feature vectors derived from the test database. Tables 3 and 4 evaluate the RMS IS and RMS LSD measures in
the case of a neural network used to estimate the spectral envelope. Table 3 shows results for MFCC features

and Table 4 corresponds to the LFBE feature vectors.

Table 3. Objective measures ??for the MFCC feature vectors estimated by neural network.

Neural network condition RMS LSD (dB) RMS IS (dB)
Nonnormalized 4.69 0.5
Normalized input 2.02 0.27
Normalized input and output 3.12 0.39

Table 4. Objective measures ??for the LFBE feature vectors estimated by neural network.

Neural network condition RMS LSD (dB) RMS IS (dB)
Nonnormalized 1.94 0.26
Normalized input 1.58 0.21
Normalized input and output 1.87 0.25

The discussed network was tested in terms of input and output for the best result. A nonnormalized

state means that the input and output of the neural network is not normalized. In this state, the network has

2 hidden layers with tangent hyperbolic nonlinear activation function and the numbers of neurons in each layer

are 40 and 15, respectively. The activation function of the output layer is linear. Normalized input mode means

that normalized features apply to the network, but its output is not normalized. In this condition, the network

has 2 hidden layers with nonlinear activation function, with 40 and 15 neurons in the first and second hidden

layer, respectively. Furthermore, in this case, the activation function is linear at the output layer.

The normalization method for the training matrix is proportional to its mean and standard deviation.

Therefore, from all of the feature vectors, the mean vector can be subtracted and then divided by the standard

deviation. There is a single hidden layer of the neural network with nonlinear activation function in the

normalized input and output state. In this case, the number of neurons is 60 and the output layer activation

function is nonlinear. All the nonlinear functions used are tangent hyperbolic.

In Figures 6 and 7, the results of neural network implementation using MFCC and LFBE feature vectors

are illustrated.

In this study, to assess the effect of the number of adjacent frames in the optimum parameter estimation

of the current high-band spectral envelope accurately, 2 more cases were evaluated: 1) 5 consecutive frames (2

frames from the right and 2 frames from the left of the current frame) and 2) 1 frame (current frame only). For

both of the new cases the optimum state of the neural network (normalized input and nonnormalized output)

has been experienced.

This study was performed for both MFCC and LFBE feature vectors. Table 5 shows results of the

implementation of only 1 input frame and Table 6 shows the results of implementation of 5 consecutive frames

in the neural network input. Table 7 compares 3 input frame conditions for the input networks and the RMS

LSD measure.

442



POURMOHAMMADI et al./Turk J Elec Eng & Comp Sci

1

1.5

2

2.5

3

3.5

4

4.5

5

Simple Input norm In & out norm

R
M

S 
L

SD
 (

d
B

) 

MFCC

LFBE

0.13

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

Simple Input norm In & out norm

R
M

S 
IS

 (
d

B
)

 

MFCC

LFBE

Figure 6. Analyzed RMS LSD for MFCC and LFBE

feature vectors.

Figure 7. Analyzed RMS IS for MFCC and LFBE feature

vectors.

Table 5. Results of the implementation of only 1 input frame in neural network input.

Neural network with 1 input frame RMS LSD (dB) RMS IS (dB)
MFCC feature vectors 2.21 0.33
LFBE feature vectors 1.65 0.22

Table 6. Results of implementation of 5 consecutive frames in neural network input.

Neural network with 5
RMS LSD (dB) RMS IS (dB)

consecutive input frames
MFCC feature vectors 1.95 0.27
LFBE feature vectors 1.59 0.22

Table 7. Comparison of 3 input frame conditions for the input networks and the RMS LSD measure.

Neural network input conditions RMS LSD (MFCC) RMS LSD (LFBE)
Only 1 frame 2.21 1.65
Three adjacent frames 2.02 1.58
Five adjacent frames 1.95 1.59

6. Discussion

As the tables and figures suggest, objective measures of RMS LSD and RMS IS are correlated to each other and

their results follow the same trend. This property implies the usefulness of both mentioned criteria in evaluating

implementation of the bandwidth extension algorithm.

In this work, we showed that the results of implementation of bandwidth extension algorithm by GMM for

LFBE feature vectors are better than implementation with corresponding MFCC feature vectors. The optimal

number of Gaussian distributions for MFCC and LFBE feature vectors is equal to 128. Results of the different

assessments indicate that extending the model by increasing the number of GMM components does not result

in more improvement of the objective measures; it only adds more complexity to the calculation.

The results of neural network implementation show the advantage of LFBE feature vectors against MFCCs

in the bandwidth extension algorithm. The best result for the best neural network training is 0.44 dB in RMS
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LSD measurements. As shown in Figures 6 and 7, when implementing BWE using a neural network, the best

result is produced when the input is normalized and the output is nonnormalized.

For the best result obtained from LFBE feature vectors, the neural network resulted in an improvement

of 2.87 dB in LSD measurement and improvement of 0.33 dB in IS assessment as compared to the GMM. These

improvements for MFCC feature vectors will be 2.47 dB and 0.29 dB, respectively.

As the results suggest, implementation of a neural network leads to a significant improvement. Using

LFBE feature vectors has a better effect than using MFCCs, highlighting the advantage of LFBE coefficients.

Results show that adjacent frames are effective in estimating the current frame spectral envelope. These results

also show that using 3 adjacent frames is the best choice; therefore, it is not suggested to increase the number

of frames to 5, because it will only add more complexity to the calculations and will not improve the results.

7. Conclusion

Bandwidth extension increases the quality of narrowband speech signals by adding the lost information to it.

In this research, 2 methods, GMM and neural network, were used to estimate a high-band spectral envelope

from narrowband information. Furthermore, 2 MFCC and LFBE feature vectors were used. The MFCC

parameters were widely used in BWE approaches in previous studies, but the LFBEs for implementation of

artificial bandwidth extension with a neural network were used for the first time in this research. Objective

evaluations of both results of implementation with the GMM and neural network indicate the superiority of

LFBE over MFCCs.

Moreover, implementation of the BWE approach with a neural network under the conditions and with the

methods proposed in this study shows more promising results than the GMM technique. When LFBE feature

vectors were used in both methods, the best result was obtained from a neural network with 3 normalized

adjacent frame inputs. In this condition, the neural network has the advantage of 64.5% in RMS LSD and

61.8% in RMS IS against the GMM method. In addition, as compared to the feature vectors in implementation,

the neural network shows improvement of 21.8% in RMS LSD and 22.2% in RMS IS for LFBE over MFCC

coefficients.
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[26] Laaksonen L, Pulakka H, Myllylä V, Alku P. Development evaluation and implementation of an artificial bandwidth

extension method of telephone speech in mobile terminal. IEEE T Consum Electr 2009; 55: 1062–1078.

446


	Introduction
	MFCC and LFBE feature extraction
	Expansion of envelope
	The GMM method in envelope extension
	EM algorithm
	Estimation of wideband signal coefficients 

	Envelope extension with neural network 

	Reconstruction of wideband speech
	Implementation
	Introduction of database
	Evaluation methods
	Implementation of the GMM method
	Implementation of neural network method

	Discussion 
	Conclusion

